Fault Tolerant Computing
CS 530
Information redundancy: Coding theory

Yashwant K. Malaiya
Colorado State University
Information redundancy: Outline

• Using a parity bit
• Codes & code words
• Hamming distance
 ▪ Error detection capability
 ▪ Error correction capability
• Parity check codes and ECC systems
• Cyclic codes
 ▪ Polynomial division and LFSRs
Even/odd parity (1)

- Errors can bits to be flipped during transmission/storage.
- Even/odd parity:
 - is basic method for detecting if one bit (or an odd number of bits) has been switched by accident.
- Odd parity:
 - The number of 1-bit must add up to an odd number
- Even parity:
 - The number of 1-bit must add up to an even number
Even/odd parity (2)

• The it is known which parity it is being used.
• If it uses an even parity:
 ▪ If the number of of 1-bit add up to an odd number then it knows there was an error:
• If it uses an odd:
 ▪ If the number of of 1-bit add up to an even number then it knows there was an error:
• However, If an even number of 1-bit is flipped the parity will still be the same. But an error occurs
 ▪ The even/parity can’t this detect this error:
Even/odd parity (3)

- It is useful when an odd number of 1-bits is flipped.
- Suppose we have an 7-bit binary word (7-digits).
 - Need to add 1 (parity bit) to the binary word.
 - You now have 8 digit word.
 - However, the computer knows that the added bit is a parity bit and therefore ignore it.
- If $Pr\{1 \text{ bit error} \}=0.01$,
 - $Pr\{2 \text{ errors} \}=0.0001$ if errors are statistically independent
Example (1)

• Suppose you receive a binary bit word “0101” and you know you are using an odd parity.

• Is the binary word errored?

• The answer is yes:
 • There are 2 1-bit, which is an even number
 • We are using an odd parity
 • So there must have an error.

• Do we know which bit is in error?
 • No, not enough redundancy.
 • Correction not possible
Parity Bit

• A single bit is appended to each data chunk
 ▪ makes the number of 1 bits even/odd

• Example: even parity
 ▪ 1000000 (1)
 ▪ 1111101 (0)
 ▪ 1001001 (1)

• Example: odd parity
 ▪ 1000000 (0)
 ▪ 1111101 (1)
 ▪ 1001001 (0)
Parity Checking

- Assume we are using even parity with 7-bit ASCII.
- The letter V in 7-bit ASCII is encoded as 0110101.
- How will the letter V be transmitted?
 - Because there are four 1s (an even number), parity is set to zero.
 - This would be transmitted as: 00110101.
- If we are using an odd parity:
 - The letter V will be transmitted as 10110101.
The following slides discuss coding theory in formal terms.
Information Redundancy: Coding

- **Often applied to**
 - Info transfer: often serial communication thru a channel
 - Info storage
- **Hamming distance**: error detection & correction capability
- **Linear separable codes**, **hamming codes**
- **Cyclic codes**
Error Detecting/Correcting Codes (EDC/ECC)

- **Code**: subset of all possible vectors
- **Block codes**: all vectors are of the same length
- **Separable (systematic) codes**: check-bits can be separately identified.

 \[(n,k) \text{ code: } k \text{ info bits, } r = n-k \text{ check bits}\]
- **Code words**: are legal part of the code.
- **Linear Codes**: Check-bits are linear combinations of info bits. Linear combination of code words is a code word.
Hamming Distance

- **Hamming distance** between 2 code words X, Y
 \[D(x,y) = \sum (x_k \oplus y_k) \]
 - \(D(001,010) = 2 \)
 - \(D(000,111) = 3 \)

- **Minimum distance**: min of all hamming distance between all possible pairs of code words.

Ex 1: consider code:

```
000
011
101
110
```

Min distance = 2
Detection Capability

• All single bit errors result in non-code words. Thus all single-bit errors are detectable.

• **Error detection capability**: min Hamming dist d_{min}, p: number of errors that can be detected

 $$p + 1 \leq d_{\text{min}} \quad \text{or} \quad p_{\text{max}} = d_{\text{min}} - 1$$

Ex 1: consider code:

```
000
011
101
110
```
Errors Correction Capability

Ex 2: Consider a code

| 000 | 111 |

- Assume single-bit errors are more likely than 2-bit errors.
- In Ex 2 all single bit errors can be corrected. All 2 bit errors can be detected.
- **Error correction capability**: \(t \): number of errors that can be corrected:

\[
2t + 1 \leq d_{\text{min}} \quad \text{or} \quad T_{\text{max}} = \left\lfloor \frac{(d_{\text{min}} - 1)}{2} \right\rfloor
\]
Parity Check Codes

