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Abstract. Simulation of Lattice QCD is a challenging computational problem. Currently, technological
trends in computation show multiple divergent models of computation. We are witnessing homogeneous
multi-core architectures, the use of accelerator on-chip or off-chip, in addition to the traditional archi-
tectural models.

On the verge of this technological abundance, assessing the performance trade-offs of computing nodes
based on these technologies is of crucial importance to many scientific computing applications.

In this study, we focus on assessing the efficiency and the performance expected for the Lattice QCD
problem on representative architectures and we project the expected improvement on these architec-
tures and their impact on performance for Lattice QCD. We additionally try to pinpoint the limiting
factors for performance on these architectures.

1 Introduction

Quantum chromodynamic (QCD) is the theory of strong interaction in the domain of subnuclear physics.
Lattice QCD (LQCD) is a numerical method based on QCD first principles, the only one able to compute
reliably many quantities of high scientific relevance. It is based on a discretization of space time and a Monte-
Carlo method. The system being an extremely complex one and the number of degrees of freedom being of
the order of a billion today, a number promised to increase in the future, LQCD needs heavy, efficient and
cheap enough computing tools (hardware and software).

The goal of the calculation is to produce, according to a given probability law resulting from the theory,
a wide statistical sample of “gauge configurations,” each of which being a large file of complex numbers.
Although using efficient algorithms which will be described in the next section, it requires a very large
amount of computing power.

Simulation of this theory is one of the grand challenge problems in part because of the small percentage
of the computation load usually being observed on most computing architectures. Assessing the performance
and efficiency on new architectures, and based on different algorithmic representation of this problem, is
important to get closer to the computational power needed for this problem. This computation tends to
have low utilization and efficiency on most general-purpose computing facilities, leading to inefficient power
consumption and unrealistic demands on the number of required computational nodes. So far building a
special machine for simulating the Lattice QCD problem has been a widely used approach [1,2,3]. The
motivation to build specialized computing facilities, despite all the associated overheads, is the enormous
computational power needed in addition to the special characteristics of the computation of the Lattice
QCD.
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For this problem, an optimal computing node should offer support for complex arithmetic instructions,
large register file, SIMD instructions, software controlled cache management and balanced memory band-
width and communication bandwidth to the computational power. Multiple successful balanced designs were
historically build for Lattice QCD [1,2,3], but the overhead of design and maintenance is usually high. Build-
ing out of commodity components that best fit the problem characteristics is a very attractive alternative, but
it requires a careful analysis of the problem, together with the analysis of the large spectrum of architectural
alternatives.

Currently, the driving forces for computer architecture push multiple technologies with no clear conver-
gence to performance/power overall winner. We intend to explore these technologies, guided by the com-
putational requirements of the Lattice QCD. As it is extremely difficult to exhaustively experiment all the
emerging technologies, we choose to focus on two groups of technologies:

— General-purpose homogeneous nodes: we describe our efforts to assess the trade-offs of implementing
the Lattice QCD computation on different architectures. We mainly focused on Itanium and Pentium
architectures. These two architectures represent two major design alternatives in general purpose com-
puting. The EPIC architecture for Itanium processor relies on the compiler in managing instruction
parallelism, while the superscalar architecture for the Pentium processor relies on hardware management
of instruction parallelism. Both architectures are deployed successfully to build highly scalable machines.

— Heterogeneous computing nodes: we investigate the use of specialized accelerators to improve the perfor-
mance of a computing node. The first alternative we explored is the use of Intel Xeon processor assisted
by a G80 NVIDIA graphic card as an accelerator, a heterogeneous multi-chip alternative. The second
alternative we explored is based on integrating accelerators with the main processor on chip, providing
a heterogeneous system-on-chip kind of architectures. A good representative of this architecture is the
IBM Cell broadband engine.

The objective of this study is to compare future technologies prospect for the simulation of Lattice QCD.
We do not seek a generalized comparative study of all future architectural trends; we target the comparison
based on the requirements for the simulation of the Lattice QCD computations.

Our study reveals that the performance of the Lattice QCD computation can be greatly improved using
specialized accelerators. More importantly, we predict that the imbalance of the computational power to
communication bandwidth for the Lattice QCD will remain an obstacle for all the studied architecture.
Efficient usage of the computational power will rely heavily on the level of explicit resource management
that a particular hardware will offer.

The rest of this paper is organized as follows: Section 2 introduces the Lattice QCD problem and its
physical formulation. Section 3 introduces analysis of the performance of single node based on various ar-
chitectural alternatives. Section 4 discusses the needed improvements in the performance of the discussed
architectures and contrast it with their expected or planned evolution. Section 5 discusses the performance
impact of the communication architecture for a large scale system. Section 6 concludes this work.

