Covering Logic Expressions (3.1)

- Logic expressions show up in many situations
- Covering logic expressions is required by the US Federal Aviation Administration for safety critical software
- Logical expressions can come from many sources
 - Decisions in programs
 - FSMs and statecharts
 - Requirements
- Tests are intended to choose some subset of the total number of truth assignments to the expressions

Logic Predicates and Clauses

- A predicate is an expression that evaluates to a boolean value
- Predicates can contain
 - boolean variables
 - non-boolean variables that contain $>$, $<$, \geq, \leq, $!=$
 - boolean function calls
- Internal structure is created by logical operators
 - \neg - the negation operator
 - \land - the and operator
 - \lor - the or operator
 - \rightarrow - the implication operator
 - \oplus - the exclusive or operator
 - \equiv - the equivalence operator
- A clause is a predicate with no logical operators
Examples

- \((a < b) \lor f(z) \land (m \geq n^2)\)

Four clauses:
- \((a < b)\) – relational expression
- \(f(z)\) – boolean-valued function
- \(D\) – boolean variable
- \((m \geq n^2)\) – relational expression

Most predicates have few clauses
- It would be nice to quantify that claim!

Sources of predicates
- Decisions in programs
- Guards in finite state machines
- Decisions in UML activity graphs
- Requirements, both formal and informal
- SQL queries

Translating from English

- “I am interested in SWE 637 and CS 652”
 - course = swe637 \lor course = cs652

- “If you leave before 6:30 AM, take Braddock to 495, if you leave after 7:00 AM, take Prosperity to 50, then 50 to 495”
 - \((time < 6:30 \rightarrow path = Braddock) \land (time > 7:00 \rightarrow path = Prosperity)\)
 - Hmm … this is incomplete!

- \((time < 6:30 \rightarrow path = Braddock) \land (time \geq 6:30 \rightarrow path = Prosperity)\)

Testing and Covering Predicates

(3.2)

We use predicates in testing as follows:
- Developing a model of the software as one or more predicates
- Requiring tests to satisfy some combination of clauses

Abbreviations:
- \(P\) is the set of predicates
- \(p\) is a single predicate in \(P\)
- \(C\) is the set of clauses in \(P\)
- \(C_p\) is the set of clauses in predicate \(p\)
- \(c\) is a single clause in \(C\)

Predicate and Clause Coverage

The first (and simplest) two criteria require that each predicate and each clause be evaluated to both true and false

Predicate Coverage (PC): For each \(p\) in \(P\), \(TR\) contains two requirements: \(p\) evaluates to true, and \(p\) evaluates to false.

When predicates come from conditions on edges, this is equivalent to edge coverage

PC does not evaluate all the clauses, so ...

Clause Coverage (CC): For each \(c\) in \(C\), \(TR\) contains two requirements: \(c\) evaluates to true, and \(c\) evaluates to false.
Predicate Coverage Example

\((a < b) \lor D) \land (m \geq n \times o)\)

Predicate coverage

- **Predicate = true**

 \[
 a = 5, b = 10, D = true, m = 1, n = 1, o = 1 \\
 = (5 < 10) \lor true \land (1 \geq 1) \\
 = true \land true \land true \\
 = true
 \]

- **Predicate = false**

 \[
 a = 10, b = 5, D = false, m = 1, n = 1, o = 1 \\
 = (10 < 5) \lor false \land (1 \geq 1) \\
 = false \lor false \land true \\
 = false
 \]

Clause Coverage Example

\((a < b) \lor D) \land (m \geq n \times o)\)

Clause coverage

- **Two tests**

 - \(a < b) = true\)

\(a = 5, b = 10\)	\(a = 10, b = 5\)
D = true	D = true
\(m = n \times o = true\)	\(m = n \times o = false\)
\(m = 1, n = 1, o = 1\)	\(m = 1, n = 2, o = 2\)

Problems with PC and CC

- PC does not fully exercise all the clauses, especially in the presence of short circuit evaluation
- CC does not always ensure PC
 - That is, we can satisfy CC without causing the predicate to be both true and false
 - This is definitely not what we want!
- The simplest solution is to test all combinations …

Combinatorial Coverage

- CoC requires every possible combination
- Sometimes called Multiple Condition Coverage

Combinatorial Coverage (CoC): For each \(p \in P\), TR has test requirements for the clauses in \(C_P\) to evaluate to each possible combination of truth values.

