The Polyhedral Model Is More Widely

Applicable Than You Think

Mohamed-Walid Benabderrahmane ! Louis-Noé&l Pouchet !
Albert Cohen! Cédric Bastoul !

I ALCHEMY group, INRIA Saclay / University of Paris-Sud 11, France
2The Ohio State University, USA

March 26, 2010

T BIINRIA

Introduction CC 2010

Motivation: High Level Optimization

Complex program transformations

@ To exhibit and to exploit parallelism

[Type [implicit/explicit | Extraction]
Instruction pipeline implicit hardware 4+ compiler
Superscalar implicit hardware + compiler
VLIW-EPIC explicit compiler
Vector explicit compiler
Multithreading explicit compiler + system

@ To benefit from data locality

[Type | implicit/explicit | Extraction
Temporal locality implicit (except on local memories) | compiler
Spatial locality implicit (except on some DSPs) compiler

Introduction CC 2010

Finding & Applying Transformations

Very hard in general
» Which transformations, in which order?
» Is the semantics preserved?
» s it profitable (performance, energy...)?

Much easier within the scope of the polyhedral model
Complex sequences of optimizations in a single step
Exact data dependence analysis
Many existing optimizing algorithms
» But restricted to static control codes

Contributions:
» Extending the polyhedral model to handle full functions
» Reuvisiting the framework to support these extensions

» Demonstrate that codes with data-dependent control flow
may benefit from existing techniques, even with
conservative dependence approximations

Introduction CC 2010

Outline

@ The Polyhedral Framework, Principles and Limitations
© Extending the Polyhedral Model

e Analysis
e Transformations
o Code Generation

© Experimental Results
@ Conclusion

The Polyhedral Framework CC 2010

Polyhedral Representation

For each program statement, capture its control array access
semantics through parametrized affine (in)equalities:
Q@ A domainD:Ax+a > 0
The bounds of the enclosing loops

1 0 ~1

. . . -1 0 n
for (i = 1; 1 <= n; 1i++)) i =
for (§ = 1; 3 <= n; j++) Doz 01 <j>+ - =0

. . . 0 —1 n

if (i <= n-3j+2) 1 | 2

Si: M[2%i41][i-3+n] = 0; -t n+

Iteration Domain of S

The Polyhedral Framework CC 2010

Polyhedral Representation

For each program statement, capture its control array access
semantics through parametrized affine (in)equalities:
Q@ A domainD:Ax+a > 0
The bounds of the enclosing loops
Q Alist of access functions f (%) = FX+f
To describe array references

for (i = 1; i <= n; i++) i\ |2 0 i 1
for (j = 1; j <= n; j++4) fS|7M<j>|:1 —1}(])+<n>
(

i€ (i <= n-j+2)
Si: M[2*i41][i-3+n] = 0; Subscript Function of M[f(¥)]

The Polyhedral Framework CC 2010

Polyhedral Representation

For each program statement, capture its control array access
semantics through parametrized affine (in)equalities:
Q@ A domainD:Ax+a > 0
The bounds of the enclosing loops
Q Alist of access functions f (%) = FX+f
To describe array references
©Q A schedule 8(X) = Tx+17
An affine function assigning logical dates to iterations

for (i = 1; i <= n; i++) i 10 i 0
A = flg 4 <= mg & s, . | = L)+
for (j = 1; 3 <= nj J++) Y\J 01 J 0
if (i <= n-j+2)
Si: M[2*¥i+1][i-j+n] = O0; Identity Schedule

The Polyhedral Framework CC 2010

Polyhedral Model Constraints

Strict control constraints to be eligible: static control
» Affine bounds (for)
» Affine conditions (if)

Does it mean that more general codes cannot benefit from a
polyhedral compilation framework?

The Polyhedral Framework CC 2010

Motivating Transformation: Loop Fusion

// 2strings: count occurences of two words in the same string
nbl = 0;
for (i=0; i < size_string - size_wordl; i++)({
matchl = 0;
while (wordl [matchl] == string[i+matchl] && matchl <= size_wordl)
matchl++;
if (matchl == size_wordl)
nbl++;
}
nb2 = 0;
for (i=0; i < size_string - size_word2; i++) {
match2 = 0;
while (word2 [match2] == string[it+match2] && match2 <= size_word2)
match2++;
if (match2 == size_word2)
nb2++;
}

@ Loop fusion would improve data locality

@ Tough by hand

@ Trivial transformation if expressed in the polyhedral domain
@ But while loops and non-static i f conditions here...