2 The Problem of LQCD

In Lattice QCD, the four-dimensional space-time continuum is simulated by a four-dimensional lattice, of
length respectively X, Y, Z, T in the four directions, with quark quantum fields on each lattice site and gluon
quantum fields represented by SU(3) matrices on each link between these sites. SU(3) refers to 3 x 3 unitary
matrices of complex numbers of unit determinant. The 3-dimensional space in which these matrices act is
referred to as the space of the three quark “colours". The spinors are represented by four SU(3) vectors,
each composed of three complex variables. The calculation aims at computing the average values of physical
quantities, which are functions of these fields, according to a probability distribution also depending on the
fields, and derived by a discretization procedure from the basic QCD Lagrangian. This average is taken over
the full space of all the possible values of the fields. This space is known as the field configuration space.
The integration of quark fields is done formally, leading to a complicated non-local probability distribution:
the determinant of the very large “Dirac operator” matrix, which depends only on the gluon fields. The



probability law is described by a complicated expression depending only on the gluon fields i.e. the SU(3)
matrices. We call gauge configuration a set of SU(3) matrice matrices defined on all links. The probability
law is thus defined in the space of gauge configurations.

For large lattices the space of gauge configurations is a variety with dimensionality of the order of
billions. Only a Monte-Carlo method allows such a huge calculation. To estimate the average values of the
physical quantities we need representative samples of gauge configurations (say about 5000) for every set of
parameters, generated according to the above-mentioned probability law. The Hybrid Monte-Carlo (HMC)
algorithm [4], or variants of it such as the Polynomial HMC (PHMC), the Rational HMC (RHMC), is used
to generate these samples. This is a very heavy calculation. In the following discussion, we will consider an
HMC implementation achieved by the ETMC collaboration [5,6].

The run is decomposed into “trajectories,” which are indeed trajectories of a complex dynamical system
depending on the SU(3) matrices. Each trajectory leads from one gauge configuration to the next one of our
sample. The Hamiltonian of this system is devised in such a way as to generate gauge configurations with
a large enough probability. At the end of the trajectory a Metropolis test ensures the correct probability
law. The trajectory is divided into steps. After every step the gauge configuration is updated. During the
step, the gauge configuration stays unchanged. The algorithm manipulates objects named “Wilson spinors.”
One Wilson spinor is composed by a spinor (12 dimensional complex vector) on every lattice site. During
the step, whichever variant of the algorithm being used, there is an iteration of the multiplication of a large
“Wilson spinor” by the large matrix named “Dirac operator” leading to an output “Wilson spinor”. This part
is linear algebra and it is the most time-consuming part of the algorithm.

The multiplication of the Wilson spinor by the Dirac Operator is mainly performed in the ETMC code
by a routine named “Hopping Matrix”, which is contributing about 90% of the total execution time [7].
Wilson spinors as well as the gauge configurations are very large arrays. As we shall see the major problem
to produce efficient computations is to ensure fast enough data transfer to and from the computing units. It is
worth noticing that the stability of the gauge configuration, during very many iterations of the multiplication
of Wilson spinors by the Dirac operator, allows a significant reduction of the data to be transferred if one
manages to keep the SU(3) matrices in some kind of fast access memory close to the computing units. This
is not easy in general because the gauge matrices constitute rather large arrays.

The multiplication of the Wilson spinor by the Dirac operator is expressed in formula (1): the actions
of the Dirac operator involves a sum over quark “spinors” (¢(¢)) multiplied by a gluon field (U,(¢)) through
the spin projector.
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where k; = ky = k; = Kk and Ky = kexpin/T, x is the "hopping parameter" and the phase expin/T
expresses the anti-periodic boundary conditions in the time direction. The gluon field SU(3) matrices are
labelled by their starting site and the space-time direction of the link on which it is defined.

The code we consider contains two variants of the algorithm. The first one named “full-spinor” corresponds
to the direct application of equation (1), while the second named “half-spinor” processes via two phases which
can be expressed by the following set of equations: First phase (K series):

Gulis +) = kpUu(@) (I =) i+ ) Guli, =) = (I +7,) (i — 1) (2)

second phase (L series):
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The pros and cons of both variants depend on the architecture and will be discussed later.

In the next sections we will present studies on numerous architectures and lattice sizes. Our general goal
is the Petaflop as justified in section 5. Working on one node we have in mind different sublattices according
to different possible decompositions of the full lattice. We also varied the lattice size in order to highlight
the role of the different architectural components (e.g., cache size, etc).



3 The Performance of a Single Computing Node

The performance of lattice QCD on a multiprocessor machine relies heavily on the performance of the indi-
vidual computing nodes. In this section, we will start by outlining the architecturally independent attributes
of the Hopping Matrix routine that will interact with the architectures under investigation. We will then
discuss the performance based on these individual nodes in separate sections.
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Fig. 1. Computation schemes of the Hopping Matrix routine based on the full-spinor and the half-spinor
versions.