<table>
<thead>
<tr>
<th>(a \leq b)</th>
<th>D</th>
<th>(m \geq n \times o)</th>
<th>((a < b) \lor D) \land (m \geq n \times o))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Combinatorial Coverage

- This is simple, neat, clean, and comprehensive …
- But quite expensive!
- \(2^N\) tests, where \(N\) is the number of clauses
 - Impractical for predicates with more than 3 or 4 clauses
- The literature has lots of suggestions – some confusing
- The general idea is simple:
 Test each clause independently from the other clauses

Active Clauses

- Clause coverage has a weakness: The values do not always make a difference
- Consider the first test for clause coverage, which caused each clause to be true:
 \(-(5 < 10) \lor \text{true} \land (1 \geq 1^2)\)
- Only the first clause counts!
- To really test the results of a clause, the clause should be the determining factor in the value of the predicate

Determining Predicates

- Goal: Find tests for each clause when the clause determines the value of the predicate
- This is formalized in several criteria that have subtle, but very important, differences

\[P = A \lor B\]
- If \(B = \text{true}\), \(p\) is always true.
- So if \(B = \text{false}\), \(A\) determines \(p\).
- If \(A = \text{false}\), \(B\) determines \(p\).

\[P = A \land B\]
- If \(B = \text{false}\), \(p\) is always false.
- So if \(B = \text{true}\), \(A\) determines \(p\).
- If \(A = \text{true}\), \(B\) determines \(p\).

Active Clause Coverage

Active Clause Coverage (ACC): For each \(p\) in \(P\) and each major clause \(C_j\) in \(C_p\), choose minor clauses \(C_j \neq i\), so that \(C_j\) determines \(p\). TR has two requirements for each \(C_j: C_i\) evaluates to true and \(C_j\) evaluates to false.

- This is a form of MCDC, which is required by the FAA for safety critical software
- Ambiguity: Do the minor clauses have to have the same values when the major clause is true and false?
Resolving the Ambiguity

- This question caused confusion among testers for years
- Considering this carefully leads to three separate criteria:
 - Minor clauses do not need to be the same
 - Minor clauses do need to be the same
 - Minor clauses force the predicate to become both true and false

\[p = a \lor (b \land c) \]
Major clause: \(a \)
\[a = \text{true}, b = \text{false}, c = \text{true} \]
\[a = \text{false}, b = \text{false}, c = \text{true} \]

General Active Clause Coverage

- This is complicated!
- It is possible to satisfy GACC without satisfying predicate coverage
- We really want to cause predicates to be both true and false!

Restricted Active Clause Coverage

- This has been a common interpretation by aviation developers
- RACC often leads to infeasible test requirements
- There is no logical reason for such a restriction

Correlated Active Clause Coverage

- A more recent interpretation
- Implicitly allows minor clauses to have different values
- Explicitly satisfies (subsumes) predicate coverage
CACC and RACC

<table>
<thead>
<tr>
<th>b</th>
<th>c</th>
<th>a (A(b \lor \neg c))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Inactive Clause Coverage

- The active clause coverage criteria ensure that “major” clauses do affect the predicates.
- Inactive clause coverage takes the opposite approach – major clauses do not affect the predicates.

Inactive Clause Coverage (ICC): For each \(p \) in \(P \) and each major clause \(c_i \) in \(C_p \), choose minor clauses \(c_j, j \neq i \), so that \(c_i \) does not determine \(p \). TR has four requirements for each \(c_i \):
 1. \(c_i \) evaluates to true with \(p \) true,
 2. \(c_i \) evaluates to false with \(p \) true,
 3. \(c_i \) evaluates to true with \(p \) false, and
 4. \(c_i \) evaluates to false with \(p \) false.

General and Restricted ICC

- Unlike ACC, the notion of correlation is not relevant.
- Each \(c_i \) does not affect \(p \), so it cannot correlate with \(p \).
- Predicate coverage is always guaranteed.

