Fault Tolerant Computing

CS 530

Software Reliability Growth

Yashwant K. Malaiya

Colorado State University
Software Reliability Growth: Outline

- Testing approaches
- Operational Profile
- Software Reliability Growth Models
 - Exponential
 - Logarithmic
- Model evaluation: error, bias
- Model usage
 - Static estimation before testing
 - Making projections using test data
Software Reliability Growth Models

• This field is the classical part of “Software Reliability Engineering” (SRE).

• During testing and debugging, the number of bugs remaining reduces, and the bug finding rate tends to drop.

• **When to Stop Testing Problem**: Given a history of bug finding rate, when will it drop below an acceptable limit, so that the software can be released.
Test methodologies

- **Static** (review, inspection) vs. **dynamic** (execution)

- **Test views**
 - **Black-box** (functional): input/output description
 - **White box** (structural): implementation used
 - **Combination:** *white after black*

- **Test generation**
 - **Partitioning** the input domain
 - **Random/Antirandom/Deterministic**

- **Usual assumption:** the test method does not change during testing.
 - In practice testing approach does change, which causes some statistical fluctuations.
Input mix: Test Profile

• The inputs to a system can represent different types of operations. The input mix called “Profile” can impact effectiveness of testing.

• For example a Search program can be tested for text data, numerical data, data already sorted etc. If most testing a done using numerical data, more bugs related to text data may remain unfound.
Input Mix: Testing “Profile”

- **The ideal Profile (input mix) will depend on the objective**
 - A. Find bugs fast? or
 - B. Estimate operational failure intensity?

A. Best mix for efficient bug finding (**Li & Malaiya**’94)
 - Quick & limited testing: *Use operational profile (next slide)*
 - High reliability: *Probe input space evenly*
 - Operational profile will not execute rare and special cases, the main cause of failures in highly reliable systems.
 - In general: Use combination

B. For **acceptance testing**: Need Operational profile

H. Hecht, P. Crane, Rare conditions and their effect on software failures, Proc. Annual Reliability and Maintainability Symposium, 1994, pp. 334-337
Operational Profile

- **Profile**: set of disjoint actions, operations that a program may perform, and their probabilities of occurrence.
- **Operational profile**: probabilities that occur in actual operation
 - Begin-to-end operations & their probabilities
 - Markov: states & transition probabilities
- There may be multiple operational profiles.
- Accurate operational profile determination may not be needed.
Operational Profile Example

• Assume PhoneFollower software that handles incoming calls to a PABX unit.
• Incoming call types & other operations (total 7 types) are monitored to estimate get their probabilities (next slide).
• 74% of the calls were voice calls. In order to achieve better resolution, they were further divided into 5 type (next slide0.
• The resulting Operational profile would have 5+6 = types of operations, with probabilities ranging from 0.18 (18%) to 0.000001.

Note that the code needed for Failure recovery is executed only rarely.
Operational Profile Example

- **“Phone follower” call types (Musa)**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Voice call</td>
<td>0.74</td>
</tr>
<tr>
<td>B</td>
<td>FAX call</td>
<td>0.15</td>
</tr>
<tr>
<td>C</td>
<td>New number entry</td>
<td>0.10</td>
</tr>
<tr>
<td>D</td>
<td>Data base audit</td>
<td>0.009</td>
</tr>
<tr>
<td>E</td>
<td>Add subscriber</td>
<td>0.0005</td>
</tr>
<tr>
<td>F</td>
<td>Delete subscriber</td>
<td>0.000499</td>
</tr>
<tr>
<td>G</td>
<td>Failure recovery</td>
<td>0.000001</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Voice call, no pager, answer</td>
<td>0.18</td>
</tr>
<tr>
<td>A2</td>
<td>Voice call, no pager, no answer</td>
<td>0.17</td>
</tr>
<tr>
<td>A3</td>
<td>Voice call, pager, voice answer</td>
<td>0.17</td>
</tr>
<tr>
<td>A4</td>
<td>Voice call, pager, answer on page</td>
<td>0.12</td>
</tr>
<tr>
<td>A5</td>
<td>Voice call, pager, no answer on page</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Modeling Reliability Growth

• Testing cost can be 60% or more
• Careful planning to release by target date
• Decision making using a software reliability growth model (SRGM). Obtained using
 • Analytically using assumptions, or and
 • Based on experimental observation
• A model describes a real process approximately
• Ideally should have good predictive capability and a reasonable interpretation
Exponential Reliability Growth Model

• Most common and easiest to explain model.
• Notation:
 - Total expected faults detected by time t: \(\mu(t) \)
 - Failure intensity: fault detection rate \(\lambda(t) \)
 - Undetected defects present at time t: \(N(t) \)
• By definition, \(\lambda(t) \) is derivative of \(\mu(t) \).

\[
\lambda(t) = \frac{d}{dt} \mu(t)
\]

\[
= -\frac{d}{dt} N(t)
\]

Since faults found are no longer undetected.
Exponential SRGM (cont.)