The Polyhedral Framework CC 2010

Revisiting The Polyhedral Framework

1 Program analysis

2 Affine transformation

3 Code generation

6; t++)
t-3); i <= min(t-1,3); i++)

Revisiting the Polyhedral Framework: Analysis

CC 2010

Extension to while Loops

@ Extend iteration domain to support predication tags

@ (Virtually) Convert while loops into infinite for loops

@ Tag statement iteration domains with exit predicates

for (i = 0;; i++)
ep = condition;
. L if (ep)
while (condition) S();
50 else
break;

(a) Original Code (b) Equivalent Code

i>0
(ep = condition)

(c) lteration Domain of S

Revisiting the Polyhedral Framework: Analysis CC 2010

Extension to Non-Static i f Conditionals

@ Extend iteration domain to support predication tags
@ Tag statement iteration domains with control predicates

for (i = 0; i < N; i++) f°’; (i Zogéiii:nl.qf) i>0
if (condition) _ffj i i<N
S()i * SE)C?) (cp = condition)

(a) Original Code (b) Equivalent Code (c) lteration Domain of S

Revisiting the Polyhedral Framework: Analysis CC 2010

A Conservative Approach

Problem: exact data dependence analysis is not always possible
Conservative escape: it is safe to consider extra dependences

@ Non-static control is over-approximated
(predicates considered always true)

@ Non-static references are over-approximated
(e.g. arrays are considered as single variables)

@ Predicate evaluations are considered as plain statements
@ Predicated statements depend on their predicate definitions

» OK for data dependence analysis but not sufficient for
some more evolved analyses (see paper)

Revisiting the Polyhedral Framework: Analysis CC 2010

A Conservative Approach: Example
(Outer Product Kernel)

Original Kernel

for (i = 0; 1 < N; 1i++) {
if (x[i] == 0) |
for (j = 0; j < M; j++) {
A[i][J] = 0;
}
}
else {

Revisiting the Polyhedral Framework: Analysis CC 2010

A Conservative Approach: Example
(Outer Product Kernel)

Control Predication

for (i = 0; 1 < N; 1i++) {
cp = (x[1i] == 0);
for (j = 0; J < M; j++) |
if (cp) {
A[i][J] = 0;

for (j = 0; j < M; j++) |

A[i][3] = =x[1i] * y[3];

Revisiting the Polyhedral Framework: Analysis

CC 2010

A Conservative Approach: Example
(Outer Product Kernel)

Abstract Program for Data Dependence Analysis

for (i = 0; i < N; 1i++) {
So: Write = {cp}, Read = {x[i]}
for (j = 0; J < M; j++) |
Sy: Write = {A[i][j]}, Read = {cp}
}
for (7 = 0; j < M; j++) {
Sy: Write = {A[i]1[j]}, Read
}
}

{x[i]l, y[3], cp}

Revisiting the Polyhedral Framework: Transformations CC 2010

Transformation Expressiveness
Recovery

Problem: manipulating unbounded domains is not easy
(how to distribute while loops with one-dimensional schedule?)

Solution: an artificial parameter, “w”(meaning ®, or while)

@ The upper bounds of all unbounded loops is w

@ w is strictly greater than all upper bounds

@ w is only used in affine transformations

@ w is removed during the code generation process

@ w allows any existing polyhedral transformation technique
to be used in the extended model

Revisiting the Polyhedral Framework: Code Generation CC 2010

Quilleré-Rajopadhye-Wilde Algorithm

@ Direct use of polyhedral operations [Quilleré et al. [JPPOQOQ]
@ Depth recursion with direct optimization of conditionals:

e Projection onto outer dimensions
@ Separation into disjoint polyhedra

Iy s :

1 for(i = 1; i <= 6; i += 2)
o ° e o o for (j = 1; j <= 7-1i; J++) |

71 e ° o o o S1(i, j);

6] @ @ o e ° : S2(i, J);

5 ' ® L . .3 for (j = 8-i; j <= n; Jj++)

4 . [J [0 (S1(i, j);

