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Abstract. Tiling, a key transformation for optimizing programs, has been widely
studied in the literature. Parameterized tiled code is important for auto-tapig
tems since they often execute a large number of runs with dynamicallylvéde
sizes. In this paper, we present a comparative study of three recmviéyoped
approaches to parametric tiling of imperfectly nested loops.

1 Introduction

The ubiquity of multicore processors has brought paratkehjguting squarely into the
mainstream. Unlike the past, when the development of ghalbgrams was primarily
a task undertaken by a small cadre of expert programmessnivi essential to develop
efficient parallel implementations of a large number of ssdial codes. Current trends
in micro architecture are increasingly towards larger nends processing elements on
a single chip. The difficulty of programming these architiees to effectively tap the po-
tential of multiple on-chip processing units is a significelmallenge. With the increasing
number of cores in multicore processors, the aggregatenidtidbetween memory and
cache is often a critical bottleneck that limits the effeetxploitation of parallelism.

Tiling is a key transformation in optimizing for paralleiisand data locality. Tiling
for locality involves grouping points in an iteration spaon® smaller blocks (tiles) al-
lowing reuse in multiple directions when the block fits in atéa level of the memory
hierarchy (registers, L1, or L2 cache). Tiling for coarseiged parallelism partitions the
iteration space into tiles that may be executed concugremtldifferent processors with
a reduced frequency and volume of inter-processor comratiort a tile is atomically
executed on a processor with communication required orflyréend after execution.
Tiling has received a lot of attention in the compiler comityfil6, 29, 25,5, 34,15, 1,
21], but until recently there was no robust algorithm andvgafe implementation that
had been demonstrated to be effective on a number of benkbnidre first effective
approach for tiling of imperfectly nested loops was devetbjn the Pluto polyhedral
transformation framework [4, 23]. However, Pluto can ongngrate tiled code where
the tile sizes are fixed at compile-time. Since the perfogaanf tiled code can vary
greatly with the choice of tile sizes, it is highly desirabdespecify the tile sizes as run-
time parameters in the code. The generation of tiled codeenile sizes of loops are
runtime parameters is callgdrametric tiling; such an approach would enable empirical
search for tile sizes in auto-tuning systems.



Automatic tuning approaches perform empirical parametarches on the target
platform. For example, ATLAS [33] uses parametrically dilBLAS kernels that are
repeatedly executed on the target architecture for diftepeoblem sizes using an em-
pirical search strategy that varies the tile sizes. Theoperénce results of ATLAS are
comparable to those of vendor-provided BLAS libraries. Big ATLAS system can
only tune BLAS kernels and it was manually engineered by expeith insights into
tiling for optimization of BLAS kernels. There has been muebent interest in develop-
ing generalized tuning systems that can similarly tune aotiinize codes input by users
or library developers [7, 31, 2]. An efficient parametriinig tool is extremely valuable
for generating input tiled codes for such empirical tuniggtems.

In this paper, we present a comparative study of three riyogeneloped approaches
for parametric tiling of affine loop nests:

— PrimeTile: This was the first system to generate parametrically timtedor affine
imperfectly nested loops. As explained in the next sectibunses a level by level
approach to generate tiled code, with a prolog, epilog, afdldiles loop nest
corresponding to each nesting level of the original code djproach was limited
to sequential output tiled code.

— DynTile: This was the first implementation of an approach for parakecution of
parametrically tiled affine code. It utilizes wavefront aldelism in the tiled iteration
space corresponding to the convex hull of all the statementaihs of the input
untiled code. Wavefront parallelism in the tiled iteratpace is exploited through
use of an inspector/executor approach. A statically geeéraspector code scans
the tiles and places them in bins corresponding to the éiffievavefronts. Dynamic
scheduling of the tiles is then performed in order of incirgsvavefronts.

— PTile: This was the first approach to compile-time generation dedor wavefront-
parallel tiled execution. Instead of the dynamic runtimarsdng and binning of tiles
as done by the DynTile approaches, transformed code forfremteparallel tiled
execution is automatically generated.