- T_s: average single execution time
- k_s: expected fraction of faults found during T_s
- T_L: time to execute each program instruction once

\[-\frac{dN(t)}{dt} T_s = k_s N(t)\]
\[-\frac{dN(t)}{dt} = \frac{K}{T_L} N(t) = \beta_1 N(t)\]

where $K = k_s \frac{T_L}{T_s}$ is fault exposure ratio

Here we replace K_s and T_s by more convenient K and T_L.
Exponential SRGM (cont.)

• We get

\[N(t) = N(0)e^{-\beta_1 t} \]

\[\mu(t) = \beta_o (1 - e^{-\beta_1 t}) \quad \lambda(t) = \beta_o \beta_1 e^{-\beta_1 t} \]

• For \(t \to \infty \), total \(\beta_o \) faults would be eventually detected. A “finite-faults-model”.

• Assumes no new defects are generated during debugging.

• Proposed by Jelinski-Muranda ‘71, Shooman ‘71, Goel-Okumoto ‘79 and Musa ‘75-’80. also called Basic.

The 2 equations contain the same information.
Exponential SRGM

The plots show $\lambda(t)$ and $\mu(t)$ for $\beta_0=142$ and $\beta_1=3.8 \times 10^{-5}$. Note that $\mu(t)$ asymptotically approaches 142.
A Basic SRGM (cont.)

• **Note that parameter** β_1 **is given by:**

$$\beta_1 = \frac{K}{T_L} = \frac{K}{(S.Q.\frac{1}{r})}$$

• S: source instructions,
• Q: number of object instructions per source instruction typically between 2.5 to 6 (see page 7-13 of *Software Reliability Handbook*, sec 7)
• r: object instruction execution rate of the computer
• K: *fault-exposure ratio*, range $1 \cdot 10^{-7}$ to $10 \cdot 10^{-7}$, (t is in CPU seconds). Assumed constant here.
• Q, r and K should be relatively easy to estimate.
SRGM : “Logarithmic Poisson”

• Many SRGMs have been proposed.
• Another model Logarithmic Poisson model, by Musa-Okumoto, has been found to have a good predictive capability

\[\mu(t) = \beta_o \ln(1 + \beta_1 t) \quad \lambda(t) = \frac{\beta_o \beta_1}{1 + \beta_1 t} \]

• Applicable as long as \(\mu(t) \leq N(0) \). Practically always satisfied. Term infinite-faults-model misleading.
• Parameters \(\beta_o \) and \(\beta_1 \) don’t have a simple interpretation. An interpretation has been given by Malaiya and Denton (What Do the Software Reliability Growth Model Parameters Represent?).
Comparing Models

• **Goodness of fit**: may be misleading

• **Predictive capability**
 - Data points: \((\lambda_i, t_i)\), \(i = 1 \) to \(n \)
 - Total defects found: \(D \), estimated at \(i \): \(D_i \)

\[
\text{Average error} : \text{AE} = \frac{1}{n} \sum_{i=1}^{n-1} \left| \frac{D_i - D}{D} \right|
\]

\[
\text{Average bias} : \text{AB} = \frac{1}{n} \sum_{i=1}^{n-1} \frac{D_i - D}{D}
\]

• **We used many datasets from diverse projects for comparing different models.**
Comparing models

• Next slide shows the result of a comparison using test data from a number of diverse sources.

• The Logarithmic Poisson model is most accurate, the Exponential model is moderately accurate.

• Both the Logarithmic Poisson and the Exponential models tend to underestimate the number of defects that will eventually be found.

• Inverse Polynomial, Power and S-shaped models are not discussed here, you can find them in the literature.
Bias in SRGMs

• Malaiya, Karunanithi, Verma (’90)
Using an SRGM

• An SRGM can be used in two ways
 ▪ For preliminary planning, even before testing begins (provided you can estimate the parameters)
 ▪ During testing: You can fit the available test data to make projections.

