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Overview
Reinforcement learning agent in parallel to engineered controller.

Potential for combining reinforcement learning and robust control theory.

Very brief reviews of
small gain theorem
integral quadratic constraints (IQCs)
robust control

Integral Quadratic Contraints for neural network
static nonlinearity (tanh)
time−varying weights (learning algorithm)

Results on simulated control tasks

Other topics in approximate dynamic programming



Motivation

� From the Machine Learning point of view, how can From the Machine Learning point of view, how can 
we train neural networks with reinforcement we train neural networks with reinforcement 
learning while guaranteeing stability?learning while guaranteeing stability?

� From the Electrical and Computer Engineering view From the Electrical and Computer Engineering view 
point, how can neural networks be used with robust point, how can neural networks be used with robust 
control systems to improve performance?control systems to improve performance?

� From the Mechanical Engineering perspective, how From the Mechanical Engineering perspective, how 
can neural networks be applied to highly non−linear, can neural networks be applied to highly non−linear, 
time varying HVAC systems?time varying HVAC systems?

�



Robust control theoryRobust control theory
Guarantees stabilityGuarantees stability

Results in less aggressiveResults in less aggressive
 controllers controllers

Reinforcement learningReinforcement learning

Optimizes the performance Optimizes the performance 
of a controllerof a controller

No guarantee of stability No guarantee of stability 
while learningwhile learning

Motivation



Reinforcement Learning Agent Reinforcement Learning Agent 
in Parallel with Controllerin Parallel with Controller

reinforcement = |e|reinforcement = |e|



Prior ResultsPrior Results



Learns improved control, but no guarantee of stability.Learns improved control, but no guarantee of stability.

Can we forCan we formmulate combination of PI control and RL within robust ulate combination of PI control and RL within robust 
control theory?control theory?

Robust control theory is based on linear, time−invariant transfer Robust control theory is based on linear, time−invariant transfer 
functions.  functions.  

RL agents are nonlinear, because of the units’RL agents are nonlinear, because of the units’’’ activation functions. activation functions.

RL agents are time−varying, because they update their parameters to RL agents are time−varying, because they update their parameters to 
produce improved behavior.produce improved behavior.

Robust Reinforcement Learning?Robust Reinforcement Learning?



Small Gain Theorem
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First, a brief introduction to an LMI (Linear Matrix Inequality) formulation of robust control . . .



Small Gain Theorem

∆
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vw M ∆ <1

If ||∆|| < 1, then system is stable provided  ||M|| ≤ 1

Known

Unknown, but constrained



Integral Quadratic Constraints
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Integral Quadratic Constraints
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Integral Quadratic Constraints
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a finite−dimensional LMI feasibility problem in variables pi and Q.

Integral Quadratic Constraints

Kalman−Yakubovich−
Popov Lemma



Neural Net for Learning Neural Net for Learning 
AgentAgent

tanh

tanh

tanh

linear

W V

Actor Network  (Critic Network not shown)



IQCs for Neural Network as RL AgentIQCs for Neural Network as RL Agent

Nonlinear part:  tanhNonlinear part:  tanh

replace with odd, bounded−slope replace with odd, bounded−slope 
IQCIQC

Time−varying part:  weight updatesTime−varying part:  weight updates
replace with slowly time−varying IQCreplace with slowly time−varying IQC

Replace with IQCs only for stability analysis, not during Replace with IQCs only for stability analysis, not during 
operationoperation



IQC for the tanh Nonlinearity

tanhx y
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IQC for the Slowly Time−Varying Weights 

ψ t ≤β
�ψ t ≤α

change in weights is bounded,
and rate of change is bounded

tanhx yW V

ψ t ≤β
�ψ t ≤α

ψ t ≤β
�ψ t ≤α

β specifies bounds on weights for which stability analysis is valid.
α specifies bounds on the learning rate used to adjust the weights.

ψ(t) represents the changes to weights determined by learning algorithm



IQCs for Neural Network as RL AgentIQCs for Neural Network as RL Agent
Two−layer neural net as actor, Two−layer neural net as actor, 

in parallel with controller.in parallel with controller.

Now with tanh and varying Now with tanh and varying 
parameters parameters ““coveredcovered”” by  by 
IQCs.IQCs.