The rest of the paper is organized as follows. Section 2 ptess overview of the
three approaches that are compared. Experimental resuisnomber of benchmarks
are presented in Section 3. Related work is discussed ito8&ektWe conclude the paper
with a discussion in Section 5.

2 Parametric Tiling

In this section, we provide a brief overview of the three agghes to parametric tiling
that we experimentally evaluate in this paper.

2.1 PrimeTile

We provide a short overview of PrimeTile by discussing thprapch to generation of
parametric full tiles in the context of perfectly nesteddeoDetails on how imperfectly
nested loops are handled may be found in [12].

Consider the 2D perfectly nested loop shown in Figure 1(he perfect loop nest
contains an inner loopwhose bounds are arbitrary functions of the outer loop ttia
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Fig. 1. Parametric tiling of a perfectly nested loop in PrimeTile



i. Consider a non-rectangular iteration space shown in Eifj(&), corresponding to the
perfect loop nest in this example. Since ldojg outermost, strip mining or tiling this
loop is straightforward (i.e., to partition the lodp iteration space into smaller blocks
whose size is determined by the tile size param@&)eiFigure 1(e) shows the partition-
ing of the iteration space along dimensioifrigure 1(b) shows the corresponding code
structure, with a first segment covering as many “full” tijisegments alonigas possible
(dependent on the parametric tile sige The outer loop in the tiled code is the inter-tile
loop that enumerates all tile origins. Following the fulétsegment is an epilog section
that covers the remainder of iterations (to be executededitiThe loop enumerates
the points within the last incomplete group of outer loopat®ns that did not fit in a
completei-tile of sizeT;.

For each tiling segment alorigfull tiles along j are identified. For ease of expla-
nation, we show a simple “explicit scanning” approach toifigcthe start and end of
full tiles, but as discussed in [12], the actual impleméatatdentifies tile boundaries
directly from affine loop bounds by evaluating the bound fiores at corner points of
the outer tile extents. The approach is also applicablernergéloops with arbitrary non-
affine and non-convex bounds, by using explicit scanning 8$sential idea is that the
largest value for theg-lower bound Kbv) is determined over the entire range ofiaile
and it represents the earliest possiblealue for the start of a fulij-tile. In a similar
fashion, by evaluating the upper-bound expressions of thep, the highest possible
value (ibv) for the end of a fullij-tile is found. Iflbv is greater thambv, no full tiles
exist over thig-tile range. In Figure 1(f), this is the case for the last fitile segment.
For the firsti-tile segment in the iteration space (the second verticadl i the figure,
the first band being outside the polyhedral iteration spdbe)is equal toubv. For the
next twoi-tile segments, we have some full tiles, while the followirtje segment has
ubv greater thambv but by a lesser amount than the tile size algng

The structure of the tiled code is shown in abstracted pseode in Figure 1(c), and
with explicit detail in Figure 1(d). At each level of nestinfgr a tile range determined
by the outer tiling loops, thébv andubv values are computed. v is less thar by,
an untiled version of the code is usedlli is less than or equal tabv, the executed
code has three parts: a prolog fpwalues up tdbv — & (wheres; is the loop stride
in the j dimension), an epilog fof values greater than or equal to(where j; is the
inter-tile loop iterator in thg dimension), and a full-tile segment in between the prolog
and epilog, to covef values between the bounds. The code for the full-tile segjisen
generated using a recursive procedure that traversesvitle t& nesting.

2.2 DynTile

When the tile sizes are parametric, it is problematic to gategparallel code using the
polyhedral framework since nonlinear expressions ariieaispecification of constraints
and objective functions. Hence for an arbitrary parameied code, it is non-trivial to
extract parallelism. In [13], we developed an approachdlatimvents the problems by
employing a dynamic scheduling approach to schedule tiepdrallel execution.

In the case of a program with single statement, the loop tstreiégs a perfect loop
nest. Generating aligned tiled code involves syntacticgssing of the loop bounds in
addition to generating the tile loops. The tile loops aresgated as perfectly nested loops



that enumerate the tiles as tile numbers in the tile spage 2Rilustrates an example for
generating aligned tiled code for a single statement progra

for (i=M;i <=N;i++)
for (j=bl+als;j <=min(b2—a2«i,b3+a3ki);j++)
S(I vj )x j=a3*i+b3

(a) Original loop structure
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Fig. 2. Parametric tiling of a single statement domain in DynTile

In the case of a program with multiple statements, the loaegire is an imperfectly
nested loop. Generating aligned tiled code in this casdvesadditional processing to
generate perfectly nested tile loops. The convex hull ofuthien of the domains of all
statements is found and used to generate the loop strudtire tile loops.

