Reliability of Multi-component Systems

- Software system: number of modules.
- Individual modules developed and tested differently: different defect densities and failure rates.
 - Sequential execution
 - Concurrent execution
 - N-version systems
Sequential execution

• Assume one module executed at a time.
• f_i: fraction of time module i under execution; λ_i its failure rate
• Mean system failure rate:

$$\lambda_{sys} = \sum_{i=1}^{n} f_i \lambda_i$$
Sequential Execution (cont.)

- T: mean duration of a single transaction
- module i is called e_i times during T, each time executed for duration d_i

\[f_i = \frac{e_i \cdot d_i}{T} \]
Sequential Execution (cont.)

- System reliability \(R_{sys} = \exp(-\lambda_{sys} T) \)

\[
R_{sys} = \exp\left(-\sum_{i=1}^{n} e_i d_i \lambda_i \right)
\]

- Since \(\exp(-d_i \lambda_i) \) is \(R_i \),

\[
R_{sys} = \prod_{i=1}^{n} (R_i)^{e_i}
\]
Concurrent execution

- Concurrently executing modules: all run without failures for system to run
- j concurrently executing modules

\[\lambda_{sys} = \sum_{j=1}^{m} \lambda_j \]
N-version systems

- Critical applications, like defense or avionics
- Each version is implemented and tested independently
- Common implementation uses triplication and voting on the result
N-version Systems (Cont.)

\[R_{sys} = 1 - (1-R)^3 - 3R(1-R)^2 \]

\[R=0.9 \Rightarrow R_{sys} = 0.972 \]

\[\bar{R}=0.1 \Rightarrow \bar{R}_{sys} = 0.028 \]
N-version systems: Correlation

• Correlation significantly degrades fault tolerance
• Significant correlation common in N-version (Knight-Leveson)
• Is it cost effective?
N-version systems: Correlation

- 3-version system
- q_3: probability of all three versions failing for the same input.
- q_2: probability that any two versions will fail together.
- Probability P_{sys} of the system failing

$$P_{sys} = q_3 + 3q_2$$
N-version systems: Correlation

• Example: data collected by Knight-Leveson; computations by Hatton
• 3-version system, probability of a version failing for a transaction 0.0004
• in the absence of any correlated failures

\[
P_{sys} = (0.0004)^3 + 3(1 - 0.0004)(0.0004)^2
\]
\[
= 4.8 \times 10^{-7}
\]
N-version systems: Correlation

- Uncorrelated improvement factor of \(\frac{0.0004}{4.8 \times 10^{-7}} = 833.3 \)
- Correlated: \(q_3 = 2.5 \times 10^{-7} \) and \(q_2 = 2.5 \times 10^{-6} \)
- \(P_{sys} = 2.5 \times 10^{-7} + 3.2.5 \times 10^{-6} = 7.75 \times 10^{-6} \)
- Improvement factor: \(\frac{0.0004}{7.75 \times 10^{-6}} = 51.6 \)
- State-of-the-art techniques can reduce defect density only by a factor of 10!