
LetSee: the LEgal
Transformation SpacE Explorator
Louis-Noël Pouchet,∗1 Cédric Bastoul∗1 and Albert Cohen∗1

∗ ALCHEMY group, INRIA Futurs and LRI / University of Paris-Sud XI, France

ABSTRACT

The increasing complexity of modern architectures and memory models challenges the design of opti-
mizing compilers. It is mandatory to perform several optimizing transformations of the original program
to exploit the machine to its best, especially for scientific, computational intensive codes.

We propose a complete framework to address the problem of affine control loop optimization, based on
the polyhedral model. Our tool chain takes benefits of iterative compilation, through the design of a search
space encompassing only legal and distinct affine transformations of a program.

KEYWORDS: Iterative optimization, polyhedral model, affine scheduling, program transformation

1 Introduction
High level optimizations are mandatory to take advantage of the full capabilities of a given
architecture and its associated memory model. But due to the rigidity and the fragility of
compilers, discovering good transformation sequences is problematic. To overcome this dif-
ficulty, we rely on the polyhedral model [3], a powerful algebraic representation of programs
where arbitrarily complex sequences of transformations are represented as a single function.

But automatically finding the best optimizing transformations is still a hard task, even
when focusing on affine control blocks: 1) usual static models fail to capture the complex-
ity of modern architecture and memory; 2) the intricate link between the source code (e.g.
how data is allocated), the compiler (e.g. the fragility and conservativeness of optimiza-
tion heuristics) and the target architecture is far from being amenable to modeling. Iterative
compilation (that is, running a program candidate on the target architecture and checking
its behavior) is typically designed to address these issues.

We propose a complete framework for iterative optimization in the polyhedral model. We
use the algebraic properties of the polyhedral model to build and devise properties on a
search space encompassing only legal, distinct program versions, and we use iterative opti-
mization techniques to search for a best program version within this space.

2 Polyhedral Representation of Programs
Only parts of the program, called Static Control Parts (SCoP), can be represented algebraically
in the polyhedral model. Roughly, a SCoP is a maximal set of consecutive instructions such
that: the only allowed surrounding control structures are for loops and if conditionals,
loop bounds, conditionals and array accesses are affine functions of the surrounding loop
iterators and the global parameters. In such a program class, semantic information can be
represented as polyhedra of integer points [3]. SCoPs are known to capture a large portion
of the computation time of scientific and signal processing applications [4].

1E-mail: firstname.lastname@inria.fr

The following example illustrates how, with a schedule function2 θ (that is, an order for
the execution of all instances of each statement, which is applied to their iteration domain),
one can achieve complex transformations within a single expression. The code on the right
is produced by a code generator [2], which was provided the iteration domains of R and S3,
and the two scheduling functions θR and θS . The reader may verify that this transformation
is optimal for locality.

for (i = 0; i < n; i++)
for (j = 0; j < n; j++) {

R b[j] = a[j];
S c[j] = a[j + m];

}

θR(~xR) =

(
j
i

)

θS(~xS) =

(
j −m

i

)
for (j = -m; j < min(0,n-m); j++)

for (i = 0; i < n; i++)
S c[j] = a[j + m];

for (j = 0; j < n-m; j++)
for (i = 0; i < n; i++) {

R b[j] = a[j];
S c[j] = a[(j+m) + m];

}
for (j = max(n-m,0); j < n; j++)

for (i = 0; i < n; i++)
R b[j] = a[j];

3 An Iterative Tool Chain
The LetSee software is a subpart of a larger tool chain, depicted in Figure 1. This tool chain
relies on several third-party softwares: Candl, a dependence analyser for the polyhedral
model; CLooG4, a program generator taking as input a polyhedral representation of a pro-
gram; PIPLib and Polylib5, two libraries dedicated to (integer) polyhedra computation;
and a compiler (which has to support the C language).