In the Hopping Matrix routine, the computation of the spinor involves 1608 8 floating-point operations
per lattice site touching 360 floating-point variables. We focus on the two implementations already mentioned,
the full-spinor and the half-spinor ones. The full-spinor version pulls all the data needed to compute an
output spinor from all surrounding sites. These data include the gauge field links and the spinors. In each
call of the Hopping Matrix routine, the gauge links show non-redundant regular access, while reads of the
surrounding spinors usually carry redundancy and irregularity of access because each input spinor appears
in the computation of eight different output spinors. To solve this problem in accessing data, the half spinor
version carries the computation in two phases. In the first phase, each input spinor is visited once and the
computations related to all the surrounding spinors are pushed to the surrounding spinors in intermediate
half-spinor structures. Writing of the output half-spinors is aligned to optimize the access pattern in the
second phase. In the second phase, the results of the first phase are used to compute the output spinors. The
access of the half-spinors intermediate structure is more regular. The advantage of the half-spinor version is
that irregular pattern of access is associated with the writes of the first phase and not with data reads. In
most general-purpose architectures, memory reads are more critical to performance. On the other hand, the
accessed data are increased by about 7% for the half-spinor version compared with the full-spinor version.
Figure 1 shows four code variants of the code explored in this study. The computation can be decomposed
into two phases of computation, in the half-spinor version. Additionally, the computation can be further

8 This number is larger than the commonly quoted 1320 flops per site, the difference being due to the multiplication
by the factor x, in eq. (1).



decomposed based on the number of space directions. Figure 2 depicts the two main phases of the half-
spinor computation that allow friendlier cache behavior on processors with cache hierarchy.
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Fig. 2. Hopping Matrix is splitted into two phases, Kseries (phase one), then Lseries (phase two) with
almost balanced code, data, CPU time.

For processors with normal caches, e.g. Itanium and Pentium, we will focus on the half-spinor version
because of its performance advantage, for computing nodes using accelerators we will explore both techniques.

The most dominant attribute of Hopping Matrix computation that affects performance is the low compu-
tation to memory access ratio, as shown in Figure 3. This analysis assumes no temporal locality in inter-calls
to the Hopping Matrix routine. This assumption is valid taking into account the large footprint associated
with reasonable lattice size, in addition to the alternations in the computation between multiple input data
on consecutive calls to the routine.

This computation to memory access ratio does not exceed 1.05 double precision floating point operations
per byte. This ratio is usually as low as 0.56 FP/byte if the lattice data is not cached. In contrast, reuse
of data is related to the data size for dense matrix-matrix multiplication, though it is partly exploited
using blocking due to limited cache sizes. Caching the lattice data is difficult to achieve because we tend
to choose bigger lattice to mitigate the cost of communication between nodes. The Lattice QCD problem
requires dividing the lattice among many cooperating nodes, which need to communicate results. To overcome
the disparity between the communication bandwidth and the computational power of the processing node,
we tend to increase the sublattice size per node. The computation grows linearly with volume while the
communication grows linearly with the surface. Figure 3 shows that improving (increasing) the computation
to communication ratio linearly requires exponential growth in the required memory space.

Another worth noting attribute is that the gauge field constitutes about 75% of the data accessed (static
memory footprint) compared with 12.5% for input spinors. At runtime for the full-spinor version, the input
spinors vector represents 55% of the dynamically accesses data with the least regular access pattern because
of the spin-projection operator. For the half-spinor version, most of the accessed data at runtime belongs to
the intermediate data structures carrying the half-spinor data.

In the following subsections, we present our study first on the use of homogenous computing nodes
based on Pentium and Itanium processors, then, on the use of heterogeneous nodes where a general purpose
processor is assisted by a special accelerator to speedup floating point computations. We specifically present
our study on the use of Nvidia GPU assisting an Intel Xeon processor and the use of the IBM Cell BE.

3.1 Baseline Code - Pentium4

In order to have a base of comparison, the performance of the HMC/ETMC code is measured on an Intel
Xeon Prescott processor at 3.2GHz with 16KB L1 and 1IMB L2 (using one core).
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Fig. 3. Summary of the attributes of the Hopping Matrix routine in terms of memory requirements, density
of computation to access and access pattern.

The HMC/ETMC code comes with an optimized version for SSE SIMD instructions. These are vector
instructions able to perform 2 double precision operations in one single instruction issue. As a matter of
fact the use of SIMD SSE Pentium instructions is explicit in the code, by the use of dedicated intrinsics. It
basically addresses the computations on the spinor vectors (complex vectors of size 3).

Performance have been measured on two input data sets. The first one is a lattice of size 4*. The second
one is a lattice of size 163 x 32. Performance results are described in Figure 4 for two versions, with and
without SSE. First, based on the number of floating point operations at each lattice site (see Section 3) -
1608 operations per site -, the clock cycle counter and the frequency of the Pentium (3.2GHz), we found
that the speed of the original code is about 2.3 GFlops for the 4* lattice and 1.5 GFlops for the 163 x 32
lattice when using the SSE instructions. This means that the original code Pentium version is already highly
optimized (peak performance is 6.4 GFlops in double precision). The better performance for the smaller
lattice is probably due to data reuse that cannot be exploited so well with the large size.
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SSE and for different lattice sizes. Itanium?2 for different lattice sizes.

3.2 Itanium Architecture

We evaluate performance of the original HMC code on an Intel Itanium Montvale processor at 1.67 GHz,
with 256KB L2 and 12MB L3 (on a single core).



