
The Polyhedral Model Is More Widely
Applicable Than You Think

Mohamed-Walid Benabderrahmane 1 Louis-Noël Pouchet 1,2

Albert Cohen 1 Cédric Bastoul 1

1ALCHEMY group, INRIA Saclay / University of Paris-Sud 11, France
2The Ohio State University, USA

March 26, 2010

Introduction CC 2010

Motivation: High Level Optimization

Complex program transformations

To exhibit and to exploit parallelism

Type implicit/explicit Extraction

Instruction pipeline implicit hardware + compiler
Superscalar implicit hardware + compiler
VLIW-EPIC explicit compiler
Vector explicit compiler
Multithreading explicit compiler + system

To benefit from data locality

Type implicit/explicit Extraction

Temporal locality implicit (except on local memories) compiler
Spatial locality implicit (except on some DSPs) compiler

2

Introduction CC 2010

Finding & Applying Transformations
Very hard in general

I Which transformations, in which order?

I Is the semantics preserved?

I Is it profitable (performance, energy...)?

Much easier within the scope of the polyhedral model
I Complex sequences of optimizations in a single step

I Exact data dependence analysis

I Many existing optimizing algorithms

I But restricted to static control codes

Contributions:

I Extending the polyhedral model to handle full functions
I Revisiting the framework to support these extensions
I Demonstrate that codes with data-dependent control flow

may benefit from existing techniques, even with
conservative dependence approximations

3

Introduction CC 2010

Outline

1 The Polyhedral Framework, Principles and Limitations
2 Extending the Polyhedral Model

Analysis
Transformations
Code Generation

3 Experimental Results
4 Conclusion

4

The Polyhedral Framework CC 2010

Polyhedral Representation
For each program statement, capture its control array access
semantics through parametrized affine (in)equalities:

1 A domain D : A~x+~a≥~0
The bounds of the enclosing loops

2 A list of access functions f (~x) = F~x+~f
To describe array references

3 A schedule θ(~x) = T~x+~t
An affine function assigning logical dates to iterations

for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
if (i <= n-j+2)

S1: M[2*i+1][i-j+n] = 0;

DS1 :


1 0
−1 0

0 1
0 −1
−1 −1


(

i
j

)
+


−1

n
−1

n
n+2

≥~0

Iteration Domain of S1

5

The Polyhedral Framework CC 2010

Polyhedral Representation
For each program statement, capture its control array access
semantics through parametrized affine (in)equalities:

1 A domain D : A~x+~a≥~0
The bounds of the enclosing loops

2 A list of access functions f (~x) = F~x+~f
To describe array references

3 A schedule θ(~x) = T~x+~t
An affine function assigning logical dates to iterations

for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
if (i <= n-j+2)

S1: M[2*i+1][i-j+n] = 0;

fS1,M

(
i
j

)
=

[
2 0
1 −1

](
i
j

)
+

(
1
n

)
Subscript Function of M[f (~x)]

5

The Polyhedral Framework CC 2010

Polyhedral Representation
For each program statement, capture its control array access
semantics through parametrized affine (in)equalities:

1 A domain D : A~x+~a≥~0
The bounds of the enclosing loops

2 A list of access functions f (~x) = F~x+~f
To describe array references

3 A schedule θ(~x) = T~x+~t
An affine function assigning logical dates to iterations

for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
if (i <= n-j+2)

S1: M[2*i+1][i-j+n] = 0;

θS1

(
i
j

)
=

[
1 0
0 1

](
i
j

)
+

(
0
0

)
Identity Schedule

5

The Polyhedral Framework CC 2010

Polyhedral Model Constraints

Strict control constraints to be eligible: static control

I Affine bounds (for)

I Affine conditions (if)

Does it mean that more general codes cannot benefit from a
polyhedral compilation framework?

6

The Polyhedral Framework CC 2010

Motivating Transformation: Loop Fusion

// 2strings: count occurences of two words in the same string
nb1 = 0;
for(i=0; i < size_string - size_word1; i++){

match1 = 0;
while(word1[match1] == string[i+match1] && match1 <= size_word1)

match1++;
if (match1 == size_word1)

nb1++;
}
nb2 = 0;
for(i=0; i < size_string - size_word2; i++) {

match2 = 0;
while(word2[match2] == string[i+match2] && match2 <= size_word2)

match2++;
if (match2 == size_word2)

nb2++;
}

Loop fusion would improve data locality
Tough by hand
Trivial transformation if expressed in the polyhedral domain
But while loops and non-static if conditions here...