SCoP
representation

Iterative compilation and run of base source code
with transformed SCoP

Code generation

Source
Code

Static
Analysis

Kernel
Generation

Unit
Generation

Polyhedral computing libraries

PIPLib PolyLib CLooG

Run

C compilable
code

Feedback from hardware counter(s)

Compilation

Polyhedral
representation

of SCoP

Bounded
search space

Space
Construction

Space
Exploration

Target
Code

Figure 1: Complete Iterative Framework

The static analysis step isolates SCoPs and represent its information as integer polyhedra
(iteration domain of each statement, access functions, and instancewise dependence graph).
The remainder of the program and the actual statement operations are kept apart.

The LetSee core is composed of the two next boxes, depicted in gray: a search space
encompassing only legal program versions is computed from the polyhedral representation
of the SCoP, and filled to a feedback-directed space exploration algorithm. This algorithm
operates only on polyhedra, where each integer point represent a different program version
where the semantics is preserved.

From each point, one is able to regenerate the SCoP code (the kernel generation step), and
then to reinsert all the remainder of the original program plus the mandatory instrumenta-
tion6 for performance feedback (the unit generation step).

2A schedule of a statement S is θS(~xS) = T.(~xS ~n 1)t, with T a constant matrix, ~xS the statement iterators, ~n
the global parameters. θS associate a multidimensional timestamp to each executed instance of S.
3Iteration domain: the set of instances executed, here it is defined by the Z-polyhedron {i, j | 0 ≤ i, j < n}
4http://www.cloog.org
5http://www.piplib.org, http://icps.u-strasbg.fr/polylib
6LetSee uses hardware counters to collect the most accurate information on the program behavior

The last step stresses the motivation of this tool chain: eventually, a regular C unit file is
generated, and can be compiled by any optimizing compiler targeting any architecture. The
tight link between the compiler optimizations (including those not amenable with the poly-
hedral representation) and the source program is though inserted in the iterative process.

The benefits of this approach are threefold: it performs aggressive program transforma-
tions guaranteed to be legal, in a high-level algebraic representation, allowing to express
many more transformations inaccessible to traditional compilers; the optimization factor is
highly tunable: one can optimize w.r.t. the number of cycles, of vectorized instructions, of
cache misses, etc. just by mean of feedback from hardware counters; and it is open to vari-
ous complementary techniques: typically compiler parameters tuning or machine learning
algorithms for space exploration [1].

4 Experimental Results
Narrowing the Search Space The upstream characterization of legal and distinct schedules
in a search space dramatically contributes to reduce its size, and eventually its complexity.
To the best of our knowledge, no other iterative compilation approaches rely on these two
fundamental properties, and instead face the bottleneck of either identical or inapplicable
transformations, which explodes the space size.

Table 2 shows results for a few kernels, mostly extracted from UTDSP. For each kernel, we
report the set of distinct schedules of a fixed Dimension (actually the minimal sequential di-
mension needed). Starting from All of them, inserting the legality criterion narrows the space
to Legal. More, we have shown in [5] that many schedule coefficients with a large impact
on the space size have in fact a low impact on performance, and the space can be narrowed
to Iterators when removing those coefficients7. Eventually, the search space is amenable to
exhaustive or heuristic traversals, leading to the reported Speedup on AMD Athlon64.

Benchmark Statements Dependences Dimension All Legal Iterators Speedup
locality 1 2 1 5.9× 104 6561 9 19%

matmult-250 2 7 1 1.9× 104 912 76 243%

compress-1024 6 56 2 6.2× 1024 6480 9 368%

edge-2048 3 30 3 1.7× 1024 3.1× 107 1467 40%

latnrm-256 11 75 2 4.1× 1018 1.9× 109 678 32%

lmsfir-256 9 112 2 1.2× 1019 2.6× 109 19962 22%

Figure 2: Search Space Size

Various Traversal Approaches In some cases (typically those with a one-dimensional sche-
dule), it is possible to exhaustively traverse the space of all legal, distinct schedules. Figure
3(a) shows the performance distribution for two typical cases. Computing these distribu-
tions let us make several observations and devise a very efficient Decoupling Heuristic for
the one-dimensional case [5] (see Figure 3(b) for a comparison with a Random approach).

In the general case of multidimensional schedules, designing an heuristic is far more com-
plex. There is an intricate link between the different dimensions of the schedule: some trans-
formations may need more than one dimension to be expressed8 (e.g. interchange, tiling).