In the original version, Hopping_Matrix runs one loop for each of the two half-spinor computation, one
loop for all directions on the odd sites, then one loop for all directions on the even sites (Figure 1.B). The
original code suffers from two main deficiencies on Itanium architecture:

— Analysis of the compiler generated assembly code [8] shows that the compiler has difficulty optimizing
the whole basic block of the loop. Too many instructions and a too high register pressure prevent the
compiler for instance to software pipeline the loop. This has a high impact on Itanium architecture.

— While some data (in particular the gauge fields) are reused through the computation, the size of the
volume prevents data from staying in cache between two uses.

Note that there is no SIMD code for Itanium, unlike for Pentium, the code considered is plain C code.
This leads to two transformations: each loop of the two phases is tiled so that data within a tile stays in
cache, and the tiled loop is split for all directions of computation in order to enhance the quality of compiled
code. Figure 1.D shows the structure of the resulting code: each of the two parallel loops are tiled and the
half-computations corresponding to each direction within each of these loops are executed sequentially.

Figure 5, on the left, shows performance of the two versions w.r.t. lattice sizes. For a small lattice of
size 44, all the data fit in L2 cache, tiling only introduces overhead and performance reaches 3.2 GFlops
(peak performance is at 6.4 GFlops in double precision). For a medium size lattice of size 83 * 16, the data
is still in L3 but no longer in L2. There is a light performance improvement of the tiled version, that nearly
reaches 3 GFlops. Finally, when the lattice is too large even for L3 cache, the tiled version outperforms the
original code by 60%. The effect of tiling reduces the impact of L3 cache misses but as the reuse factor is low
(between 2 and 3) and does not grow with the lattice volume, memory accesses still drive the performance
for large enough lattices.

The overall performance gain for the whole HMC code reaches 40% speed up for a 163+32 lattice. The best
tile size for the architecture has 128 iterations and corresponds to a maximum usage of the cache hierarchy.

3.3 Computing Node Based on CPU Assisted by a GPU Accelerator

The use of GPUs for scientific computing is currently under investigation by many research groups and gives
very promising results for many scientific applications [9]. We investigated the use of NVIDIA G80 GTX
graphic card GPU board hosted on a server of quad-processor Intel Xeon processor at 1.86GHz, 4MB L2
cache. The NVIDIA G80 GTX GPU is composed of 16 multiprocessors that are interconnected to banked
DRAMs through an impressive bandwidth of 78.6 GB/s. Figure 6 depicts the layout of connecting a GPU
accelerator to a CPU through a PCI Express bus.
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Fig. 6. Computing node based on a CPU assisted by a GPU accelerator.

The parallelization process for GPUs is traditionally done based on vendor compiler. Expressing problem
is facilitated with the advent of general-purpose programming technology, such as CUDA [10] by NVIDIA [11].



Even though parallelization is done through the compiler, the programmer carries the responsibility of
transforming the code in a way that enables efficient parallelism. A must-do transformation is to remove
control-flow instructions whenever possible. For control-flow variables with limited outcomes, lookup tables
can be used or redundant computation in conjunction with masking to introduce control-flow free code.
These techniques can prove effective in assisting the generation of SIMD operations.

In our implementation, we explored the effect of work granularity on performance. The granularity one
thread impacts on the resources allocated to this thread, in particular concerning the number of registers
(8192 for NVIDIA 8800 GTX). Apparently, the Cuda compiler tries not to reduce the amount of parallelism
below 64 threads, assigning at most 128 physical registers per thread. Among alternatives explored, we tried
the half-spinor version and the full spinor version. For both versions, either each thread carries the responsi-
bility of the whole computation of an output spinor (coarse-grained implementation) or the computation is
divided among 16 threads of computation, based on the number of the dimension of the space. Each thread
iterates through multiple sites of the output spinor array. The coarser the thread computation the more the
stress on the resources because more resources are needed to reduce the pressure on memory. Given that the
memory access latency on GPU in the range of 400-600 cycles, it is necessary to reduce the memory access
frequency, especially since the caching within the GPU is severely limited in size.

For Hopping Matrix computation, we noticed the less the granularity of the work assigned to the thread
the better the performance achieved. Figure 7 shows the effect of granularity choice on performance. Number
of threads per multiprocessor is set to 64 (higher number fail to launch for coarse-grained tasks because of
the excessive resources required). We experimented the two versions of the computation half-spinor and
full-spinor, discussed in Section 3.

For coarse-grained versions, even with the increased memory pressure, the half-spinor version (two threads
per spinor computation) provides a better performance compared with the full-spinor (one thread per spinor
computation). When the spinor computation are split among 16 threads (of fine-granularity) for both the
half-spinor and the full-spinor techniques, the full-spinor version become better than the half-spinor version
because the former has less frequency of accessing the memory.
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The bandwidth of the host CPU memory to the GPU memory has critical impact on performance.
Although, the gauge field is constant across iterations (need not to be exchanged), the input and the output
spinors constitute 25% of the data accessed in the computation. Moving these spinors data back and forth
between the GPU and the host processor is of significant cost on performance. The low density of computation



compared with exchanged data causes the communication overhead between the GPU and CPU to mount
to 40% of the total execution time even for a large lattice size of 323 x 32.