7

The Polyhedral Framework CC 2010

Revisiting The Polyhedral Framework

for (i = 1; i <= 3; i++)
for (j = 1; j <= 3; j++)

A[i+j] = ...

1 Program analysis ⇓

1

1 2

2

i

3

3 4 5 6

j

2 Affine transformation ⇓

1
2
3

1
2

3
2 3 4 5 61

j

i

t

3 Code generation ⇓

for (t = 2; t <= 6; t++)
for (i = max(1,t-3); i <= min(t-1,3); i++)

A[t] = ...

8

Revisiting the Polyhedral Framework: Analysis CC 2010

Extension to while Loops

Extend iteration domain to support predication tags

(Virtually) Convert while loops into infinite for loops

Tag statement iteration domains with exit predicates

while (condition)
S();

for (i = 0;; i++) {
ep = condition;
if (ep)

S();
else
break;

}

{
i≥ 0
(ep= condition)

(a) Original Code (b) Equivalent Code (c) Iteration Domain of S

9

Revisiting the Polyhedral Framework: Analysis CC 2010

Extension to Non-Static if Conditionals

Extend iteration domain to support predication tags

Tag statement iteration domains with control predicates

for (i = 0; i < N; i++)
if (condition)

S();

for (i = 0; i < N; i++)
cp = condition;
if (cp)

S();

 i≥ 0
i < N
(cp= condition)

(a) Original Code (b) Equivalent Code (c) Iteration Domain of S

10

Revisiting the Polyhedral Framework: Analysis CC 2010

A Conservative Approach

Problem: exact data dependence analysis is not always possible
Conservative escape: it is safe to consider extra dependences

Non-static control is over-approximated
(predicates considered always true)

Non-static references are over-approximated
(e.g. arrays are considered as single variables)

Predicate evaluations are considered as plain statements

Predicated statements depend on their predicate definitions

I OK for data dependence analysis but not sufficient for
some more evolved analyses (see paper)

11

Revisiting the Polyhedral Framework: Analysis CC 2010

A Conservative Approach: Example
(Outer Product Kernel)

Original Kernel

for (i = 0; i < N; i++) {
if (x[i] == 0) {

for (j = 0; j < M; j++) {
A[i][j] = 0;

}
}
else {
for (j = 0; j < M; j++) {

A[i][j] = x[i] * y[j];
}

}
}

12

Revisiting the Polyhedral Framework: Analysis CC 2010

A Conservative Approach: Example
(Outer Product Kernel)

Control Predication

for (i = 0; i < N; i++) {
cp = (x[i] == 0);
for (j = 0; j < M; j++) {
if (cp) {

A[i][j] = 0;
}

}
for (j = 0; j < M; j++) {

if (!cp) {
A[i][j] = x[i] * y[j];

}
}

}

12

Revisiting the Polyhedral Framework: Analysis CC 2010

A Conservative Approach: Example
(Outer Product Kernel)

Abstract Program for Data Dependence Analysis

for (i = 0; i < N; i++) {
S0: Write = {cp}, Read = {x[i]}
for (j = 0; j < M; j++) {

S1: Write = {A[i][j]}, Read = {cp}
}
for (j = 0; j < M; j++) {

S2: Write = {A[i][j]}, Read = {x[i], y[j], cp}
}

}

12

Revisiting the Polyhedral Framework: Transformations CC 2010

Transformation Expressiveness
Recovery

Problem: manipulating unbounded domains is not easy
(how to distribute while loops with one-dimensional schedule?)

Solution: an artificial parameter, “w” (meaning ω, or while)

The upper bounds of all unbounded loops is w
w is strictly greater than all upper bounds

w is only used in affine transformations

w is removed during the code generation process

w allows any existing polyhedral transformation technique
to be used in the extended model

13

Revisiting the Polyhedral Framework: Code Generation CC 2010

Quilleré-Rajopadhye-Wilde Algorithm

Direct use of polyhedral operations [Quilleré et al. IJPP00]
Depth recursion with direct optimization of conditionals:

Projection onto outer dimensions
Separation into disjoint polyhedra

..

.

1

6
7

1 2 6 7 n

n

. . .

