Fault Tolerant Computing
CS 530
Information redundancy: Coding theory

Yashwant K. Malaiya
Colorado State University

Information redundancy: Outline

- Codes & code words
- Hamming distance
 - Error detection capability
 - Error correction capability
- Parity check codes and ECC systems
- Cyclic codes
 - Polynomial division and LFSRs
Information Redundancy: Coding

- Often applied to
 - Info transfer: often serial communication thru a channel
 - Info storage
 - Hamming distance: error detection & correction capability
 - Linear separable codes, hamming codes
 - Cyclic codes

Error Detecting/Correcting Codes (EDC/ECC)

- **Code**: subset of all possible vectors
- **Block codes**: all vectors are of the same length
- **Separable (systematic) codes**: check-bits can be separately identified.

 \((n,k) \) code: \(k \) info bits, \(r = n-k \) check bits
- **Code words**: are legal part of the code.
- **Linear** Codes: Check-bits are linear combinations of info bits. Linear combination of code words is a code word.
Hamming Distance

- **Hamming distance** between 2 code words X, Y
 \[D(x,y) = \sum (x_k \oplus y_k) \]
 - \(D(001,010) = 2 \)
 - \(D(000,111) = 3 \)
- **Minimum distance**: min of all hamming distance between all possible pairs of code words.

Ex 1: consider code:
- 000
- 011
- 101
- 110

 Min distance = 2

Detection Capability

- All single bit errors result in non-code words. Thus all single-bit errors are detectable.
- Error detection capability: min Hamming dist \(d_{\text{min}} \), \(p \): number of errors that can be detected
 \[p + 1 \leq d_{\text{min}} \text{ or } p_{\text{max}} = d_{\text{min}} - 1 \]

Ex 1: consider code:
- 000
- 011
- 101
- 110
Errors Correction Capability

Ex 2: Consider a code

\[
\begin{array}{c}
000 \\
111 \\
\end{array}
\]

- Assume single-bit errors are more likely than 2-bit errors.
- In Ex 2 all single bit errors can be corrected. All 2 bit errors can be detected.
- Error correction capability: \(t \): number of errors that can be corrected:

\[
2t + 1 \leq d_{\text{min}} \quad \text{or} \quad T_{\text{max}} = \left\lfloor \frac{d_{\text{min}} - 1}{2} \right\rfloor
\]

Parity Check Codes

- Are linear block codes
- \(d_{\text{min}} = \) weight of lightest non-zero code word
- Linear: \(\oplus \), multiplication: \(\text{AND} \)
- \(G_{k \times n} \): Generator matrix of a \((n,k)\) code: rows are a set of basis vectors for the code space.

\[
i.G = v \quad i: 1 \times k \text{ info, } v : 1 \times n \text{ code word}
\]

- For systematic code: \(G = [I_k \ P] \quad I_k: k \times k, \ P: k \times (n-k) \)

Ex: \(k=3, r=n-k=2 \)

\[
G = \begin{bmatrix}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0
\end{bmatrix}
\]
Parity Check Codes: Code Word Generation

- Ex: info \(i = (1\ 0\ 1) \)

 \[
 G = \begin{bmatrix}
 1 & 0 & 0 & 1 \\
 0 & 1 & 0 & 1 \\
 0 & 0 & 1 & 1 \\

 \end{bmatrix}
 \]

 then

 \[
 v = \begin{bmatrix}
 1 & 0 & 0 & 1 & 1 \\
 0 & 1 & 0 & 1 & 1 \\
 0 & 0 & 1 & 1 & 0 \\
 \end{bmatrix}
 \]

 \[
 v = \begin{bmatrix}
 1 & 0 & 1 \\
 \text{info} \\
 0 & 1 & 1 \\
 \text{check} \\
 \end{bmatrix}
 \]

 Note: Matrix multiplication: (dimensions) \(ab \times bc = abc \)

Parity Check Codes: Parity Check Matrix \(H \)

- If \(v \) is a code word: \(v.H^i = 0 \)

 \(H: n \times r, 0: 1 \times r \)

- Corrupted information: \(w = v + e \) all \(1 \times n \)

 \[
 w.H^i = (v+e).H^i = 0 + e. H^i
 \]

 \(= s \) syndrome of error

- For t-error correcting code, syndrome is unique for up to \(t \) errors & can be used for correction.

- For systematic codes \(G, H^i = 0, \)

 \[
 H = [-P^t \ I_r]
 \]
Hamming Codes

- Single error correcting \(d_{\text{min}} = 3 \)
- Syndrome: \(s = v.H^T \)
 - \(s=0 \) normal, rest \(2^r-1 \) syndromes indicate error. Can correct one error if syndrome is unique.
 - Hamming codes: \(n \leq 2^r-1 \)

<table>
<thead>
<tr>
<th>Info Word Size</th>
<th>Min Check bits</th>
<th>Total bits</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>7</td>
<td>75%</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>21</td>
<td>31</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>38</td>
<td>19</td>
</tr>
</tbody>
</table>
Hamming codes: Ex: Non-positioned

\[G = \begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{bmatrix} \]

\[H = \begin{bmatrix}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
\end{bmatrix} \]

\[(1110 \ 000) \ \text{H}^T = (000) \]

\[(0110 \ 000) \ \text{H}^T = (110) \]

\[(1111 \ 000) \ \text{H}^T = (111) \]