• Are linear block codes
• \(d_{\text{min}} = \) weight of lightest non-zero code word
• Linear: addition: \(\oplus \), multiplication: \(\text{AND} \)
• \(G_{k \times n} \): Generator matrix of a \((n,k)\) code: rows are a set of basis vectors for the code space.

\[
i \cdot G = v
\]

i: \(1 \times k\) info, v: \(1 \times n\) code word

• For systematic code: \(G = [I_k \ P] \)

\[
I_k: k \times k, \ P: k \times (n-k)
\]

Ex: \(k=3, r=n-k=2\)

\[
G = \begin{bmatrix}
1 & 0 & 0 & | & 1 & 1 \\
0 & 1 & 0 & | & 1 & 1 \\
0 & 0 & 1 & | & 1 & 0
\end{bmatrix}
\]
Parity Check Codes: Code Word Generation

- Ex: info \(i = (1 \ 01) \)

\[
G = \begin{bmatrix}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0
\end{bmatrix}
\]

then

\[
v = \begin{bmatrix}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0
\end{bmatrix}
\]

\[
v = (1 \ 0 \ 1) \begin{bmatrix}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0
\end{bmatrix}
\]

Note: Matrix multiplication: (dimensions)
\(a \times b, b \times c = a \times c \)
Parity Check Codes: Parity Check Matrix H

- If v is a code word: $v.H^t = 0$ \[H^t: n \times r, \ 0: 1 \times r \]
- Corrupted information: $w = v + e$ \[w.H^t = (v + e).H^t = 0 + e.H^t = s \quad \text{syndrome of error} \]
- For t-error correcting code, syndrome is unique for up to t errors & can be used for correction.
- For systematic codes G: $H^t = 0$, $H = [-P^t I_r]$
Parity Check Matrix: Ex

\[v = (1 \ 0 \ 1) \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix} \]

\[v = (1 \ 0 \ 1 \ 0 \ 1) \]

\[H = \begin{bmatrix} 1 \ 1 \ 1 \end{bmatrix} \begin{bmatrix} 1 \ 1 \ 1 \ 0 \\ 1 \ 1 \ 0 \ \ \ 0 \ 1 \end{bmatrix} \]

\[v.H^t \text{ is } (1 \ 0 \ 1 \ 0 \ 1) \begin{bmatrix} 1 \ 1 \\ 1 \ 1 \\ 1 \ 0 \\ 0 \ 1 \end{bmatrix} = (0 \ 0) \]

Hamming Codes

- Single error correcting \(d_{\text{min}} = 3 \)
- Syndrome: \(s = v.H^T \)
 - \(s=0 \) normal, rest \(2^r-1 \) syndromes indicate error. Can correct one error if syndrome is unique.
 - Hamming codes: \(n \leq 2^r-1 \)

<table>
<thead>
<tr>
<th>Info Word Size</th>
<th>Min Check bits</th>
<th>Total bits</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>7</td>
<td>75%</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>21</td>
<td>31</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>38</td>
<td>19</td>
</tr>
</tbody>
</table>
Hamming codes: Ex: Non-positioned

\[G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix} \]

\[H = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \]

(1110 000) \(H^T = (000) \)

(0110 000) \(H^T = (110) \)

(1111 000) \(H^T = (111) \)

\[i \quad v \quad (1110) \rightarrow (1110 \ 000) \]

\[\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \]

\[H^T = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

Positioned Hamming Code

<table>
<thead>
<tr>
<th>Error in</th>
<th>d3</th>
<th>d0</th>
<th>d1</th>
<th>c1</th>
<th>d2</th>
<th>c2</th>
<th>c3</th>
</tr>
</thead>
<tbody>
<tr>
<td>syndrome</td>
<td>111</td>
<td>110</td>
<td>101</td>
<td>100</td>
<td>011</td>
<td>010</td>
<td>001</td>
</tr>
</tbody>
</table>
ECC System

- Ex: Intel, AMD ECC chips. Cascadable 16-64 bits.
- All 1-bit errors corrected.
- Automatic error scrubbing using read-modify-write cycle.
BCH Cyclic Codes

- **Cyclic Codes**: parity check codes such that cyclic shift of a code word is also a code word.