3

3 4 5

2

4
5

i

j
for(i = 1; i <= 6; i += 2)

for (j = 1; j <= 7-i; j++) {
S1(i, j);
S2(i, j);

}
for (j = 8-i; j <= n; j++)

S1(i, j);
}
for (i = 7; i <= n; i += 2)
for (j = 1; j <= n; j++)

S1(i, j);

14

Revisiting the Polyhedral Framework: Code Generation CC 2010

Predicate Post-Processing
Usual QRW code generation for predicated domains
Exit and control predicates are post-processed

The target code is modified according to the situation
Post-pass insertion of predicate evaluations

I First scenario: same exit predicates

for (i = 0; i < w; i++) {
S1(); {ep1}
S2(); {ep1}

}

while (ep1) {
S1();
S2();

}

(a) Intermediate Code (b) Post-Processed Code

15

Revisiting the Polyhedral Framework: Code Generation CC 2010

Predicate Post-Processing
Usual QRW code generation for predicated domains
Exit and control predicates are post-processed

The target code is modified according to the situation
Post-pass insertion of predicate evaluations

I Second scenario: different exit predicates

for (i = 0; i < w; i++) {
S1(); {ep1}
S2(); {ep2}

}

while (ep1 && ep2) {
S1();
S2();

}
while (ep1)

S1();
while (ep2)

S2();

(a) Intermediate Code (b) Post-Processed Code

15

Revisiting the Polyhedral Framework: Code Generation CC 2010

Predicate Post-Processing
Usual QRW code generation for predicated domains
Exit and control predicates are post-processed

The target code is modified according to the situation
Post-pass insertion of predicate evaluations

I Third scenario: exit predicate inside a regular loop

for (i = 0; i < w; i++) {
S1();
S2(); {ep1}

}

stop1 = 0;
for (i = 0; i < N; i++) {

S1();
if (ep1 && !stop1)

S2();
else

stop1 = 1;
}

(a) Intermediate Code (b) Post-Processed Code

15

Revisiting the Polyhedral Framework: Code Generation CC 2010

Predicate Post-Processing
Usual QRW code generation for predicated domains
Exit and control predicates are post-processed

The target code is modified according to the situation
Post-pass insertion of predicate evaluations

Additional optimizations
Hoisting predicate evaluations
Privatization of predicate variables

15

Experimental Results CC 2010

Experimental Results
State-of-the-art polyhedral optimization techniques applied to (partially) irregular programs

LeTSeE [Pouchet et al. PLDI08]

Pluto [Bondhugula et al. PLDI08]

Speedup regular Speedup extended Compilation time penalty
LetSee Pluto LetSee Pluto LetSee Pluto

2strings N/A N/A 1.18× 1× N/A N/A
Sat-add 1× 1.08× 1.51× 1.61× 1.22× 1.35×
QR 1.04× 1.09× 1.04× 8.66× 9.56× 2.10×
ShortPath N/A N/A 1.53× 5.88× N/A N/A
TransClos N/A N/A 1.43× 2.27× N/A N/A
Givens 1× 1× 1.03× 7.02× 21.23× 15.39×
Dither N/A N/A 1× 5.42× N/A N/A
Svdvar 1× 3.54× 1× 3.82× 1.93× 1.33×
Svbksb 1× 1× 1× 1.96× 2× 1.66×
Gauss-J 1× 1.46× 1× 1.77× 2.51× 1.22×
PtIncluded 1× 1× 1× 1.44× 10.12× 1.44×

Setup: Intel Core 2 Quad Q6600

Backend compiler (and baseline): ICC 11.0 icc -fast -parallel -openmp
16

Conclusion CC 2010

Conclusion
The limitation to static control programs is mostly artificial

Slight and natural extension to consider irregular codes
Infinite loops plus exit and control predication
w parameter to preserve affine schedule expressiveness
Code generation with predicate support

Benefit from unmodified existing techniques for both
analysis and optimization

Currently rely on a conservative dependence analysis

New extensions should be investigated

Minimizing the conservative aspects (inspection and
speculation for control dependences)

Designing optimizations in the context of full functions
(algorithmic complexity issues)

17

	Introduction
	The Polyhedral Framework
	Revisiting the Polyhedral Framework: Analysis
	Revisiting the Polyhedral Framework: Transformations
	Revisiting the Polyhedral Framework: Code Generation
	Experimental Results
	Conclusion

