Functions
(Rosen, Section 2.3)

TOPICS

• Definition of Function
• Domain, Codomain, Range
• One-to-One Functions
• Increasing Functions

Functions in CS

• Function = mappings or transformations

• Examples

 \[f(x) = x \]
 \[f(x) = x + 1 \]
 \[f(x) = 2x \]
 \[f(x) = x^2 \]

Function Definitions

• A function \(f \) from sets \(A \) to \(B \) assigns exactly one element of \(B \) to each element of \(A \).

• Example: the \(\text{floor} \) function

 \[
 \begin{array}{c|c}
 \text{Domain} & \text{Codomain} \\
 \hline
 2.4 & 1 \\
 1.6 & 2 \\
 5.0 & 3 \\
 4.8 & 4 \\
 2.3 & 5 \\
 \end{array}
 \]

 Range: \(\{1, 2, 4, 5\} \)

What’s the difference between codomain and range?

Range contains the codomain values that \(A \) maps to

Function Definitions

• In Programming

 — Function header definition example

  ```
  int floor( float real )
  {
  }
  ```

 • Domain = \(\mathbb{R} \)
 • Codomain = \(\mathbb{Z} \)
Other Functions

- The identity function, f_{ID}, on A is the function where: $f_{ID}(x) = x$ for all x in A.
 - $A = \{a, b, c\}$ and $f(a) = a$, $f(b) = b$, $f(c) = c$

- Successor function, $f_{succ}(x) = x+1$, on \mathbb{Z}
 - $f(1) = 2$
 - $f(-17) = -16$
 - $f(a)$ Does NOT map to b

- Predecessor function, $f_{pred}(x) = x-1$, on \mathbb{Z}
 - $f(1) = 0$
 - $f(-17) = -18$

Other Functions

- $f_{NEG}(x) = -x$, also on \mathbb{R} (or \mathbb{Z}), maps a value into the negative of itself.

- $f_{SQ}(x) = x^2$, maps a value, x, into its square, x^2.

- The ceiling function: $\text{ceil}(2.4) = 3$.

Functions in CS

- What are ceiling and floor useful for?
 - Data stored on disk are represented as a string of bytes. Each byte = 8 bits. How many bytes are required to encode 100 bits of data?

 Need smallest integer that is at least as large as 100/8

 $100/8 = 12.5$ But we don’t work with $\frac{1}{2}$ a byte.
 So we need 13 bytes

- What is NOT a function?
 - Consider $f_{SORT}(x)$ from \mathbb{Z} to \mathbb{R}.
 - This does **not** meet the given definition of a function, because $f_{SORT}(16) = \pm 4$.
 - In other words, $f_{SORT}(x)$ assigns exactly **one** element of \mathbb{Z} to **two** elements of \mathbb{R}.

 No Way! Say it ain’t so!!

 Note that the convention is that $\forall x$ is always the **positive value**. $f_{SORT}(x) = \sqrt{x}$
1 to 1 Functions

- A function \(f \) is said to be one-to-one or injective if and only if \(f(a) = f(b) \) implies that \(a = b \) for all \(a \) and \(b \) in the domain of \(f \).
- Example: the square function from \(\mathbb{Z} \) to \(\mathbb{Z} \):

```
  1  2  3  4 ...
  2  3  4 ...
  3  ...
  4 ...
  ...
```

1 to 1 Functions, cont.

- Is square from \(\mathbb{Z} \) to \(\mathbb{Z} \) an example?
 - NO!
 - Because \(f_{\text{sq}}(-2) = 4 = f_{\text{sq}}(+2) \)!
- Is floor an example?
 - INCONCEIVABLE!!
- Is identity an example?
 - Unique at last!!

Increasing Functions

- A function \(f \) whose domain and co-domain are subsets of the set of real numbers is called increasing if \(f(x) \leq f(y) \) and strictly increasing if \(f(x) < f(y) \), whenever
 - \(x < y \) and
 - \(x \) and \(y \) are in the domain of \(f \).
- Is floor an example?
 - Yes
 - \(1.5 < 1.7 \) and \(\text{floor}(1.5) = 1 = \text{floor}(1.7) \)
 - \(1.2 < 2.2 \) and \(\text{floor}(1.2) = 1 < 2 = \text{floor}(2.2) \)
- Is square an example?
 - No
 - \(\text{square}(-2) = 4 > 1 = \text{square}(1) \) yet \(-2 < 1 \)

How is Increasing Useful?

- Most programs run longer with larger or more complex inputs.
- Consider the maze:
 - Larger maze may (in the worst case) take longer to get out.
 - Maze with more walls may (in the worst case) take longer to get out.
- Consider looking up a telephone number in the paper directory...
Cartesian Products and Functions

- A function with multiple arguments maps a Cartesian product of inputs to a codomain.
- Example:
 - `Math.min` maps (subset of) $\mathbb{Z} \times \mathbb{Z}$ to \mathbb{Z}
    ```java
    int minVal = Math.min(23, 99);
    ```
 - `Math.abs` maps (subset of) \mathbb{Q} to \mathbb{Q}^+
    ```java
    int absVal = Math.abs(-23);
    ```

Quiz Check

- Is the following an increasing function?
 - $\mathbb{Z} \rightarrow \mathbb{Z}$ \(f(x) = x + 5 \)
 - $\mathbb{Z} \rightarrow \mathbb{Z}$ \(f(x) = 3x - 1 \)