General Inactive Clause Coverage (GICC): For each \(p \) in \(P \) and each major clause \(c_i \) in \(C_p \), choose minor clauses \(c_j, j \neq i \), so that \(c_i \) does not determine \(p \). The values chosen for the minor clauses \(c_j \) do not need to be the same when \(c_i \) is true as when \(c_i \) is false, that is, \(c_j(c_i = true) \neq c_j(c_i = false) \) for all \(c_j \) OR \(c_j(c_i = true) = c_j(c_i = false) \) for all \(c_j \).

Restricted Inactive Clause Coverage (RICC): For each \(p \) in \(P \) and each major clause \(c_i \) in \(C_p \), choose minor clauses \(c_j, j \neq i \), so that \(c_i \) does not determine \(p \). The values chosen for the minor clauses \(c_j \) must be the same when \(c_i \) is true as when \(c_i \) is false, that is, it is required that \(c_j(c_i = true) = c_j(c_i = false) \) for all \(c_j \).

Logic Coverage Criteria Subsumption

- **Combinatorial Clause Coverage (COC)**
- **General Active Clause Coverage (GACC)**
- **Correlated Active Clause Coverage (CACC)**
- **Restricted Active Clause Coverage (RACC)**
- **General Inactive Clause Coverage (GICC)**
- **Restricted Inactive Clause Coverage (RICC)**
Making Clauses Determine a Predicate

- Finding values for minor clauses c_j is easy for simple predicates.
- But how to find values for more complicated predicates?
- **Definitional approach:**
 - $P_{c=true}$ is predicate p with every occurrence of c replaced by $true$.
 - $P_{c=false}$ is predicate p with every occurrence of c replaced by $false$.
- To find values for the minor clauses, connect $P_{c=true}$ and $P_{c=false}$ with exclusive OR:
 $$P_c = P_{c=true} \oplus P_{c=false}$$
- After solving, P_c describes exactly the values needed for c to determine p.

Examples

\[p = a \lor b \]

\[P_a = P_{a=true} \oplus P_{a=false} \]

\[= (true \lor b) \oplus (false \lor b) \]

\[= true \lor b \]

\[P_b = P_{b=true} \oplus P_{b=false} \]

\[= (true \land c) \oplus (false \land c) \]

\[= (b \land c) \]

\[= (\neg b \lor \neg c) \]

\[= \neg (b \land c) \]

Repeated Variables

- The definitions in this chapter yield the same tests no matter how the predicate is expressed.
- \((a \lor b) \land (c \lor b) = (a \land c) \lor b\)
- \((a \land b) \lor (b \land c) \lor (a \land c)\)
 - Only has 8 possible tests, not 64.
- Use the simplest form of the predicate, and ignore contradictory truth table assignments.

A More Subtle Example

\[p = (a \land b) \lor (a \land \neg b) \]

\[P_a = P_{a=true} \oplus P_{a=false} \]

\[= ((true \land b) \lor (true \land \neg b)) \oplus ((false \land b) \lor (false \land \neg b)) \]

\[= (b \lor \neg b) \oplus false \]

\[= true \]

\[P_b = P_{b=true} \oplus P_{b=false} \]

\[= ((a \land true) \lor (a \land \neg true)) \oplus ((a \land false) \lor (a \land \neg false)) \]

\[= (a \lor \neg a) \oplus false \]

\[= (a \lor false) \oplus (false \lor a) \]

\[= false \]

\[\bullet \quad \text{a always determines the value of this predicate} \]

\[\bullet \quad \text{b never determines the value - b is irrelevant!} \]
Infeasible Test Requirements

- Consider the predicate:
 \[(a > b \land b > c) \lor c > a\]
 \[(a > b) = true, (b > c) = true, (c > a) = true\] is infeasible

- As with graph-based criteria, infeasible test requirements have to be recognized and ignored

- Recognizing infeasible test requirements is hard, and in general, undecidable

- Software testing is inexact – engineering, not science

Logic Coverage Summary

- Predicates are often very simple—in practice, most have less than 3 clauses
 - In fact, most predicates only have one clause!
 - With only clause, PC is enough
 - With 2 or 3 clauses, CoC is practical
 - Advantages of ACC and ICC criteria significant for large predicates
 - CoC is impractical for predicates with many clauses

- Control software often has many complicated predicates, with lots of clauses

- Question … why don’t complexity metrics count the number of clauses in predicates?