Positioned Hamming Code

ECC System

- Ex: Intel, AMD ECC chips. Cascadable 16-64 bits.
- All 1-bit errors corrected.
- Automatic *error scrubbing* using read-modify-write cycle.
BCH Cyclic Codes

- Cyclic Codes: parity check codes such that cyclic shift of a code word is also a code word.
- Polynomial: to represent bit positions
 (n,k) cyclic code⇒generator polynomial of degree n-k
 \(v(x)=M(x).G(x) \) degrees (n-1)=(k-1)(n-k)
- Ex: \(G(x) = x^4+x^3+x^2+1 \) \((11101) \) \((7,3) \) cyclic code

<table>
<thead>
<tr>
<th>Message</th>
<th>(v(x))</th>
<th>codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>000 (0)</td>
<td>0</td>
<td>0000 000</td>
</tr>
<tr>
<td>110 (x^3+x)</td>
<td>(x^6+x^3+x^2+x)</td>
<td>1001 110</td>
</tr>
<tr>
<td>111 (x^2+x+1)</td>
<td>(x^6+x^4+x+1)</td>
<td>1010 001</td>
</tr>
</tbody>
</table>

Systematic Cyclic Codes

- Consider \(x^{n-k}M(x) = Q(x)G(x)+ C(x) \)
 Quotient \(Q(x) \): degree k-1, remainder \(C(x) \):degree n-k-1
- Then \(x^{n-k}M(x)-C(x) = Q(x)G(x) \),
 thus \(x^{n-k}M(x)-C(x) \) is a code word.
 - Shift message (n-k) positions
 - Fill vacated bits by remainder
- Polynomial division to get remainder
 - Note computation is linear
Systematic Cyclic Codes

- Ex: \(G(x) = x^4 + x^3 + x^2 + 1 \) \(n-k=4, n=7 \)

<table>
<thead>
<tr>
<th>message</th>
<th>(x^6M(x))</th>
<th>(C(x))</th>
<th>codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>000000</td>
<td>000000</td>
<td>000000</td>
</tr>
<tr>
<td>110</td>
<td>(x^6 + x^5) ((1100000))</td>
<td>(x^2 + 1(1001))</td>
<td>110 1001</td>
</tr>
<tr>
<td>111</td>
<td>(x^6 + x^5 + x^4) ((1110000))</td>
<td>(x^2(0100))</td>
<td>111 0100</td>
</tr>
</tbody>
</table>

- An error-free codeword divided by generator polynomial will give remainder 0.

Polynomial division

- Ex: \(G(x) = x^4 + x^3 + x^2 + 1 \) \(n-k=4, n=7 \),
 \(M=(110) \), \(x^4M(x) \) is \(x^6 + x^5 \); remainder is \(x^3 + 1 \).

\[
\begin{array}{cccc}
 x^4 & +x^3 & +x^2 & +1 \\
\hline
 x^6 & +x^3 & +x^4 & +x^2 & +1 \\
 x^6 & +x^3 & +x^4 & +x^2 & +1 \\
 x^4 & +x^3 & +x^2 & +1 \\
 x^3 & +1 & \\
\end{array}
\]

- Code word then is \((110 1001) \) remainder
LFSR: Poly. Div. Circuit

- Ex: \(G(x) = x^4 + x^3 + x^2 + 1 \) \(n-k=4 \), \(C(x) \) of degree \(n-k-1=3 \)

2. Shift \((n-k) \) message bits in.
3. \(K \) shift lefts (hence shift out \(k \) bits of quotient)
4. Disable feedback, shift out \((n-k) \) bit remainder.

- *Linear feedback shift Register* used for both encoding and checking.

LFSRs

- Remainder is a *signature*. If good and faulty message have same signature, there is an *aliasing error*.

- Error detection properties: Smith
 - For \(k \to \infty \), \(P \{ \text{an aliasing error} \} = 2^{- (n-k)} \), provided all error patterns are equally likely.
 - All single errors are detectable, if poly has 2 or more non-zero coefficients.
 - All \((n-k) \) bit burst errors are detected, if coefficient of \(x^k \) is 1.

- Other LFSR implementations: parallel inputs, exors only in the feedback paths.
Autonomous LFSRs (ALFSR)

- ALFSR: LFSR with input=0.
- If polynomial is *primitive*, its state will cycle through all \((2^{n-k-1}-1)\) combinations, except \((0,0,..0,0)\).
- A list of polynomials of various degrees is available.
- Alternatives to ALFSR:
 - GLFSR
 - Antirandom

Some resources

- http://www-math.cudenver.edu/~wcherowi/courses/m5410/m5410fsr.html Linear Feedback Shift Registers, Golomb's Principles
- http://theory.lcs.mit.edu/~madhu/FT01/ Algorithmic Introduction to Coding Theory

An interesting property:

- **Theorem 1**: Let \(H\) be a parity-check matrix for a linear \((n,k)\)-code \(C\) defined over \(F\). Then every set of \(s-1\) columns of \(H\) are linearly independent if and only if \(C\) has minimum distance at least \(s\).