With DynTile, a runtime scheduling approach is used to satestiles in a wavefront
for parallel execution. The approach involves generatimgngpector code at compile-
time that at runtime creatdsns of tiles where each bin represents a wavefront. The tiles
in a bin, henceforth, are scheduled for parallel execution.

2.3 PTile

In contrast to the DynTile approach described previoukl/RTile approach uses a fully
polyhedral technigue for compile-time generation of datglarametric tiled code.

Letvy,vo,...,V, represent the loop variables a loop nest of depfin representing
the outermost loop ang, representing the innermost loop). L@t, py, .. ., px represent
symbolic parameters (such as problem sizes). The syStefminequalities) represent-
ing the domain of the program is given by

n k
SZZBij.VjJrZP.j.pj+Ci20, ie[l.m
= =



where eaclB;j andP; represent the coefficients of the corresponding loop viriaid
parameter, respectively, andrepresents a constant in an inequality.
Theminequalities represent the lower and upper bounds of gll \@siables. Hence
the systen8is in arow echelon form where the inequalities expressing the loop bounds
of a variablev; have coefficient O for all variableg : i < j < n. In other words, the
bounds of a loop variablg are expressed as a function of its outer loop variables (
1 < j <), parameters and constants. The loop bounds would look like
max( fll(pvc)’ [ERE} flk(pvc)) <vi1 <
min(gll(p7 C)7 - Ou (p7 C))
max( f21(va, p,C), ..., fag(v1, p,C)) < V2
< min(gz1(v1, p,C), - - - Gar (v1, P, C))

max( fnl(Vl, ..yVn—1, P, C), ey fny(Vl7 ..yVn—1, P, C)) <

Vo <min(gn(Va,-.-,Vn—1,P,C), ... Onz(V1,...,Vn—1, P,C))
Conversely, given a system of inequalities in row echelamfdoops generated with
bounds for each loop variable derived directly from the exys{in row echelon form)
scan all valid integer points represented by the systenai{dehay be found in [3]).

The PTile approach to parameterized tiling relies on thevalpooperty for generat-
ing code from a system of inequalities in row echelon form drelfact that a system
with tiling transformation (equivalent to the original $gm) can be derived. Each vari-
ablev; in the domain (which in turn represents each dimension irddreain) can be
expressed in terms of tile coordinatgstile sizess;, and intra-tile coordinates; as:
vj =sj.tj+Uj A0 < uj < sj— 1. The systenscan now be (equivalently) represented as:

n n k
Sy Biysptj+ Y Bijuj+ Y Ry.pj+6 >0,
j=1 =1 =1

ie[l.m A O0<uj<sj—1, je[l.n

A new systenty is derived fromS such that the solutions 18 satisfySr. In the new
systemSr, the intra-tile coordinates are eliminated through a mdgarojectionSry is as
follows:

n n k
Sr: Z Bij.sj.tj + z Bﬁ.(Sj -1+ Z Rj.pj+c >0, ie [1..m]
=1 j=1 =1

Two important properties dbr (details may be found in [3]) are: (1) the solutions3o
also satisfySr and (2)Sr is in row echelon form. Hence scannifsg will generate the
tile loops (loops with tile coordinates).

The constraints expressed By together with that expressed I8/ represent the
complete set of inequalities characterizing the loop $tmecof sequential tiled code.
ScannindSr generates the tile loops as discussed above. Sca8njgmerates the intra-
tile loops in terms of tile coordinates, tile sizes, andartite coordinates.