Logic Expressions from Source

- Predicates are derived from decision statements in programs
- In programs, most predicates have less than four clauses
 - Wise programmers actively strive to keep predicates simple
- When a predicate only has one clause, COC, ACC, ICC, and CC all collapse to predicate coverage (PC)
- Applying logic criteria to program source is hard because of reachability and controllability:
 - Reachability: Before applying the criteria on a predicate at a particular statement, we have to get to that statement
 - Controllability: We have to find input values that indirectly assign values to the variables in the predicates
 - Variables in the predicates that are not inputs to the program are called internal variables
- These issues are illustrated through an example in the following slides …

Thermostat (pg 1 of 2)

```
1  // Jeff Offutt--October 2010
2  // Programmable Thermostat
3  import java.io.*;
4  class thermostat
5  {
6      private Heater myHeater;
7      // Decide whether to turn the heater on, and for how long.
8      public boolean turnHeaterOn (int curTemp, /* Current temperature reading */
9          int thresholdDiff, /* Temp difference until we turn heater on */
10         Minutes timeSinceLastRun, /* Time since heater stopped */
11         Minutes minLag, /* How long I need to wait */
12         Time timeOfDay, /* current time (Hours and minutes) */
13         Day dayOfWeek, /* Monday, Tuesday, ... */
14         Settings programmedSettings [], /* User's program, by day */
15         boolean Override, /* Has user overridden the program */
16         int overTemp /* OverridingTemp */
17             )
```

```
Thermostat (pg 2 of 2)

```java
19 {
20 int desiredTemp;
21 // getPeriod() translates time into Morning, Day, Evening, Night
22 desiredTemp = programmedSettings [dayOfWeek].getDesiredTemp
23 (getPeriod [TimeOfDay]);
24 if (((curTemp < desiredTemp - thresholdDiff) ||
25 (Override && curTemp < overTemp - thresholdDiff)) &&
26 timeSinceLastRun.greaterThan (minLag))
27 { // Turn on the heater
28 // How long? Assume 1 minute per degree (Fahrenheit)
29 int timeNeeded = curTemp - desiredTemp;
30 if (Override)
31 timeNeeded = curTemp - overTemp;
32 myHeater.setRunTime (timeNeeded);
33 return (true);
34 }
35 else
36 return (false);
37 } // End turnHeaterOn
38 } // End class
```

### Two Thermostat Predicates

**Predicate Coverage (true)**

- `a : true`
- `b : true`
- `c : true`
- `d : true`