• We’ll see examples of both next.
SRGM: Use for Preliminary Planning

- Example:
 - initial defect density estimated 25 defects/KLOC
 - 10,000 lines of C code
 - computer 70 million object instructions per second
 - fault exposure ratio K estimated to be 4×10^{-7}
 - Task: Estimate the testing time needed for defect density 2.5/KLOC

- Procedure:
 - Find β_0, β_1
 - Find testing time t_1
SRGM: Preliminary Planning (cont.)

• From exponential model

\[\beta_o = N(0) = 25 \times 10 = 250 \text{ defects,} \]

\[\beta_1 = \frac{K}{(S.Q.)} = \frac{4.0 \times 10^{-7}}{10,000 \times 2.5 \times \frac{1}{70 \times 10^6}} \]

\[= 11.2 \times 10^{-4} \text{ per sec} \]
SRGM: Preliminary Planning (cont.)

- Reliability at release depends on

\[
\frac{N(t_1)}{N(O)} = \frac{2.5 \times 10}{25 \times 10} = \exp(-11.2 \times 10^{-4}.t_1)
\]

\[
t_1 = \frac{-\ln(0.1)}{11.2 \times 10^{-4}} = 2056 \text{ sec. (CPU time)}
\]

\[
\lambda(t_1) = 250 \times 11.2 \times 10^{-4} \ e^{-11.2 \times 10^{-4}t_1}
\]

\[
= 0.028 \text{ failures/ sec}
\]
SRGM: Preliminary Planning (cont.)

- For the same environment, product $\beta_1 S$ is constant, since β_1 is inversely proportional to S. For example,
 - If for a prior 5 KLOC project β_1 was 2×10^{-3} per sec.
 - Then for a new 15 KLOC project, β_1 can be estimated as $2 \times 10^{-3}/3 = 0.66 \times 10^{-3}$ per sec.
- Value of fault exposure ratio (K) may depend on initial defect density and testing strategy (Li, Malaiya ’93).
SRGM: During Testing

• Collect and pre-process data:
 ▪ To extract the long-term trend, data needs to be smoothed
 ▪ Grouped data: test duration intervals, average failure intensity in each interval.

• Select a model and determine parameters:
 ▪ past experience with projects using same process
 ▪ exponential and logarithmic models often good choices
 ▪ model that fits early data well, may not have best predictive capability
 ▪ parameters estimated using least square or maximum likelihood
 ▪ parameter values used when stable and reasonable
SRGM: During Testing (cont.)

• Compute how much more testing is needed:
 ▪ fitted model to project additional testing needed
 • desired failure intensity
 • estimated defect density
 ▪ recalibrating a model can improve projection accuracy
 ▪ Interval estimates can be obtained using statistical methods.
Example: SRGM with Test Data

<table>
<thead>
<tr>
<th>CPU Hours</th>
<th>Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
</tr>
</tbody>
</table>

- Target failure intensity 1/hour (2.78×10^{-4} per sec.)
Example: SRGM with Test Data (cont.)

- Fitting we get
 \[\beta_0 = 101.47 \quad \text{and} \quad \beta_1 = 5.22 \times 10^{-5} \]
- Stopping time \(t_f \) is then given by:
 \[
 2.78 \times 10^{-4} = 101.47 \times 5.22 \times 10^{-5} \times e^{-5.22 \times 10^{-5} \times t_f}
 \]
- Yielding \(t_f = 56,473 \) sec., i.e. 15.69 hours
Example: SRGM with Test Data (cont.)

Figure 1: Using an SRGM

Fitted model

Failure intensity target

Failure intensity vs. Hours

measured values

0 5 10 15 20

Hours

Failure intensity

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0
Example: SRGM with Test Data (cont.)

• Accuracy of projection:
 ▪ Experience with Exponential model suggests
 ▪ estimated β_0 tends to be lower than the final value
 ▪ estimated β_1 tends to be higher
 ▪ true value of t_f should be higher. Hence 15.69 hours should be used as a lower estimate.

• Problems:
 ▪ test strategy changed: spike in failure intensity
 ▪ smoothing
 ▪ software under test evolving - continuing additions
 ▪ Drop or adjust early data points
For further reading

• Software Reliability Assurance Handbook by Lakey and Neufelder