Fig. 3(a) shows an example of a nested loop, whose staternamid can be ex-
pressed as a set of inequalities shown in Fig. 3(b). Aftemtiginal loop iterators are



sit1+up >0
St —wm+T—-1>0
25141 —2u1+Stro+up—2>0

for (v1=0; vi<=T—1;v1++) 25111+ 20— Sty g LN_1> 0

for (v2=2xv1+2;v2<=2xv1+N—1;v2++)

for (v3=max(2v1+2,v2-N+4); -2t —2u1 + 33+ U3 —2> 0
v3<=min(2«v1+N—1,v2+N—-4);v3++) 251.t1+2u; — gtz —uz3+N—-1>0
S1(v1,v2,v3); —Sptr—Up+Satz+U3+N—4>0
(a) Loop nest Syt —s3t3—uz3+N—-4>0
(c) Inequalities for tiling iterators

vi >0

—Vv1+T-1>0
. siti+s-1>0

—2V1+Vv—2>0

—s.1+T-1>0

251+ +5-1-2>0
251t — St +25—-2+N-1>0
251+ S3t3+53-1-2>0
251t —3t3+259—2+N-1>0
—Str+s3t3+s3—1+N—-4>0
(b) Inequalities for statement domain Sbh—St3+—1+N-4>0

2vi—v+N-1>0
—2v1+v3—2>0
2vy—vz3+N-1>0
—Vo+Vv3+N—-4>0
Vo—V3+N—-4>0

(d) Row-echelon tiling iterators

for (t1= [%ﬂktl <= L%J;tl*"")
for (t2 — [W—I’tz <= I—WJJ2++)
_ 2+S#t1 —S3+3 Sprtp—S53—N+571.
for (ts —max([22ty-50t8 [ot-n-Nisy),
ts <=ni n(LZ*SCI_*I1+2*Sl+N—3J’ LSQ*I2+SQ+N—5J);IS++)

. LS 3
(e) Parametrically tiled loop nest

Fig. 3. lllustration of sequential parametric tiling in PTile

rewritten in terms of tiling loops and intra-tile loops, tegstem of inequalities can be
rewritten as shown in Fig. 3(c). The intra-tile variableghe system can be eliminated
by using upper/lower bounds to generate inequalities ®titl iterators in row-echelon
form, as shown in Fig. 3(d). The parametrically tiled codshiewn in Fig. 3(e)

After tiling as described above, if any of the tiling loopsgarallel (i.e. has no
loop carried dependences), coarse-grained parallel ékedution is directly possible.
However, even if none of the tiling loops is parallel, waeefr parallelism is always
feasible among the tiles. But instead of viewing wavefrpatallel tile execution as
involving a unimodular transformation from omedimensional space (nesting order
t1,t2,...,t, of sequential tiled execution) to anothedimensional space (nesting order



w,tg,to, ..., th_1), it is viewed in terms of a sparset 1 dimensional space with nesting
orderw,ty,to, ..., tn. While this might seem very wasteful, by optimizing the séagn
of this higher dimensional space, parameterized pari#tel ¢xecution is achieved with
negligible overhead of scanning empty tiles. The primaigbfem of generating loop
bounds for the outermost loop via Symbolic Fourier Motzkin elimination is elimi-
nated by generating the lowest and highest numbered wansfiothe untiled form of
the loops (which can be generated as a parametric exprasdioa problem parameters
by use of an integer linear programming solver such as PIRPPand then generating
bounds for the lowest and highest numbered tiled wavefroop.I No explicit “skew-
ing” of the tile space is done; the ty, .. ., t, loops are executed in original lexicographic
order but constrained to include only those tiles that digtielong in the current tile
wavefrontw. Then+ 1 dimensional loop nestts,ty, ..., t, is optimized by addition of
constraints derived from the wavefront inequalities.

Starting with the systenSr that would generate the tile loops for sequential tiled
execution, the equality = ZT:]_tj is added, representing the relation between the tile
loop variables and the wavefront number. This equality ioiuced using the two in-
equalities:

=}

n
w—$t>0 and *W‘FZtJ‘ZO.
=1 =1

These new inequalities are combined with the existing inbtiess representing the loop
bounds for sequential tiled execution through a symboliarieo Motzkin procedure.
The main challenge is that with symbolic parameters, aeteaims may have ambiguous
sign. If such ambiguity occurs in the symbolic FM procesglaxation of the inequality

is performed to generate a weaker inequality, i.e., oneishgilaranteed to be true for
any values that satisfy the original inequality. The reteais performed in a manner
that removes any critical ambiguity in the sign of variabdefficients in the inequality.
The approach is illustrated using an example below.

