Test Coverage & Defect Density:
Yes, they are related.

- Defect vs. Test Coverage model, 1994:
 - Malaiya, Li, Bieman, Karcich, Skibbe
- Estimation of number of defects, 1998
 - Li, Malaiya, Denton

Motivation
Why is Defect Density Important?

- Important measurement of reliability
- Often used as release criteria

<table>
<thead>
<tr>
<th>Beginning Of Unit Testing</th>
<th>Frequently Cited</th>
<th>Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>2.0</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Test Coverage Measures

• Statement or Block coverage
• Branch or decision coverage
• P-use coverage: p-use pair: variable defined/modified - use as predicate
• C-use coverage: similar -use for computation
• Subsumption hierarchy:
 • Covering all branches cover all statements
 • Covering all p-uses cover all branches

Modeling : Defects, Time, & Coverage
Coverage Based Defect Estimation

- Coverage is an objective measure of testing
 - Directly related to test effectiveness
 - Independent of processor speed and testing efficiency
- Lower defect density requires higher coverage to find more faults
- Once we start finding faults, expect coverage vs. defect growth to be linear

Logarithmic-Exponential Coverage Model

- Hypothesis 1: defect coverage growth follows logarithmic model
 \[C^0(t) = \frac{\beta_0^0}{N_0^0} \ln(1 + \beta_0^0 t), \quad C^0(t) \leq 1 \]
- Hypothesis 2: test coverage growth follows logarithmic model
 \[C^i(t) = \frac{\beta_i^i}{N_i^i} \ln(1 + \beta_i^i t), \quad C^i(t) \leq 1 \]
Log-Expo Coverage Model (2)

- Eliminating t and rearranging,

 $$C^0 = a_0^i \ln[1 + a_i^i(\exp(a_2^i C^i) - 1)], \quad C^0 \leq 1$$

 where C^0 : defect coverage, C^i : test coverage
 a_0^i, a_1^i, a_2^i : parameters; i : branch cov, p - use cov etc.

- For “large” C_i, we can approximate

 $$C^0 = -A^i + B^i C^i$$

Coverage Model, Estimated Defects

<table>
<thead>
<tr>
<th>Coverage</th>
<th>Defects</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>90</td>
<td>100</td>
</tr>
</tbody>
</table>

$$\mu(C^i) = -A^i + B^i C^i, \quad C^i > C_{knee}^i$$

- Only applicable after the knee
- Assumptions : Stable Software
Location of the knee

\[C_{knee} = 1 - \left(\frac{E_{min}}{D_{min} E_0} \right) D_0 \]

- Based on interpretation through logarithmic model
- Location of knee based on initial defect density
- Lower defect densities cause knee to occur at higher coverage
- Parameter estimation: Malaiya and Denton (HASE ‘98)

Data Sets Used
Vouk and Pasquini

- Vouk data
 - from N version programming project to create a flight controller
 - Three data sets, 6 to 9 errors each
- Pasquini data
 - Data from European Space Agency
 - C Program with 100,000 source lines
 - 29 of 33 known faults uncovered
Defects vs. Branch Coverage

Data Set: Pasquini

Defects Expected

Fitted Model

Defects vs. P-Use Coverage

Data Set: Pasquini

Defects Expected

Fitted Model
Estimation of Defect Density

- Estimated defects at 95% coverage, for Pasquini data (assume 5% dead code)
- 28 faults found, and 33 known to exist

<table>
<thead>
<tr>
<th>Measure</th>
<th>Coverage Achieved</th>
<th>Expected Defects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block</td>
<td>82%</td>
<td>36</td>
</tr>
<tr>
<td>Branch</td>
<td>70%</td>
<td>44</td>
</tr>
<tr>
<td>P-uses</td>
<td>67%</td>
<td>48</td>
</tr>
</tbody>
</table>

Defects vs. P-Use Coverage

Data Set: Vouk 3
Coverage Based Estimation

Data Set: Pasquini et al

Test Cases

Defects

Estimates are stable

Current Methods

- Development process based models allow for \textit{a priori} estimates
 - Not as accurate as methods based on test data
- Sampling methods often assume faults found as easy to find as faults not found
 - Underestimates faults
- Exponential model
 - Assume applicability of exponential model
 - We present results of a comparison
The Exponential Model

Data Set: Pasquini et al

Estimate rises as new defects found

Estimates very close to actual faults

Recent Conformation of Model

- Frankl & Iakouneno, Proc. SIGSOFT ’98
 - 8 versions of European Space Agency program, 10K LOC
 - Single fault reinsertion
- Tom Williams, manuscript 1999
 - analysis from first principles
Observations and Conclusions

- Estimates with new method are very stable
 - Visual confirmation of earlier projections
- Which coverage measure to use?
 - Stricter measure will yield closer estimate
- Some code may be dead or unreachable
 - Found with compile or link time tools
 - May need to be taken into account