```java
curTemp < desiredTemp - thresholdDiff : true
Override : true
curTemp < overTemp - thresholdDiff : true
timeSinceLastRun.greaterThan (minLag) : true
```
**Predicate Coverage (false)**

\[(a \| (b \& c)) \& d\]

- \(a\): false
- \(b\): false
- \(c\): false
- \(d\): false

**Cur Correlated Active Clause Coverage (2 of 5)**

- \(a\): T T F T
- \(b\): T T F T
- \(c\): F T T F
- \(d\): T T T F

Duplicates

Six tests needed for CACC on Thermostat

**Correlated Active Clause Coverage (3 of 5)**

- \(\text{curTemp < desiredTemp - thresholdDiff}\)
- \(\text{desiredTemp = programmedSettings[Monday].setDesiredTemp(Morning, 69)}\)
- \(\text{dayOfWeek = Monday}\)
- \(\text{timeOfDay = 8:00}\)
- \(\text{Override}\)
- \(\text{Override = 0}\)
- \(\text{timeSinceLastRun.greaterThan(minLag)}\)
- \(\text{These values then need to be placed into calls to turnHeaterOn( ) to satisfy the 6 tests for CACC} \)

**Correlated Active Clause Coverage (1 of 5)**

\[P_a = ((a \| (b \& c)) \& d) \oplus ((a \| (b \& c)) \& d)\]

\[((T \| (b \& c)) \& d) \oplus ((F \| (b \& c)) \& d)\]

\[(T \& d) \oplus ((b \& c) \& d)\]

\[5(b \& c) \& d\]

\[(!b \| c) \& d\]

Check with the logic coverage web app

http://cs.gmu.edu:8080/offutt/coverage/logicCoverage

**Cur Correlated Active Clause Coverage (1 of 5)**

\[P_a = ((a \| (b \& c)) \& d) \oplus ((a \| (b \& c)) \& d)\]

\[((T \| (b \& c)) \& d) \oplus ((F \| (b \& c)) \& d)\]

\[(T \& d) \oplus ((b \& c) \& d)\]

\[5(b \& c) \& d\]

\[(!b \| c) \& d\]
Correlated Active Clause Coverage (4 of 5)

desiredTemp = programmedSettings [Monday].setDesiredTemp (Morning, 69)
1. T t f t
   a = T : curTemp = 63;   c = f : curTemp = 66
   turnHeaterOn ( 66/66, 5, 12, 10, 8:00, Monday, programmedSettings, true, 70 )
2. F t t
   turnHeaterOn ( 66, 5, 12, 10, 8:00, Monday, programmedSettings, true, 70 )
3. f T t t
   a = f : curTemp = 66;   c = t : curTemp = 63
   turnHeaterOn ( 63/66, 5, 12, 10, 8:00, Monday, programmedSettings, true, 70 )
4. f t F f
   turnHeaterOn ( 66, 5, 12, 10, 8:00, Monday, programmedSettings, true, 70 )
5. t t t T
   turnHeaterOn ( 63, 5, 12, 10, 8:00, Monday, programmedSettings, true, 70 )
6. t t t F
   turnHeaterOn ( 63, 5, 12, 10, 8:00, Monday, programmedSettings, true, 70 )

Correlated Active Clause Coverage (5 of 5)

• Tests 1 and 3 are infeasible with the values we chose
• But we can choose different values for clause c
• curTemp is fixed by the solution to clause a
• thresholdDiff is also fixed by the solution to clause a
• So we choose different values for overtemp ...

Program Transformation Issues

if ((a && b) || c) {
    S1;
} else {
    S2;
}  
Transform (1)?

if (a) {
    if (b) {
        S1;
    } else {
        if (c) {
            S1;
        } else {
            S2;
        }
    }
} else {
    if (c) {
        S1;
    } else {
        S2;
    }
}  
Transform (2)?

d = a && b;

if (d) {
    if (e) {
        S1;
    } else {
        S2;
    }
} else {
    S2;
}

Problems with Transformed Programs

• Maintenance is certainly harder with Transform (1)
  – Not recommended!
• Coverage on Transform (1)
  – PC on transform does not imply CACC on original
  – CACC on original does not imply PC on transform
• Coverage on Transform (2)
  – Structure used by logic criteria is “lost”
  – Hence CACC on transform 2 only requires 3 tests
  – Note: Mutation analysis (Chapter 5) addresses this problem
• Bottom Line: Logic coverage criteria are there to help you!
Summary: Logic Coverage for Source Code
- Predicates appear in decision statements
  - if, while, for, etc.
- Most predicates have less than four clauses
  - But some applications have predicates with many clauses
- The hard part of applying logic criteria to source is resolving the internal variables
- Sometimes setting variables requires calling other methods
- Non-local variables (class, global, etc.) are also input variables if they are used
- If an input variable is changed within a method, it is treated as an internal variable thereafter
- To maximize effect of logic coverage criteria:
  - Avoid transformations that hide predicate structure

Specifications in Software
- Specifications can be formal or informal
  - Formal specs are usually expressed mathematically
  - Informal specs are usually expressed in natural language
- Lots of formal languages and informal styles are available
- Most specification languages include explicit logical expressions, so it is very easy to apply logic coverage criteria