Consider the syster; for generating sequential tile loops (as discussed eprlier
and the wavefront inequalities representing= X"_,t;. The RSFME procedure starts
by combining the lower bound inequalities fgffrom S with the wavefront inequal-
ity w— Z?;::Il_'tj —t, > 0 and upper bound inequalities ffrom Sy with the wavefront
inequality —w + Z’j‘;ltj +t, > 0, to eliminatet, and hence derive new lower and upper
bound inequalities fot,_1. However while combining the bounds, there is a possibility
that we might need to add symbolic coefficients of two termih wpposite signs and
the resulting sign may be indeterminate at compile-timethdg point, we replace the
tile loop variables with their parametric bounded valuéli;“(or t]max) and use relaxed
bound inequalities. At any levé&lof the RSFME procedure, we combine new wavefront
inequalities added at levklwith the existing lower bound and upper bound inequalities
at levelk to eliminate the tile loop variable at levkland derive new lower and upper
bound inequalities for levéd — 1.

3 Qualitative Analysis of Parametric Tiling

We now present a comparative evaluation of the three parantiéihg techniques dis-
cussed: PrimeTile, DynTile and PTile. Our objective is taaswge the impact on perfor-



| [Lower-bound constraint [Upper-bound constraint

Outermost
wavefront
loop: (1a): wmin< w (1b): w < wmax
Loopit: |(2a): (1-Ti+1)/Ti< it (2b): it < N/Ti
Loopjt: |(3a): (I-Tj+L)/Tj< jt (3b): jt < (N-it.Ti)/Tj
Loop kt:  |(4a): (it.Ti-Tk+1)/Tk < kt (4b): kt< N/Tk
Wavefront
constraintg(5a): w-it-jt < kt (5b): kt < w-it-jt
Eliminate
variable kt|(6a): Combine (5a) and (4b) (6b): Combine (5b) and (4a)
to derive | w-it-jt < N/Tk (t.Ti-Tk+1)/Tk < w-it-jt
new w-it-N/Tk < jt jt < w-it-it. Ti/Tk+1-1/Tk
wavefront | (W.Tk-it. TK-N)/Tk < jt jt < (W.TK-it. Tk-it. Ti+Tk-1)/Tk
constraints
for loop jt:
Eliminate
variable jt |(7a): Combine (6a) and (3b) (7b): Combine (6b) and (3a)
to derive | w-it-N/Tk < N/Tj-it.Ti/Tj 2/Tj-1 < w-it-it. Ti/Tk+1-1/Tk
new W-N/Tj-N/TK < it-it. Ti/Tj it+it. TITk < w+2-2/Tj-1/Tk
' . L (WTTK2+2.Tj.TKR-Tj. Tk-2.Tk?)

wavefront |(ambiguous sign encountered) it < TiT) TR T1TRD)
constraintg— (i) Relaxation to obtain a new
for loop it: |lower-bound constraint:

W-N/Tj-N/Tk+itmin. Ti/Tj < it

(W.Tj. TK-N.Tk-N.Tj+itmin.Ti.TK) <it
(T).TK) =
— (ii) Relaxation to obtain a new
upper-bound constraint:
it. Ti/Tj < itmax-w+N/Tj+N/Tk
it < (tmax.Tj.Tk-w.Tj. Tk+N.Tj+N.Tk)
= (Ti.TK)

Fig. 4. Example of application of Relaxed Symbolic Fourier Motzkin Elimination (R&}Mn a
non-rectangular tiled loop nest

mance of the different alternatives to generate tiled c@defirst study the impact of the
relaxation step in the RSFME algorithm, then measure the éomtrol overhead for the
three techniques, and finally compare the performance gban@metrically tiled code
when run sequentially and run using coarse-grain parstheli

3.1 Experimental Setup

Target machine The experiments were run on a dual-socket quad-Core AMD ropte
Shangai 8218 processors running at 2.5GHz, with 64+64kBdche/core, 512kB L2
cache/core and 6MB L3 cache. This processor is a node of the ®tpercomputer
Center clusters. We used two vendor compilers: GNU GCC 4ddIntel ICC 11.0.