To improve the ratio of floating point operations to data exchanged, we allocated some of the arrays that
are used to hold the intermediate spinor computation to the GPU memory. Using this technique, we reduced
the data exchange frequency to one fourth and the contribution of data communication to total execution
time is lowered to 11%. This technique requires communicating the computed spinors less frequently in a
multi-node implementation.

Figure 8 shows that increasing the sublattice size improves the performance up to a certain extent. Using
intermediate spinor arrays to do multiple step of the Hopping Matrix reduces the spinor memory exchange
overhead between the CPU memory and the GPU memory. The performance achieved is about 6.2 Gflops
in single precision. The efficiency of Lattice QCD computation on GPUs is in the range of 3-4% of the peak
performance because of the low reuse of data and the complexity of the data access pattern that increases
conflicting accesses of the GPU memory banks.

3.4 Computing Node Based on the Cell BE

On the Cell BE, we explored again both the half-spinor and the full-spinor implementations of the Wilson-
Dirac operator. Two data layouts are considered: small lattices that can fit in the local store and large lattices
that are stored in the main memory and DMAed to the local store in chunks.

Cell broadband engine (BE) is a unique architecture in integrating specialized accelerator processors,
called synergetic processing element SPE, to the main PowerPC based processor. Each SPE has a limited
memory, called local store, large register file of 128 16-byte registers and a specialized SIMD processing
element. The chip integrates XDR memory controller in addition to FlexIO controller. This integration leads
to a bandwidth to the memory up to 25.6 GB/s. Figure 9 outlines the main components of the Cell BE.

The Cell BE is known for being difficult to program partly because of the detailed control it gives to
the programmer over memory management of the different address spaces of SPEs and the main memory.
Special DMA calls are usually required to control data transfers. Transforming code to perform efficiently in
SIMD mode is an additional traditional obstacle to exploit SPE processors. Relying on compiler is an option
that is yet to mature for this kind of architecture. The limited local store size and its separate address space
add an additional dimension to the complexity of accessing the data. As the data assigned to a computing
node will not fit in the local store, subset of the data needs to be brought to the local store for processing.
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Fig. 9. Computing Node based on accelerator on chip, represented by IBM Cell BE.

Two options exist in bringing data: The first divides the sublattice assigned to the Cell BE into further
smaller sublattices with the possible data exchanges between SPEs. The second option divides the compu-
tation into frames of data, where SPEs do not need to communicate data. The first alternative, which will



be presented with the half-spinor implementation in this work, have the potential of reducing the pressure
on the memory bandwidth. On the other hand, it requires frequent communication between the SPEs and
more synchronization of points. The second alternative, which will be presented with the full-spinor imple-
mentation, requires less synchronization and data exchange between SPEs, but may suffer from some lost
opportunities in reusing data accessed by the neighboring SPEs. The little reuse of the data in the Lattice
QCD computation encourages making this trade-off.

Implementation based on Half-spinor version All SU3 objects (vectors, matrices) have been trans-
formed into 4-way complex DP vectors and 4x4 complex matrices to allow for an easy SIMDization using
SPU intrinsics. This is costly in additional flops (2656 instead of 1608) but allows, beyond direct measure-
ments, a simple grasp on different scenarios depending on the size of the local store. It is assumed that 4K
sites are located on each SPU and 128K sites on each CELL. Double buffering is always used across these
scenarios. They are :

S1 : very small current local store size, all of Wilson spinor, gauge matrix and half spinors have to be moved
in or out to/from main memory for each site between both phases ;

S2 : half spinor will be kept in the local store memory (or very close to it) ;

S3 : the gauge matrix will be kept into LS or around ;

S4 : both the half spinor and gauge matrix can be allocated into local store (the 'Golden Cell’).

The outcome is that scenario S1 demands a bandwith value well above the available local store to main
memory bandwidth (3.2 GB/sec/spu), leading to a degraded SPU performance (1.8 GFlop/sec/spu instead
of 2.4 for other scenarios). Scenario S3 is very interesting, even if it does require an extra effort about local
store size increase : it is worth reminding that the Gauge Matrices remain constant over many calls of the
Hopping Matrix routine.

1 spinor
(inp, 256B) 8 half-spinors
(out, temp, 1024B)
4 matrixes
(inp, const*, 1024B)

NN

— ] |
o Piir-$pinors AN
i

| series

k series|

Fig. 10. Site data flows inside of Hopping Matrix within the 2 phases. The input (Kseries) and output
(Lseries) spinor indexes are different (different sites), hence the relevant Gauge Matrices (site dependent)
are also different.

