Question 1-7 and 9: 10 points/each. Question 8 a) and b): 5 points/each. Question 8 c) and d): 10 points/each.

1. (a) YES. \(X^+ = XYWZ \)
 \[5 \text{ pts} \]
 (b) No. \((XW)^+ = XW, Z \) is not in there.
 \[5 \text{ pts} \]

2. \(r \) satisfies \(AD \rightarrow B, C \rightarrow DE, CD \rightarrow A, AE \rightarrow B \). But \(r \) does not satisfy \(A \rightarrow B \) & \(AE \rightarrow B \) since the first two tuples of \(r \) have the same values for \(A \), but different values for \(B \).
 \[2 \times 5 = 10 \text{ pts} \]

3. (a) \(A^+ = ABEC \)
 (b) \((AE)^+ = ABEC \)
 (c) \((ADE)^+ = ABCDEI \)
 \[4 \text{ pts} \times 3 = 12 \text{ pts} \]

4. To see that \(F \) and \(G \) are equivalent, we need to verify that every FD in \(F \) is in \(G^+ \), and vice versa. We first check if \(F \subseteq G^+ \): (i) \(A^+ = ACD \), so \(A \rightarrow C \) is in \(G^+ \). (ii) \(AC_G^+ = ACD \), so \(AC \rightarrow D \) is in \(G^+ \). (iii) \((E)_G^+ = ACDEH \), so \(E \rightarrow AD \) is in \(G^+ \).
 Next we verify if \(G \subseteq F^+ \): (i) \((A)_G^+ = ACD \), so \(A \rightarrow CD \) is in \(F^+ \). (ii) \((E)_F^+ = ACDE \), so \(E \rightarrow AHE \) is not in \(F^+ \).
 Thus \(F \) and \(G \) and NOT equivalent.
 \[10 \text{ pts} \]

5. (a) Let \(F = \{ A \rightarrow BC, B \rightarrow C, AB \rightarrow D \} \). We need to obtain an equivalent set of FDs that satisfies the three properties of a minimal cover.
 - Right side of each FD in \(F \) must be a single attribute: so we replace \(F \) by \(F_1 = \{ A \rightarrow B, A \rightarrow C, B \rightarrow C, AB \rightarrow D \} \).
 - No extraneous attributes on the left side. We first check if \(A \) can be deleted from \(AB \rightarrow D \). We can do so if \(B \rightarrow D \) follows from \(F_1 \). Since \((B)_F^+ = BC \), the answer is NO.
 We next check if \(B \) can be deleted from \(AB \rightarrow D \). We can do if \(A \rightarrow D \) follows from \(F_1 \). Since \((A)_F^+ = ABCD \), the answer is YES. Let \(F_2 = \{ A \rightarrow BC, B \rightarrow C, A \rightarrow D \} \).
 - No redundant FDs: \(A \rightarrow C \) can be deleted from \(F_2 \). Minimal cover =
 \[\{ A \rightarrow B, B \rightarrow C, A \rightarrow D \} \]
(b) Let $F = \{A \to C, AB \to C, C \to D, I, EC \to AB, EI \to C\}$. We need to obtain an equivalent set of FDs that satisfies the three properties of a minimal cover.

- We replace F by $F_1 = \{A \to C, AB \to C, C \to D, C \to I, EC \to A, EC \to B, EI \to C\}$.
- No extraneous attributes on left side: it can be checked that B can be deleted from $AB \to C$. Let $F_2 = \{A \to C, C \to D, C \to I, EC \to A, EC \to B, EI \to C\}$.
 Similarly, D can be removed from $CD \to I$.
- No redundant FDs: None of the FDs are redundant.

Minimal Cover is $\{A \to C, C \to D, C \to I, EC \to A, EC \to B, EI \to C\}$.

6. (a) ρ is loss since $AB \cap BCD = B$, and neither $B \to AB$ nor $B \to BCD$ is true. (you can use chase algorithm too).

(b) The initial table:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b4</td>
<td>b5</td>
<td>a4</td>
<td>a5</td>
<td>a6</td>
</tr>
<tr>
<td>a2</td>
<td>b6</td>
<td>a3</td>
<td>b2</td>
<td>b3</td>
<td>a6</td>
</tr>
<tr>
<td>a3</td>
<td>b7</td>
<td>a4</td>
<td>b5</td>
<td>a5</td>
<td>a6</td>
</tr>
<tr>
<td>a4</td>
<td>b1</td>
<td>a3</td>
<td>b3</td>
<td>b2</td>
<td>a6</td>
</tr>
<tr>
<td>a5</td>
<td>b2</td>
<td>a3</td>
<td>b4</td>
<td>b5</td>
<td>a6</td>
</tr>
<tr>
<td>a6</td>
<td>b3</td>
<td>a4</td>
<td>b1</td>
<td>b2</td>
<td>a5</td>
</tr>
</tbody>
</table>

By applying the three FDs, we obtain a tableau that has one row consisting entirely of a's. Hence ρ is lossless.

7. (a) No change if applying step 1.

- We can check that F does not have any extraneous FDs.
- For step 3, we need only consider $AB \to C$. We can see that B is redundant by considering $(A)^+_B$. Since $(A)^+_B = ABC$, B is redundant. Thus, we replace $AB \to C$ by $B \to C$ to get the minimal cover $\{A \to C, C \to A, A \to B\}$. Unfortunately, this is not a minimal cover since the FD $A \to B$ is now extraneous.

8. (a) IS is a candidate key since (i) $(IS)^+ = IBO$ and $S^+ = SD$.

(b) IS is the only candidate key since neither I nor S appear in the right-hand side if any FD. Therefore any candidate key will have to contain both I and S. But since IS forms a candidate key, it is the only candidate key.

(c) One possible decomposition is obtained as follows:

(d) We first find the minimal cover $F = \{S \to D, I \to B, IS \to Q, B \to O\}$. It turns that F is minimal. Thus $\{SD, IB, ISQ, BO\}$ is required decomposition. Notice $ISQ \to BOISQD$, hence the decomposition has lossless property.

9. Let’s rewrite the relation scheme as $R = EPBT$ and FDs as $EP \to T, P \to B, E = EMP_ID, P = PROJECT, B = PROJECT_BUDGET, T = TIME_SPENT_BY_PERSON_ON_PROJECT$.

(a) Since EP is the only candidate key of R, both E and P are prime attributes while T and B are nonprime attributes.
Figure 1: 8.c decomposition

(b) R is not in 3NF since P → B holds in R, P is not a superkey and B is not a prime attribute.
(c) R is not BCNF since it’s not 3NF.