For each we experimented with and without vectorizatiorpsuipgcc-novec uses op-

tion- 3 -fno-tree-vectorize,gcc-vec uses option B3, icc-novec uses option f ast



-no-vec andicc-vec uses option f ast . Finally, for parallel execution experiments,
we marked the outer-most parallel loop with an OpenMP pragndhturned on the
- f opennp flag for GCC, and opennp flag for ICC.

Benchmarks We focus our study on four numerical kernels. They are ligtethble 1.
All these benchmarks use double-precision floating poittiraetic. Note that although
we do use a specific problem size for the experiments, themgriz tiling software
is presented with an arbitrarily-nested input code withapsgtric loop bounds, which
forms the most general setting of affine-control programende the code does not need
to be generated again for a different problem size.

Table 1.Benchmarks used in the experiments

| Name | Description [Max loop depth Problem size |

2d-fdtd |2D Finite Difference Time Domain methpd 3 T=1500, N=1500
cholesky Cholesky factorization 3 N=2500
dtrmm Triangular matrix multiplication 3 N=2000
lu LU factorization 3 N=2000

For each benchmark, a sequence of affine loop transfornsatias applied to make
the loop nest(s) fully permutable, and hence tilable [4, RRjte that for stencils, such
as2d-fdtd for instance, it is necessary to skew the original iteradomains to enable
tiling for all loops; this skewed and tiled version is gertetaseamlessly using the affine
framework. For all experiments, the tile size was set to X&lfidiled dimensions.

We experimented with three approaches to parametric tilinig generation, namely
PrimeTile[12,24],Dyntil e [13], andPTil e [3].

3.2 Tightness of Relaxed Symboliv Fourier-Motzkin Eliminaton

The extension of the Fourier-Motzkin elimination algonitito symbolic affine con-
straints raises the problem of possibly combining two irsditjes containing parametric
constants of opposite signs. For instance, one may needmbine the following in-

equalities

T/Tj*it—jt >0
—Tixit+ Tx jt >0

in order to eliminate thet variable. As there is no assumption made at compile-time on
the actual value of the parametd;sT; and Ty, combining the above constraints results
in:

(Ti/Tj —Ti/Tk)*it >0

where the sign ofT; /T; — Ti /Tk) could be positive or negative, and thus represent either a
lower bound or an upper bound fior Because the input code has affine bounds, the only



source of such ambiguity cases comes from the relative salfidile size parameters
[3]. The tile iterators (e.g.it, jt) are bounded by parametric constants since we are
tiling a bounded iteration domain, so that we haw®" < it < it™" and jt™" < jt <
jt™n. Therefore, a sufficient approximation for correctnes®igetax the constraint by
substitutingjt with jt™" and jt™X, thus leading to the constraints:

T/Tj*it — jt™" >0
—Tj ®it + T x jt™* > 0,

which define a bounding box around thevariable. The drawback is the scanning of
empty points, as the relaxation introduces over-approttamaf the bounds foit. This
may lead to control overhead and in the worst case to scaengy tiles.

To determine the potential penalty introduced by such xatiien, we analyzed the
execution of the RSFME algorithm on our benchmark suiterbsgtingly, in our experi-
ments we found that the relaxation step of RSFME was nevetateby the algorithm:
no parametric expressions of opposite signs were combingdgdthe resolution. We
extended this analysis to five additional benchmazlgacobi, adi, gemver, trisolve and
3d-stencil, and also observed thtte relaxation step was never required to successfully
compute the tile loop bounds. Hence, it is expected that for most cases the bounds for
the tile loops as generated by PTile will match the convekdfithe iteration domain to
be tiled.

3.3 Control Overhead Comparison

There is a trade-off between the code size and the controplexity between the code
generated by the three considered techniques for parantiétry. PrimeTile generates
simple loop bounds at the expense of increasing the coddogizeplicitly expanding
the various possible cases of tiles into distinct code Ho€k the other hand, DynTile
and PTile produce significantly smaller sized codes, bexausingle loop nest has its
bounds parameterized to deal with all tile cases. The drelkvisamuch more complex
loop bounds for DynTile and PTile (presence of multiplioas, divisions, min and max
expressions) that may be detrimental to performance.

