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Introduction CC 2010

Motivation: High Level Optimization

Complex program transformations

To exhibit and to exploit parallelism

Type implicit/explicit Extraction

Instruction pipeline implicit hardware + compiler
Superscalar implicit hardware + compiler
VLIW-EPIC explicit compiler
Vector explicit compiler
Multithreading explicit compiler + system

To benefit from data locality

Type implicit/explicit Extraction

Temporal locality implicit (except on local memories) compiler
Spatial locality implicit (except on some DSPs) compiler
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Finding & Applying Transformations
Very hard in general

I Which transformations, in which order?

I Is the semantics preserved?

I Is it profitable (performance, energy...)?

Much easier within the scope of the polyhedral model
I Complex sequences of optimizations in a single step

I Exact data dependence analysis

I Many existing optimizing algorithms

I But restricted to static control codes

Contributions:

I Extending the polyhedral model to handle full functions
I Revisiting the framework to support these extensions
I Demonstrate that codes with data-dependent control flow

may benefit from existing techniques, even with
conservative dependence approximations
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Polyhedral Representation
For each program statement, capture its control array access
semantics through parametrized affine (in)equalities:

1 A domain D : A~x+~a≥~0
The bounds of the enclosing loops

2 A list of access functions f (~x) = F~x+~f
To describe array references

3 A schedule θ(~x) = T~x+~t
An affine function assigning logical dates to iterations

for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
if (i <= n-j+2)

S1: M[2*i+1][i-j+n] = 0;

DS1 :
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Polyhedral Representation
For each program statement, capture its control array access
semantics through parametrized affine (in)equalities:
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Polyhedral Model Constraints

Strict control constraints to be eligible: static control

I Affine bounds (for)

I Affine conditions (if)

Does it mean that more general codes cannot benefit from a
polyhedral compilation framework?
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Motivating Transformation: Loop Fusion

// 2strings: count occurences of two words in the same string
nb1 = 0;
for(i=0; i < size_string - size_word1; i++){

match1 = 0;
while(word1[match1] == string[i+match1] && match1 <= size_word1)

match1++;
if (match1 == size_word1)

nb1++;
}
nb2 = 0;
for(i=0; i < size_string - size_word2; i++) {

match2 = 0;
while(word2[match2] == string[i+match2] && match2 <= size_word2)

match2++;
if (match2 == size_word2)

nb2++;
}

Loop fusion would improve data locality
Tough by hand
Trivial transformation if expressed in the polyhedral domain
But while loops and non-static if conditions here...
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Revisiting The Polyhedral Framework

for (i = 1; i <= 3; i++)
for (j = 1; j <= 3; j++)

A[i+j] = ...

1 Program analysis ⇓
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2 Affine transformation ⇓
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3 Code generation ⇓

for (t = 2; t <= 6; t++)
for (i = max(1,t-3); i <= min(t-1,3); i++)

A[t] = ...
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Extension to while Loops

Extend iteration domain to support predication tags

(Virtually) Convert while loops into infinite for loops

Tag statement iteration domains with exit predicates

while (condition)
S();

for (i = 0;; i++) {
ep = condition;
if (ep)

S();
else
break;

}

{
i≥ 0
(ep= condition)

(a) Original Code (b) Equivalent Code (c) Iteration Domain of S
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Extension to Non-Static if Conditionals

Extend iteration domain to support predication tags

Tag statement iteration domains with control predicates

for (i = 0; i < N; i++)
if (condition)

S();

for (i = 0; i < N; i++)
cp = condition;
if (cp)

S();

 i≥ 0
i < N
(cp= condition)

(a) Original Code (b) Equivalent Code (c) Iteration Domain of S
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A Conservative Approach

Problem: exact data dependence analysis is not always possible
Conservative escape: it is safe to consider extra dependences

Non-static control is over-approximated
(predicates considered always true)

Non-static references are over-approximated
(e.g. arrays are considered as single variables)

Predicate evaluations are considered as plain statements

Predicated statements depend on their predicate definitions

I OK for data dependence analysis but not sufficient for
some more evolved analyses (see paper)
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A Conservative Approach: Example
(Outer Product Kernel)

Original Kernel

for (i = 0; i < N; i++) {
if (x[i] == 0) {

for (j = 0; j < M; j++) {
A[i][j] = 0;

}
}
else {
for (j = 0; j < M; j++) {

A[i][j] = x[i] * y[j];
}

}
}

12



Revisiting the Polyhedral Framework: Analysis CC 2010

A Conservative Approach: Example
(Outer Product Kernel)

Control Predication

for (i = 0; i < N; i++) {
cp = (x[i] == 0);
for (j = 0; j < M; j++) {
if (cp) {

A[i][j] = 0;
}

}
for (j = 0; j < M; j++) {

if (!cp) {
A[i][j] = x[i] * y[j];

}
}

}
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A Conservative Approach: Example
(Outer Product Kernel)

Abstract Program for Data Dependence Analysis

for (i = 0; i < N; i++) {
S0: Write = {cp}, Read = {x[i]}
for (j = 0; j < M; j++) {

S1: Write = {A[i][j]}, Read = {cp}
}
for (j = 0; j < M; j++) {

S2: Write = {A[i][j]}, Read = {x[i], y[j], cp}
}

}
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Transformation Expressiveness
Recovery

Problem: manipulating unbounded domains is not easy
(how to distribute while loops with one-dimensional schedule?)