Implementation based on the full-spinor version SIMDizing the code requires aligning the data in a
way that can be accessed with the least number of data shuffles. Each spinor is accessed in eight different
contexts (due to the spin projection operator in Equation (1) depending on the space direction. Each access
involves different operations and memory access pattern for the real and imaginary part of every complex
variable. Unfortunately, SPEs do not support complex arithmetic instruction set. Dynamic memory accesses
of the input spinors constitute 55% of the data accessed as shown in Figure 3, while it represents only 12.5%
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of the static data accessed. Unfortunately, we cannot fuse these data statically because the same spinor is
accessed in eight contexts with different surrounding spinors in each case.

To overcome this difficulty, we devise a technique, called runtime fusion, that fuses the input data used
for the computation of multiple consecutive spinors. The real parts of these input data are fused into single
register, and similarly for the imaginary part. For instance a 16 byte register requires fusing the computation
of two output spinors of double precision or four single precision output spinors. Figure 11 shows the layout
of the runtime data fusion technique. Runtime fusion merges the computation of unrolled loop, thus grouping
the data of similar access pattern into 16 byte words. The result of the computation is then scattered back
into multiple spinors results. Cell BE allows such technique because of the large register file. Almost 6 KB
of data are touched during the computation of a group of two output spinors in double precision.

32

Original code Code with runtime fusion 28
fori < Oton—1 stepldo for i < 0ton—1 step2do 24
0 1 0_ £, 0 0 2
=Ly e = fuse(y,; Vi) o
1 - 11 8 16
end for Vs = fuse((//l Win ) k] ¥ Single precision
. O 2 “*-Double precision
Unrolled code s
fori < 0to n—1 step2do wi' = fuse(w!" wlh) . ’/‘/‘/’/,/0/
_ 7 0 1 m * )
L=ty PO (RN 2 0
ST 1 m PSS EN
= 5 s Wi it =Uesjom ) oz 4 s 6 T8
end for ‘end for Used SPEs

Fig. 11. Runtime data fusion technique for the full- Fig.12. Performance vs. used SPE for Hop-
spinor version on Cell BE. ping Matrix in single and double precision.

This technique leads to performing the Hopping Matrix routine with 80 Gflops of single precision com-
putation and 8.7 Gflops of double precision computation. Double precision is not optimized in the current
generation of Cell BE, but PowerXCell 8i with eDP carries an optimized engine for the double precision that
is capable of 50 Gflops for the Hopping Matrix routine.

Realistic lattice size needs to be stored in the main memory and be retrieved in pieces for processing.
The computational power for single precision Hopping Matrix would require 48 GB/s of the memory, far
beyond the 25.6 GB/s bandwidth available. The input spinor is redundantly accessed 8 times during the
computation of the input spinor array. Bandwidth can be saved, if non-redundant data are brought to the
local store memory from the external memory, then the redundant part is constructed inside the SPE local
store memory. The saving in bandwidth can be 25% for a sublattice size of 163 x 16.

We exploited above attributes, in the pattern of spinor access, to achieve computation performance for
the Hopping Matrix of 31.2 Gflops for single precision and 8.6 Gflops for double precision. Figure 12 shows
the performance achieved while changing the number of the SPE used. For single precision computation,
four SPE are able to deliver the maximum the chip can afford. In fact the performance will slow down by
5% if all the SPEs are used. The demand of bandwidth of these 4 SPEs mount to 23.5 GB/s, i.e., almost
saturating the bandwidth to the external memory.

The same behavior is expected for the double precision with the new PowerXCell 81 with enhanced double
precision.

4 Anticipated Future Evolutions and Comparisons

In this section, we will try to discuss the expected performance evolution for the studied architectures in
the future, for both homogeneous general-purpose core and based on accelerators. Our study shows that the
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use of accelerators can greatly help to boost the computational performance of the main kernel routine for
Lattice QCD. We will try to discuss the most important criterion that will influence the choice between the
studied accelerator architectures, for Lattice QCD.

Expected advances for Pentium/Itanium For the end of the year 2008, the next generation of Itanium
architecture processor, Tukwila, and Xeon processor are expected to integrate a new memory controller,
named Common System Interface. This controller will offer fast point-to-point processor communication and
will have a peak inter-processor bandwidth of (up to) 96 GB/s and a peak memory bandwidth of 34 GB/s
(first processor are expected to have only a bandwidth of around 24 GB/s). This would then be comparable
to the current memory bandwidth of Cell BE and would improve performance for out-of-cache lattices.

The best performance obtained for Hopping_Matrix is when all the lattice fits in cache (L2 and L3). For
Monvale processor, this corresponds to lattices up to the size of 83 x 16. Tukwila is planned to have a 30MB
shared L3, for 4 cores. Without any change in the micro-architecture, a sustained 3 GFlops/core would then
be obtained for lattices of 8% x 32. Any increase in the future of cache sizes would help to maintain a high
level of performance.

Experimental results for a whole multi-core processor, taking advantage of multi-core interactions, are
still to be obtained. Efficiency for Pentium /Itanium code on one core is as high as 50% for smaller lattices
(only considering Hopping_Matrix) but for the whole code, it is 18%. The efficiency on a multicore node of
BlueGene/P is by comparison of 16%, i.e. a sustained Gflops performance 2.2 Gflops/node (4 core/node).