Reinforcement learning algorithm guides adjustment of actor’s weights.Reinforcement learning algorithm guides adjustment of actor’s weights.

IQC places bounding box in weight space, beyond which stability has not been verified.IQC places bounding box in weight space, beyond which stability has not been verified.

Incorporating Time−Varying IQC in Incorporating Time−Varying IQC in 
Reinforcement LearningReinforcement Learning

weight space (high−dimensional)

initial guaranteed−
stable region

Step 1

initial 
weight 
vector

Step 0 trajectory 
of weights 

while 
learning

Step 2

must 
find 
new 
stable 
region

Step 3

next guaranteed−stable region
Step 4

Now learning can 
continue until edge 
of new bounding 
box is encountered.

Step 5 …

weight space (high−dimensional)

UNSTABLE REGION !
final 
weight 
vector

weight trajectory with 
robust contstraints

weight trajectory without 
robust contstraints



Test on Simple Test on Simple 
Simulated TaskSimulated Task

Reference
Output



Trajectory of Weights and Bounds Trajectory of Weights and Bounds 
on Regions of Stabilityon Regions of Stability

BB

CC

DD

EE

AA

initial weight vector



Distillation ColumnDistillation Column

Example of task Example of task 
for which control for which control 
variables interact variables interact 
in complex way.in complex way.



Decoupling ControllerDecoupling Controller

Good responseGood response

NominalNominal PerturbedPerturbed

Terrible responseTerrible response



Robust ControllerRobust Controller

Less aggressive responseLess aggressive response

NominalNominal PerturbedPerturbed

Much improved responseMuch improved response



Robust Reinforcement LearningRobust Reinforcement Learning
Perturbed case, no learningPerturbed case, no learning

(from previous slide)(from previous slide) Perturbed case, with learningPerturbed case, with learning

   Sum Squared ErrorSum Squared Error

Nominal ControllerNominal Controller    0.646   0.646

Robust ControllerRobust Controller    0.286   0.286

Robust RL Controller   0.243Robust RL Controller   0.243

With learning, controller has been 
fine−tuned to actual dynamics of 
real plant without losing guarantee 
of stability.



Reinforcement Learning without IQCsReinforcement Learning without IQCs

Ultimately achieves same good performance, but Ultimately achieves same good performance, but 
during learning periods of instability occur.during learning periods of instability occur.



Application to HVAC System: 
Preliminary Steps

� Characteristics of Typical HVAC Systems
� Energy Transfer via Heating/Cooling Coils

� Air flow Regulation to Maintain Static Air Pressure

� Central Water Supply Servicing Multiple Units

" Current HVAC Systems Perform Poorly
� Complex Nonlinear Time−Varying System

� Highly Uncertain System Dynamics

� Interaction of Controlled Variables

� Controlled via Multiple SISO PID Control Loops



Experimental HVAC System
� Simple HVAC System

� Counter Flow Hot Water Counter Flow Hot Water 
to Air Heat−Exchangerto Air Heat−Exchanger

� Variable Air VolumeVariable Air Volume

� Mixing BoxMixing Box

� Electric Hot Water HeaterElectric Hot Water Heater
� Controlled Variables:Controlled Variables:

� Discharge Air TemperatureDischarge Air Temperature

� Mixed Air TemperatureMixed Air Temperature

� Air Flow RateAir Flow Rate

� Hot Water TemperatureHot Water Temperature



PC/MATLAB Based Control System



Modeling the Experimental 
HVAC System

Blower
Mixing box

Valve

Heating Coil

Boiler

� Subsystems:
� Blower

� Mixing Box

� Heating Coil

� 3−way Mixing Valve

� Boiler



HVAC System Model
Model of Experimental System

Model and Experimental System Outputs

� Dynamic Model for:
� Controller Design 

� Simulation Testing

� Nonlinear Subsystems 
� Linearization for Design

� 1st Principles and Data fitting



Controller Design
" Basic Design Goals:

� MIMO Stability and Robustness

� Independent Control of Key System Variables

� Discharge Air Temperature and Flow Rate
� Reference Conventional PI ControllerReference Conventional PI Controller

� MIMO Robust Controllers:MIMO Robust Controllers:

� ““MinimalMinimal”” (3x6) ~ T (3x6) ~ TWSWS Externally Controlled Externally Controlled

� ““ConstrainedConstrained”” (4x7) ~ T (4x7) ~ TWSWS Integrated Integrated

� ““FullFull”” (4x7) MIMO (4x7) MIMO



Controller KR3 Experimental



ConclusionsConclusions

IQC bounds on parameters of tanh and sigmoid networks 
exist for which the combination of a reinforcement 
learning agent and feedback control system satisfy the 
requirements of robust stability theorems, for static and 
dynamic stability.