The purpose of this experiment is to measure the controheaet for the three tech-
niques. For this experiment, we substituted all statemaritee program with a dummy
scalar increment (which is executed about 30° times for all benchmarks). So any
effect from the floating point operations or memory accessesemoved and the only
remaining timed operations are either control-relatedherdummy scalar increment.
We report in Table 2 the execution time, in seconds, for eactthmark using dummy
statements. For all experiments, the tiled code implenssytaration of partial and full
tiles.

We observe that focholesky, dirmm andlu benchmarks, the execution time differ-
ence between the three techniques is small enough to bleugdfle to experimental
noise. For these benchmarks, there is no penalty in using camplex controls such
as in PTile or DynTile to generate the loop bounds. Fifdtd, we observe a control
overhead difference of 20-40% between the three technidudts manual inspection
of the generated codes, we have been unable to identify asibeace for the perfor-



Table 2. Control Overhead Comparison for PrimeTile, DynTile andl®Ti

[Benchmark Compiler | PrimeTile [ DynTile | PTile |

2d-fdtd gcc-novec 4.16s 4.23s 5.91s
2d-fdtd gce-vec 4.15s 4.23s 5.89s
2d-fdtd icc-novec 4.04s 4.12s 4.63s
2d-fdtd icc-vec 2.97s 3.25s 3.72s
cholesky | gcc-novec 3.11s 3.05s 3.24s
cholesky gce-vec 3.19s 3.05s 5.07s
cholesky | icc-novec 4.06s 3.04s 3.23s
cholesky icc-vec 2.26s 2.30s 2.46s
dtrmm gcc-novec 4.97s 4.96s 5.07s
dtrmm gcec-vec 4.97s 4.96s 6.51s
dtrmm icc-novec 6.44s 6.44s 4.94s
dtrmm icc-vec 3.50s 3.75s 3.64s
lu gcc-novec 3.30s 3.23s 3.38s

lu gce-vec 4.20s 3.23s 4.35s

lu icc-novec 3.20s 3.23s 4.32s

lu icc-vec 2.28s 2.43s 2.60s

mance drop, and one can only suspect that the control steusticame too complex for
the compiler to efficiently optimize.

3.4 Performance of Tiled Code

Next, we present the actual execution times of the progranergéed with the three
techniques. For a fair comparison, all versions implenteaparation of full tiles from
partial tiles, but no register tiling was done. The exeautimes are shown in Table 3.

We observe that for sequential execution, PrimeTile perfobest in our experi-
ments, with a performance often comparable with DynTilgarticular when consider-
ing ICC. We also observe that GCC has more trouble in optirgithe code generated
by DynTile than the one generated by PrimeTile. The slowdofariTile is explained by
the order in which tiles are executed: PTile generates afnaveouter-most tile loop,
that is needed to ensure correctness of parallel tile eixecutiowever, for sequential
execution, this wavefront order is detrimental to localkityd thus to performance.

We also report the execution time of the programs generaitbddynTile and PTile
for parallel tiled execution. PrimeTile is not used for thismparison as it cannot na-
tively generate parallel parametric tiled code. For theegixpents shown in Table 3, tiles
were executed in pipeline-parallel fashion using a sedgiemiter-loop to capture wave-
fronts. The next outer-most loop was marked with agna onp f or and the program
run using 8 H/W threads, from within a single OSC cluster nétle observe that Dyn-
Tile slightly outperforms PTile for parallel execution. & bxplanation lies in the amount
of parallelism that is exploited by the two approaches. FenDie, all tiles that can be
executed in parallel for a given wavefront are indeed madseparallel, with dpr agma



Table 3. Execution Time with PrimeTile, DynTile and PTile Generaable

Sequential Parallel
[Benchmark Compiler | PrimeTile [ DynTile | PTile [ DynTile | PTile