Future prospects of the Cell BE The double precision computation is improved on the new generation
Cell EDP engine (PowerXCell 8i). Simulation experiments show that the Cell EDP is expected to deliver 16
Gflops of double precision computation. Three to four SPE will also be able to saturate the bandwidth for
double precision because no improvement to the bandwidth to the memory is introduced.

An increase in the local store size can reduce the pressure on the bandwidth by improving reuse of
the data brought to the SPE. The unused SPEs can be turned off thus saving power. The performance
of Lattice QCD codes on the Cell BE would improve if the bandwidth to the memory is improved in the
future generations of the Cell. The kernel routine implementation can saturate up to double the bandwidth
for single precision computation on current generation Cell BE. For double precision implementation on
Cell EDP, the Hopping matrix routine can saturate more than triple the current memory bandwidth (89
GB/s are needed to observe 50 Gflops of double precision computation on Cell EDP). If at one point of
time these bandwidths are achieved, then complex arithmetic instructions would be needed to achieve more
performance.

Expected advances on the GPU So far, most GPUs lack efficient support for double precision compu-
tation. This is to be rectified in the near future. Exception handling for floating point is also not supported.

The bandwidth of data exchange between the GPU and the memory is in the verge of doubling. Because
of the dependency of performance on this scarce bandwidth, we do not expect that having multiple GPU
connected to the same CPU northbridge will be an effective solution. The efficiency of Lattice QCD compu-
tation on GPUs is in the range of 3-4% of the peak performance because of the low reuse of data and the
complexity of the data access pattern that increases conflicting accesses of the GPU memory banks. These
issues may require further investigations for better data alignment.

Reliability of the results obtained by GPUs is a major concern. GPUs historically served graphic appli-
cations that require high performance but also can tolerate some errors at runtime. Certainly, for scientific
computing this unreliability is difficult to rectify at the algorithmic level. Software solution to unreliability
usually results in loss of performance.

Cell vs. GPU performance comparison Among the factors dominating the performance that can be
achieved by any computing node for Lattice QCD are the bandwidths to the memory system, and the pro-
grammability of the computing node. The best bandwidth observed is currently associated with integrating
the memory controller on the die with the microprocessor. The low computation to memory access ratio
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makes the performance heavily reliant on the memory bandwidth, especially for microprocessor cores with
SIMD instruction set. The current bandwidth to memory winner is the Cell BE; that is why it delivers
promising performance numbers.

The GPU performance is bounded by the low ratio of computation to data transfer: a large volume of
communicated data has to pass through the bounded bandwidth between the host memory and the GPU
memory. Another challenge is that the irregular pattern of accessing spinors cannot be handled efficiently
when the job of SIMDization is handed to the compiler. The compute kernel performance for Lattice QCD
usually relies on hand-coded optimizations to achieve the most out of the experimented architecture. Ex-
pressing the problem in a way that allows efficient compiler SIMDization requires more study.

The low efficiency of computation on GPUs makes the Watt/Gflops ratio as high as 28. In the PowerXCell
8i, Lattice QCD requires 3 Watt/Gflops for single precision and about 6 Watt/Gflops for double precision,
assuming none of the SPEs is turned off.

Expected performance evolution and the Lattice QCD problem The performance of a single node
can increase in the future generation architecture because of the chance of having higher integration on a
single chip. For instance, the future generation Cell BE is expected to have more SPEs per Cell chip and
more multiprocessor on the GPUs, and more cores per chip for multi-core systems.

Our study leads us to believe that the efficiency of utilizing the computational resources on any of these
future architectures will continue to be sub-optimal. The Lattice QCD reuse of data is less than average
applications that most manufacturers balance their design for.

Using/designing a computing facility based on commodity computing components can be used with
Lattice QCD given that enough resource management is explicitly allowed. Explicit management can allow
using resources based on the balance needed for Lattice QCD, for instance by switch-off computing resources
not used because of the memory bandwidth bottleneck.

Balancing the resources for a computing node, bandwidth to memory, and communication between nodes,
can be achieved based on resource management rather than special system designs.

Currently, for Lattice QCD, our study shows that we cannot achieve less than 3-6 Watt/Gflops, meaning
multi mega watts for Petaflops capable machine. The needed performance for Lattice QCD requires general
technological improvement in performance and power consumption as well as to facilitate micro-tuning to
increase the efficiency of handling the specifics associated with the Lattice QCD computation.

5 Multi-node Systems

The goal of lattice QCD in the coming years is to compute real QCD i.e. with light quarks possessing the
mass they have in nature. This means typically a pion twice lighter than usual present computations which
implies a length twice larger in physical units. To increase the accuracy of the continuum limit and to allow
calculations with heavy quarks a typical reduction of the lattice spacing by a factor 2 will be welcome. This
leads to a multiplication by 4 of the lengths in lattice units, i.e. a scaling factor of 256. Starting from a
lattice of 322 x 64 we end up with a 1283 x 256. This is of course only a rough estimate. We need to gain
more than two orders of magnitude which amounts indeed to a Petaflops sustained performance. The present
state of the art, on Bluegene/P, with the baseline code studied in this paper, reaches about 2.2 Gflops per
quadri-core node, i.e. 22 Teraflops for ten racks (10000 nodes).