Resulting robust reinforcement learning algorithm 
improves control performance while avoiding instability 
on several simulated problems.



Current WorkCurrent Work

? Applying robust reinforcement learning to HVAC model and Applying robust reinforcement learning to HVAC model and 
real HVAC system.real HVAC system.

? Developing continuous versions of reinforcement learning.Developing continuous versions of reinforcement learning.
? Continuous state, action needed for high−dimensional Continuous state, action needed for high−dimensional 

control problemscontrol problems

? Investigating value−gradient method (based on WerbosInvestigating value−gradient method (based on Werbos’’  
heuristic dynamic programming, 1987).heuristic dynamic programming, 1987).
? Uses known or learned model of system dynamics.Uses known or learned model of system dynamics.
? May result in faster learning.May result in faster learning.



Planned WorkPlanned Work
? Can similar bounds be placed on other activation             Can similar bounds be placed on other activation             

functions?functions?

? Directly add robust constraints to function being optimized by Directly add robust constraints to function being optimized by 
reinforcement learning.reinforcement learning.

? Extend theory and algorithms to include dynamic, recurrent Extend theory and algorithms to include dynamic, recurrent 
neural network as actor.  (Barabanov and Prokhorov, 2002)neural network as actor.  (Barabanov and Prokhorov, 2002)
? Measured variables from system may not fully represent Measured variables from system may not fully represent 

state of the system.state of the system.
? Recurrent net can learn a state representation.Recurrent net can learn a state representation.

? Investigate alternative ways of quickly adapting the internal Investigate alternative ways of quickly adapting the internal 
representation of the neural network.representation of the neural network.

? Evaluate with more complex control systems.Evaluate with more complex control systems.



Future Directions
� Dissemination into Industry

� Implementation of Robust Learning Control on Implementation of Robust Learning Control on 
MIMO HVAC SystemMIMO HVAC System

� Large Scale Experimental PlatformLarge Scale Experimental Platform

� Gain−Scheduled ControllersGain−Scheduled Controllers

� Nonlinear Modeling Nonlinear Modeling –– PDE Approach PDE Approach

� Robust Reinforcement Learning Control Theoretical Robust Reinforcement Learning Control Theoretical 
AdvancesAdvances

� Advanced Robust Learning AlgorithmsAdvanced Robust Learning Algorithms



Other Topics to Discuss

Direct−gradient policy learning (no value function)

Multigrid approach to learning value function.

Learning neighborhoods of temporally−related states.

Hierarchical policies based on recurrent neural networks.

    (Additional slides for further discussion.
Details can be found at www.cs.colostate.edu/~anderson)



Approximating a Policy Can Be Easier Than 
Approximating a Value Function



Q−Learning with 
One Hidden Unit



Oscillation of Weights in Hidden Unit



Direct−Gradient Policy Learning with One Hidden Unit
(Baxter and Bartlett)

Q−learning



Q−Learning with 
Two Hidden Units



Multigrid:   Simple Markov Chain

r=1

step size 4

step size 2

step size 1



Multigrid (with 4/2/1 schedule) reduces error faster than non−multigrid.
Effect is stronger with more variation in sign of value function error.



Multigrid Value Iteration Applied to the Mountain Car Task
State space discretized into 32x32 disjoint cells.
Schedule: n iterations at 2 x 2
                 n iterations at 4 x 4
                 n iterations at 8 x 8
                 n iterations at 16 x 16
                 n iterations at 32 x 32



Steps to Reach Goal versus Updates



Multigrid Relies on Discretization of Space

Does not scale well to higher dimensions.

Need way to develop discretizations at coarse and fine levels 
based on experience.

How should experienced states be grouped?
spatially?
temporally?



Grouping States Spatially versus Temporally



Spatially

Temporally







Recurrent Connections Form Macro Actions





Functions learned
by hidden units.