- Implicit logical expressions in natural-language specifications should be re-written as explicit logical expressions as part of test design
  - You will often find mistakes
- One of the most common is preconditions...

Preconditions
- Programmers often include preconditions for their methods
- The preconditions are often expressed in comments in method headers
- Preconditions can be in javadoc, “requires”, “pre”, ...

Example - Saving addresses
// name must not be empty
// state must be valid
// zip must be 5 numeric digits
// street must not be empty
// city must not be empty

Rewriting to logical expression
name != "" \land state \in stateList \land zip >= 00000 \land zip <= 99999 \land street \neq "" \land city \neq ""

Shortcut for Predicates in Conjunctive Normal Form
- A predicate is in conjunctive normal form (CNF) if it consists of clauses or disjuncts connected by the and operator
  - \( A \land B \land C \land \ldots \)
  - \( (A \lor B) \land (C \lor D) \)
- A major clause is made active by making all other clauses true
- ACC tests are “all true” and then a “diagonal” of false values:
Shortcut for Predicates in Disjunctive Normal Form

- A predicate is in disjunctive normal form (DNF) if it consists of clauses or conjuncts connected by the or operator
  \[ A \lor B \lor C \lor \ldots \]
  \[ (A \land B) \lor (C \land D) \]
- A major clause is made active by making all other clauses false
- ACC tests are “all false” and then a “diagonal” of true values:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>

Summary: Logic Coverage for Specs

- Logical specifications can come from lots of places:
  - Preconditions
  - Java asserts
  - Contracts (in design-by-contract development)
  - OCL conditions
  - Formal languages
- Logical specifications can describe behavior at many levels:
  - Methods and classes (unit and module testing)
  - Connections among classes and components
  - System-level behavior
- Many predicates in specifications are in disjunctive normal or conjunctive normal form—simplifying the computations

Covering Finite State Machines

- FSMs are graphs
  - nodes represent state
  - edges represent transitions among states
- Transitions often have logical expressions as guards or triggers
- As we said:
  Find a logical expression and cover it

Example—Subway Train

- \( \text{trainSpeed} = 0 \land \text{platform}=\text{left} \land \neg \text{emergencyStop} \land \neg \text{overrideOpen} \land \text{doorsClear} \)
- \( \text{trainSpeed} = 0 \land \text{platform}=\text{right} \land \neg \text{emergencyStop} \land \neg \text{overrideOpen} \land \text{doorsClear} \)
- \( \text{secondPlatform} = \text{right} \land \neg \text{emergencyStop} \land \neg \text{overrideOpen} \land \text{doorsClear} \)
- \( \text{secondPlatform} = \text{left} \land \neg \text{emergencyStop} \land \neg \text{overrideOpen} \land \text{doorsClear} \)
- \( \text{All Doors Open} \)
- \( \text{All Doors Closed} \)
Determination of the Predicate

\[
\text{trainSpeed} = 0 \land \text{platform} = \text{left} \land (\text{inStation} \lor (\text{emergencyStop} \land \text{overrideOpen}))
\]

\[
\text{trainSpeed} = 0 \land \text{platform} = \text{left} \land (\text{inStation} \lor (\text{emergencyStop} \land \text{overrideOpen}))
\]

\[
\text{trainSpeed} = 0 \land \text{platform} = \text{left} \\
\text{inStation} : \text{trainSpeed} = 0 \land \text{platform} = \text{left} \\
\text{emergencyStop} : \text{trainSpeed} = 0 \land \text{platform} = \text{left} \\
\text{overrideOpen} : \text{trainSpeed} = 0 \land \text{platform} = \text{left}
\]

Test Truth Assignments (CACC)

<table>
<thead>
<tr>
<th>trainSpeed</th>
<th>platform</th>
<th>inStation</th>
<th>emergencyStop</th>
<th>overrideOpen</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Test Scripts

- Test scripts are executable sequences of value assignments
- Mapping problem: The names used in the FSMs may not match the names in the program
  - Sometimes a direct name-to-name mapping can be found
  - Sometimes more complicated actions must be taken to assign the appropriate values
  - Simulation: Directly inserting value assignments into the middle of the program
- The solution to this is implementation-specific
Summary FSM Logic Testing

- FSMs are widely used at all levels of abstraction
- Many ways to express FSMs
  - Statecharts, tables, Z, decision tables, Petri nets, ...
- Predicates are usually explicitly included on the transitions
  - Guards
  - Actions
  - Often represent safety constraints
- FSMs are often used in embedded software