3{i@ @ o e o }

) . — N . .i for (i = 7; i <= n; i += 2)
: : 1 for (j = 1; j <= n; Jj++)

1@ ® ® ! S1(i, 5);
"1 2 3 45 67 «--n'

Revisiting the Polyhedral Framework: Code Generation CC 2010

Predicate Post-Processing

@ Usual QRW code generation for predicated domains
@ Exit and control predicates are post-processed
e The target code is modified according to the situation
e Post-pass insertion of predicate evaluations

» First scenario: same exit predicates

for (i = 0; i < w; 1i++) { while (epl) {
S1(); {epl} S1();
S2(); {epl} S2();

} }

(a) Intermediate Code (b) Post-Processed Code

Revisiting the Polyhedral Framework: Code Generation CC 2010

Predicate Post-Processing

@ Usual QRW code generation for predicated domains
@ Exit and control predicates are post-processed
e The target code is modified according to the situation
e Post-pass insertion of predicate evaluations

» Second scenario: different exit predicates

while (epl && ep2) {
S1();
(i = 0; i < w; i++) { S2.();
()i {epl} }
()i {ep2} while (epl)
} S1();
while (ep2)
S2();

(a) Intermediate Code (b) Post-Processed Code

Revisiting the Polyhedral Framework: Code Generation

CC 2010

Predicate Post-Processing

@ Usual QRW code generation for predicated domains
@ Exit and control predicates are post-processed
e The target code is modified according to the situation
e Post-pass insertion of predicate evaluations

» Third scenario: exit predicate inside a regular loop

for

Sl
52

(i = 0; 1 < w; i++)
()i
(); {epl}

{

(a) Intermediate Code

stopl = 0;
for (i = 0; 1 < N; i++) {
S1();
if (epl && !stopl)
S2.();
else
stopl = 1;

(b) Post-Processed Code

Revisiting the Polyhedral Framework: Code Generation CC 2010

Predicate Post-Processing

@ Usual QRW code generation for predicated domains
@ Exit and control predicates are post-processed
e The target code is modified according to the situation
e Post-pass insertion of predicate evaluations

@ Additional optimizations

e Hoisting predicate evaluations
e Privatization of predicate variables

Experimental Results

CC 2010

Experimental Results

State-of-the-art polyhedral optimization techniques applied to (partially) irregular programs

@ LeTSeE [Pouchet et al. PLDI08]
@ Pluto [Bondhugula et al. PLDI08]

Speedup regular Speedup extended Compilation time penalty

LetSee | Pluto LetSee | Pluto LetSee | Pluto
2strings N/A N/A 1.18x% 1x N/A N/A
Sat-add 1x 1.08x 1.51x 1.61x 1.22% 1.35x
QR 1.04x 1.09x 1.04x 8.66 < 9.56 % 2.10x
ShortPath N/A N/A 1.53x 5.88x N/A N/A
TransClos N/A N/A 1.43x 2.27x N/A N/A
Givens 1x 1x 1.03x 7.02x 21.23x 15.39x
Dither N/A N/A 1% 5.42x N/A N/A
Svdvar 1x 3.54x 1x 3.82x 1.93% 1.33%
Svbksb 1x 1x 1% 1.96 % 2x 1.66 %
Gauss-J 1x 1.46 < 1% 1.77x 2.51x 1.22x
Ptincluded 1% 1% 1% 1.44x 10.12x 1.44x

Setup: Intel Core 2 Quad Q6600

Backend compiler (and baseline): ICC 11.0

icc -fast -parallel -openmp

Conclusion CC 2010

Conclusion
The limitation to static control programs is mostly artificial
@ Slight and natural extension to consider irregular codes

e Infinite loops plus exit and control predication
e w parameter to preserve affine schedule expressiveness
e Code generation with predicate support

@ Benefit from unmodified existing techniques for both
analysis and optimization

@ Currently rely on a conservative dependence analysis

New extensions should be investigated

@ Minimizing the conservative aspects (inspection and
speculation for control dependences)

@ Designing optimizations in the context of full functions
(algorithmic complexity issues)

	Introduction
	The Polyhedral Framework
	Revisiting the Polyhedral Framework: Analysis
	Revisiting the Polyhedral Framework: Transformations
	Revisiting the Polyhedral Framework: Code Generation
	Experimental Results
	Conclusion