5.1 The Effect of Communication Architecture on Performance

Simulating Lattice QCD with physically meaningful size requires the use of a large number of computing
nodes. For instance simulating a 1283 x 256 lattice requires 8192 nodes each solving a 16% x 16 sublattice.
The communication between the 8192 nodes is of critical importance to the performance, especially when
the computing node performance is improved significantly. Many machines built for Lattice QCD used 3D
torus network for connecting the computing nodes [1,3]. A current project for QCD specialized machine,
QPACE [12], continues adopting this network topology with computing nodes based on the PowerXCell 8i.
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The communication of the Hopping Matrix follows the nearest-neighbors communication pattern. With
the large volume of contiguous data communicated, this communication pattern relies mostly on the link
bandwidth to determine the communication latency. Assuming a simple model for communication latency
given by the equation communicationlatency = setup time + datasize/pandwidth. Then, the communication
latency can be computed easily compared with the computation time. The communication latency depends
on the bandwidth, as a large setup time of 1 us will contribute less than 1% of the communication latency. In
Figure 13, we present the communication as a percentage of the computation time for the Hopping Matrix
routine. We did the computation assuming multiple performance estimates for the computing nodes range
between 1 Gflops to 16 Gflops. For simplicity, we assumed that the computation power will not vary greatly
with the set of sublattice volumes experimented (carrying 8K to 1M spinors). The sustained link bandwidth
is 250MB/s per link, which is about the expected sustained bandwidth from Blue gene/P interconnection
network (at 55% of the peak bandwidth).

We have three sublattice volumes each with two structures. For instance, the sublattice 43 x 128 is of
the same volume as 83 x 8, similarly for sublattices 83 x 128 and 163 x 16, and sublattices 163 x 256 and
323 x 32. The computation to communication ratio is proportional to the volume to surface ratio. The
equal edge sublattices are favored by the bigger computation to communication, but would require a 4D
interconnection network (16 unidirectional links of 250 MB/s sustained). Sublattices with different link size
are what we usually have to embed the four-dimensional lattice into nodes interconnected with 3D topology.

Assuming 3D interconnection network for a sublattice 4% x 128, Figure 13 shows that having a node of 16
Gflops will lead to a communication that is 1.9 times the compute time. Increasing the sublattice volume is
one solution that leads to increase the requirement of the memory substantially as shown earlier in Figure 3.
For instance to decrease the communication to 50% of the compute time, we need to increase the sublattice
to 163 x 256 (requiring to access to 805 MB in one Hopping Matrix call). We practically try to match the
physical memory to the data accessed in a massively parallel machine because having virtual memory much
larger than the physical memory is penalized by the expensive IO access, especially for an application like
QCD that streams the data from the memory most of the time, with little reuse.

Most of the high performance node, like Cell BE and Power6, embed a memory controlled on the chip and
can be connected to a limited physical memory (usually in the range 0.5 to 2 GBytes). The communication can
be cut to half if we adopt 4-dimensional interconnection network, assuming preserving the link bandwidth,
similar to that of the QCDSP [2,13], requiring 16 unidirectional links per computing node.

Percentage of compute time
=
o

80 B 1 Gflops
60 B 2 Gflops
0 O 4 Gflops
20 I I M 8 Gflops
W 16 Gfl
0 _.:‘ ops

Sublattice shape

Fig.13. Communication as a percentage of the compute time for different sublattice shapes and different
computation power of nodes. Sustained link bandwidth is assumed to be 250MB /s per direction.
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6 Conclusion

In this study, we presented the attributes characterizing the main kernel routine for the Lattice QCD com-
putation. We additionally studied optimizations and code transformations needed for Lattice QCD on a
representative set of architectures including general-purpose processors, like Itanium, and the use of com-
modity floating-point accelerators, such as GPUs and the Cell BE.

Most of the optimizations presented in this work target better use of memory bandwidth, friendlier cache
behavior and efficient use of vector instructions, especially on accelerators. The performance ranges varied
widely, but the use of accelerators provided an appealing potential especially with the Cell BE. There is also
a promising potential with GPU accelerators if the above mentioned improvements are introduced. Neither
should one underestimate the potentiality of homogeneous multi-core architectures with more cores and large
caches. The prospects are open and the foreseeable evolution will be very fast.

The computation to memory access ratio for the Lattice QCD computation is lower than what is afforded
by all the studied architectures and this trend is expected to continue in the future. Architectures with explicit
resource management can allow more efficient use of the resources.

We show that the increased performance of computing nodes will increase the need for having higher
performance interconnection network which was traditionally easily achievable for the Lattice QCD computa-
tion, but will be the critical issue in the future. Algorithmic improvements such as domain decomposition [14],
which increase the computation to remote data access ratio, will be welcome.
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