- **Polynomial**: to represent bit positions

 (n,k) cyclic code \rightarrow generator polynomial of degree n-k

 $v(x) = M(x) \cdot G(x)$

 degrees $(n-1) = (k-1)(n-k)$

- **Ex**: $G(x) = x^4 + x^3 + x^2 + 1 \Rightarrow (11101)$ (7,3) cyclic code

<table>
<thead>
<tr>
<th>Message</th>
<th>Corres. v(x)</th>
<th>codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>000 (0)</td>
<td>0</td>
<td>0000 000</td>
</tr>
<tr>
<td>110 ($x^2 + x$)</td>
<td>$x^6 + x^3 + x^2 + x$</td>
<td>1001 110</td>
</tr>
<tr>
<td>111 ($x^2 + x + 1$)</td>
<td>$x^6 + x^4 + x + 1$</td>
<td>1010 0011</td>
</tr>
</tbody>
</table>
Systematic Cyclic Codes

- Consider $x^{n-k}M(x) = Q(x)G(x) + C(x)$

 Quotient $Q(x)$: degree $k-1$, remainder $C(x)$: degree $n-k-1$

- Then $x^{n-k}M(x) - C(x) = Q(x)G(x)$, thus $x^{n-k}M(x) - C(x)$ is a code word.

 - Shift message $(n-k)$ positions
 - Fill vacated bits by remainder

- Polynomial division to get remainder

 - Note computation is linear
Systematic Cyclic Codes

- Ex: \(G(x) = x^4 + x^3 + x^2 + 1 \) \(n-k=4, \ n=7 \)

<table>
<thead>
<tr>
<th>message</th>
<th>(x^4M(x))</th>
<th>(C(x))</th>
<th>codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0(00 000)</td>
<td>0(0000)</td>
<td>000 0000</td>
</tr>
<tr>
<td>110</td>
<td>(x^6 + x^5) (1100000)</td>
<td>(X^3+1) (1001)</td>
<td>110 1001</td>
</tr>
<tr>
<td>111</td>
<td>(x^6 + x^5 + x^4) (1110000)</td>
<td>(x^2) (0100)</td>
<td>111 0100</td>
</tr>
</tbody>
</table>

- An error-free codeword divided by generator polynomial will give remainder 0.
Polynomial division

- Ex: \(G(x) = x^4 + x^3 + x^2 + 1 \) \(n-k=4, \ n=7, \ M=(110), \ x^4M(x) \) is \(x^6 + x^5 \), remainder is \(x^3 + 1 \).

\[
\begin{array}{cccc|c}
 x^4 & +x^3 & +x^2 & +1 \\
 \hline
 x^6 & +x^5 & & \\
 \hline
 x^6 & +x^5 & +x^4 & +x^2 \\
 \hline
 x^4 & +x^2 \\
 \hline
 x^4 & +x^3 & +x^2 & +1 \\
 \hline
 x^3 & +1
\end{array}
\]

- Code word then is \((110 \ 1001) \)
 remainder
LFSR: Poly. Div. Circuit

- Ex: \(G(x) = x^4 + x^3 + x^2 + 1 \) \(n-k=4 \), \(C(x) \) of degree \(n-k-1=3 \)

2. Shift \((n-k)\) message bits in.
3. \(K\) shift lefts (hence shift out \(k\) bits of quotient)
4. Disable feedback, shift out \((n-k)\) bit remainder.

- *Linear feedback shift Register* used for both encoding and checking.
LFSRs

• Remainder is a *signature*. If good and faulty message have same signature, there is an *aliasing error*.

• Error detection properties: Smith
 - For $k \to \infty$, $P\{\text{an aliasing error}\}$ is $2^{-(n-k)}$, provided all error patterns are equally likely.
 - All single errors are detectable, if poly has 2 or more non-zero coefficients.
 - All $(n-k)$ bit burst errors are detected, if coefficient of x^0 is 1.

• Other LFSR implementations: parallel inputs, exors only in the feedback paths.
Autonomous LFSRs (ALFSR)

• ALFSR: LFSR with input=0.

• If polynomial is \textit{primitive}, its state will cycle through all \((2^n-k-1-1)\) combinations, except \((0,0,..0,0)\).

• A list of polynomials of various degrees is available.

• Alternatives to ALFSR:
 • GLFSR
 • Antirandom
Some resources

- http://www-math.cudenver.edu/~wcherowi/courses/m5410/m5410fsr.html
 Linear Feedback Shift Registers, Golomb's Principles
- http://theory.lcs.mit.edu/~madhu/FT01/
 Algorithmic Introduction to Coding Theory

An interesting property:

- **Theorem 1**: Let H be a parity-check matrix for a linear (n,k)-code C defined over F. Then every set of $s-1$ columns of H are linearly independent if and only if C has minimum distance at least s.