2d-fdtd gcc-novec 43.84s 49.19s | 56.78s 9.32s 10.98s
2d-fdtd gcc-vec 43.82s 49.22s | 56.85s | 9.37s 10.98s
2d-fdtd icc-novec 40.27s 48.12s | 54.29s | 13.30s | 12.96s
2d-fdtd icc-vec 40.52s 49.61s | 54.63s | 13.03s | 13.18s
cholesky | gcc-novec 6.13s 10.50s | 13.43s 1.91s 2.81s
cholesky gce-vec 6.08s 10.46s | 13.45s 1.89s 2.82s
cholesky | icc-novec 5.63s 5.86s 8.19s 1.21s 2.40s
cholesky icc-vec 5.36s 5.74s 8.22s 1.27s 2.61s
dtrmm gce-novec 9.29s 14.34s | 18.99s | 2.55s 4.50s
dtrmm gcce-vec 9.25s 14.57s | 18.99s 2.54s 3.69s
dtrmm icc-novec 9.84s 9.19s 13.27s 2.17s 3.22s
dtrmm icc-vec 9.91s 9.12s 13.44s 2.33s 3.27s
lu gce-novec 8.30s 9.15s 10.98s | 2.56s 2.94s

lu gcec-vec 8.29s 9.15s 10.98s 2.98s 2.43s

lu icc-novec 6.30s 5.63s 7.49s 6.18s 1.60s

lu icc-vec 6.36s 5.58s 6.52s 6.36s 1.62s

onp for around the loop which iterates over all tiles belonging ®wavefront. How-
ever, for PTile, only the next outer-most loop is marked aslpa, the outer-most loop
being the wavefront loop. So even though the remainingdibps$ are also parallel, this
parallelism is not exploited. It is expected that coalegdime parallel tile loops into a
single loop would improve load balancing, and exploit adl #vailable parallelism. For
lu with ICC, we remark that the execution time is excessivelyhhior DynTile. Al-
though there is no clear explanation after scrutiny of theegated code, we suspect that
effective ICC optimization is somehow being inhibited bistlpecific input code.

We also observed that for all considered benchmarks, mei@@ nor GCC was
able to vectorize loops in the computational kernel. Fortneases, the compiler was
unable to analyze the loops because of complex control®raadtess patterns. The
increased complexity of controls generated by polyhedashmetric tiling challenges
the compiler’s loop analyzer, and it has been shown thatufoh sases it is beneficial to
expose and explicitly mark vectorizable loops from withie polyhedral transformation
framework [4].

4 Related Work

Much work exists in the area of tiling (with fixed tile sizeS)pmrfectly nested loops for
both the sequential and parallel case [16, 9, 28, 29, 25,85327]. Goumas et al. [11]
presented a code generation technique for fixed-size phtiilhg of perfectly nested
loops.



Parameterized sequential tiling has received much attenticently. Renganarayana
et al. [26, 32] developed an effective code generation tecienfor parameterized tiling
of perfectly nested loops , based on enumerating tile aigsing a method called the
“outset method.” Later Kim et al. [20, 14] extended the ajppioto multi-level parame-
terized tiling of perfectly nested loops. Both these systgenerate sequential tile code.
Kim and Rajopadhye [19] recently developed a non-polyheajpproach to sequential
parametric tiling of loop nests. Jimenez et al. developelrigues for register tiling of
non-rectangular iteration spaces [17] and also a code ggmertechnique for parame-
terized multi-level tiling of perfectly nested loops [18].

A script-based compositional transformation frameworkib@en developed by Chen
et al. [8]; their framework can be used for fixed-size tilifgraperfectly nested loops.
Specialized frameworks [6, 30, 35] have been developedxed{size tiling of particu-
lar classes of imperfectly nested loops. Parallel tilingeferal imperfectly nested loops
was developed by Bondhugula et al. [4] in the Pluto [23] systeut tile sizes are re-
stricted to be compile-time constants.

5 Conclusion

Tiling is a key loop transformation for coarse-grained paliaation as well as data lo-
cality optimization. Parametrically tiled code with syntibdile size variables is of great
interest since it enables empirical tuning and optimizata different target platforms.
In this paper, a comparative experimental assessment wismed on three recently
developed parametric tiling approaches.
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