Our preliminary approach consists in traversing the Iterators set, and completing the
schedule with legal values as close as possible to 0. This has been proven to be very efficient,
and we are currently investigating machine learning techniques to accelerate the traversal.

7Each point in this set has different values for the iterator coefficients, and is computed by projecting the
Z-polyhedral space representing the set of legal schedules to the subspace containing only the schedule coeffi-
cients attached to iterators
8The problem arises because the legal scheduling space of a program is by definition represented as distinct
sets, one for each schedule dimension. Inter-dimension constraint knowledge is de facto mandatory.

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 0 1000 2000 3000 4000 5000 6000 7000

C
yc

le
s

Transformation identifier

locality

original

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 0 100 200 300 400 500 600 700 800 900 1000

C
yc

le
s

Transformation identifier

matmult

original

(a) Performance distribution

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20

M
ax

im
um

 s
pe

ed
up

 a
ch

ie
ve

d
(in

 %
)

Tested points

locality

DH
R

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20

M
ax

im
um

 s
pe

ed
up

 a
ch

ie
ve

d
(in

 %
)

Tested points

matmult

DH
R

(b) Decoupling Heuristic convergence vs. Random

Figure 3: Search Space Traversal

5 Conclusion
In the iterative compilation approach, rapidly selecting the best transformation involves
two orthogonal problems: building a search space containing it (that is, being complete),
and efficiently traversing it.

For the case of one-dimensional affine schedules, a complete method exists [5] and is
implemented in LetSee. For the general case of multidimensional schedules, it is merely
impossible in general to build the set of all schedules, due to the intrinsic combinatorics of
the construction method,9 thus making extremely difficult to guarantee completeness.

In LetSee, the space traversal problem is equivalent to generate all integer points in a
polyhedron. Although this problem has been circumvented in the well known context of
code generation [2], we face the total lack of applicability of these techniques to the size
of our problems: we deal with the traversal of polyhedra of hundreds of dimensions, where
any single operation as intersection or redundancy elimination can take minutes or more. To
overcome this issue, we developed an efficient algorithm based on the dynamic generation
of points10 which pick a value for each coefficient sequentially in a fixed order.

Iterative and empirical search techniques are one of our last hope to harness the complex-
ity of modern processors and compilers. The LetSee framework is a complete approach to
address the problem of affine loop nest optimization; and while we have demonstrated the
potential of our techniques on several kernels, we are investigating major improvements
in terms of traversal speed and scalability to make our platform applicable to the largest
possible set of programs.

References
[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle, J. Thomson, M. Toussaint, and

C. K. I. Williams. Using machine learning to focus iterative optimization. In Fourth IEEE/ACM International
Symposium on Code Generation and Optimization, pages 295–305, Washington, DC, USA, 2006.

[2] C. Bastoul. Code generation in the polyhedral model is easier than you think. In PACT’13 IEEE International
Conference on Parallel Architecture and Compilation Techniques, pages 7–16, Juan-les-Pins, september 2004.

[3] P. Feautrier. Some efficient solutions to the affine scheduling problem. Part II. Multidimensional time. Int.
J. Parallel Program., 21(5):389–420, 1992.

[4] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, and O. Temam. Semi-automatic compo-
sition of loop transformations for deep parallelism and memory hierarchies. Intl. J. of Parallel Programming,
34(3), 2006.

[5] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. Iterative optimization in the polyhedral model:
Part I, one-dimensional time. In International Symposium on Code Generation and Optimization, pages 144–
156, San Jose, California, March 2007. IEEE Computer Society.

9The legal space depends on the way to select the dependences to solve at a given depth, which is a combina-
torial decision problem. Attempts to solve it as an Integer Linear Program fail to be complete [3]
10This algorithm makes a massive usage of partial Q-polyhedral projection thanks to an optimized Fourier-
Motzkin algorithm, and a constant (i.e. at each step) Gaussian elimination, to compact the manipulated spaces

	Introduction
	Polyhedral Representation of Programs
	An Iterative Tool Chain
	Experimental Results
	Conclusion