Solution: an artificial parameter, “w” (meaning ω, or while)

The upper bounds of all unbounded loops is w
w is strictly greater than all upper bounds

w is only used in affine transformations

w is removed during the code generation process

w allows any existing polyhedral transformation technique
to be used in the extended model
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Quilleré-Rajopadhye-Wilde Algorithm

Direct use of polyhedral operations [Quilleré et al. IJPP00]
Depth recursion with direct optimization of conditionals:

Projection onto outer dimensions
Separation into disjoint polyhedra

..

.
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for(i = 1; i <= 6; i += 2)

for (j = 1; j <= 7-i; j++) {
S1(i, j);
S2(i, j);

}
for (j = 8-i; j <= n; j++)

S1(i, j);
}
for (i = 7; i <= n; i += 2)
for (j = 1; j <= n; j++)

S1(i, j);
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Predicate Post-Processing
Usual QRW code generation for predicated domains
Exit and control predicates are post-processed

The target code is modified according to the situation
Post-pass insertion of predicate evaluations

I First scenario: same exit predicates

for (i = 0; i < w; i++) {
S1(); {ep1}
S2(); {ep1}

}

while (ep1) {
S1();
S2();

}

(a) Intermediate Code (b) Post-Processed Code
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Predicate Post-Processing
Usual QRW code generation for predicated domains
Exit and control predicates are post-processed

The target code is modified according to the situation
Post-pass insertion of predicate evaluations

I Second scenario: different exit predicates

for (i = 0; i < w; i++) {
S1(); {ep1}
S2(); {ep2}

}

while (ep1 && ep2) {
S1();
S2();

}
while (ep1)

S1();
while (ep2)

S2();

(a) Intermediate Code (b) Post-Processed Code
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Predicate Post-Processing
Usual QRW code generation for predicated domains
Exit and control predicates are post-processed

The target code is modified according to the situation
Post-pass insertion of predicate evaluations

I Third scenario: exit predicate inside a regular loop

for (i = 0; i < w; i++) {
S1();
S2(); {ep1}

}

stop1 = 0;
for (i = 0; i < N; i++) {

S1();
if (ep1 && !stop1)

S2();
else

stop1 = 1;
}

(a) Intermediate Code (b) Post-Processed Code
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Predicate Post-Processing
Usual QRW code generation for predicated domains
Exit and control predicates are post-processed

The target code is modified according to the situation
Post-pass insertion of predicate evaluations

Additional optimizations
Hoisting predicate evaluations
Privatization of predicate variables
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Experimental Results
State-of-the-art polyhedral optimization techniques applied to (partially) irregular programs

LeTSeE [Pouchet et al. PLDI08]

Pluto [Bondhugula et al. PLDI08]

Speedup regular Speedup extended Compilation time penalty
LetSee Pluto LetSee Pluto LetSee Pluto

2strings N/A N/A 1.18× 1× N/A N/A
Sat-add 1× 1.08× 1.51× 1.61× 1.22× 1.35×
QR 1.04× 1.09× 1.04× 8.66× 9.56× 2.10×
ShortPath N/A N/A 1.53× 5.88× N/A N/A
TransClos N/A N/A 1.43× 2.27× N/A N/A
Givens 1× 1× 1.03× 7.02× 21.23× 15.39×
Dither N/A N/A 1× 5.42× N/A N/A
Svdvar 1× 3.54× 1× 3.82× 1.93× 1.33×
Svbksb 1× 1× 1× 1.96× 2× 1.66×
Gauss-J 1× 1.46× 1× 1.77× 2.51× 1.22×
PtIncluded 1× 1× 1× 1.44× 10.12× 1.44×

Setup: Intel Core 2 Quad Q6600

Backend compiler (and baseline): ICC 11.0 icc -fast -parallel -openmp
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Conclusion
The limitation to static control programs is mostly artificial

Slight and natural extension to consider irregular codes
Infinite loops plus exit and control predication
w parameter to preserve affine schedule expressiveness
Code generation with predicate support

Benefit from unmodified existing techniques for both
analysis and optimization

Currently rely on a conservative dependence analysis

New extensions should be investigated

Minimizing the conservative aspects (inspection and
speculation for control dependences)

Designing optimizations in the context of full functions
(algorithmic complexity issues)
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