
Parametric Tiling of Affine Loop Nests

Sanket Tavarageri,1 Albert Hartono,1,2 Muthu Baskaran,1,2 Louis-Nöel Pouchet,1

J. Ramanujam3 and P. Sadayappan1

1 The Ohio State University
2 Reservoir Labs, Inc. (work done while at The Ohio State University)

3 Louisiana State University

Abstract. Tiling, a key transformation for optimizing programs, has been widely
studied in the literature. Parameterized tiled code is important for auto-tuningsys-
tems since they often execute a large number of runs with dynamically varied tile
sizes. In this paper, we present a comparative study of three recentlydeveloped
approaches to parametric tiling of imperfectly nested loops.

1 Introduction

The ubiquity of multicore processors has brought parallel computing squarely into the
mainstream. Unlike the past, when the development of parallel programs was primarily
a task undertaken by a small cadre of expert programmers, it is now essential to develop
efficient parallel implementations of a large number of sequential codes. Current trends
in micro architecture are increasingly towards larger number of processing elements on
a single chip. The difficulty of programming these architectures to effectively tap the po-
tential of multiple on-chip processing units is a significant challenge. With the increasing
number of cores in multicore processors, the aggregate bandwidth between memory and
cache is often a critical bottleneck that limits the effective exploitation of parallelism.

Tiling is a key transformation in optimizing for parallelism and data locality. Tiling
for locality involves grouping points in an iteration spaceinto smaller blocks (tiles) al-
lowing reuse in multiple directions when the block fits in a faster level of the memory
hierarchy (registers, L1, or L2 cache). Tiling for coarse-grained parallelism partitions the
iteration space into tiles that may be executed concurrently on different processors with
a reduced frequency and volume of inter-processor communication: a tile is atomically
executed on a processor with communication required only before and after execution.
Tiling has received a lot of attention in the compiler community [16, 29, 25, 5, 34, 15, 1,
21], but until recently there was no robust algorithm and software implementation that
had been demonstrated to be effective on a number of benchmarks. The first effective
approach for tiling of imperfectly nested loops was developed in the Pluto polyhedral
transformation framework [4, 23]. However, Pluto can only generate tiled code where
the tile sizes are fixed at compile-time. Since the performance of tiled code can vary
greatly with the choice of tile sizes, it is highly desirableto specify the tile sizes as run-
time parameters in the code. The generation of tiled code where tile sizes of loops are
runtime parameters is calledparametric tiling; such an approach would enable empirical
search for tile sizes in auto-tuning systems.

Automatic tuning approaches perform empirical parameter searches on the target
platform. For example, ATLAS [33] uses parametrically tiled BLAS kernels that are
repeatedly executed on the target architecture for different problem sizes using an em-
pirical search strategy that varies the tile sizes. The performance results of ATLAS are
comparable to those of vendor-provided BLAS libraries. Butthe ATLAS system can
only tune BLAS kernels and it was manually engineered by experts with insights into
tiling for optimization of BLAS kernels. There has been muchrecent interest in develop-
ing generalized tuning systems that can similarly tune and optimize codes input by users
or library developers [7, 31, 2]. An efficient parametric tiling tool is extremely valuable
for generating input tiled codes for such empirical tuning systems.

In this paper, we present a comparative study of three recently developed approaches
for parametric tiling of affine loop nests:

– PrimeTile: This was the first system to generate parametrically tiled code for affine
imperfectly nested loops. As explained in the next section,it uses a level by level
approach to generate tiled code, with a prolog, epilog, and afull-tiles loop nest
corresponding to each nesting level of the original code. The approach was limited
to sequential output tiled code.

– DynTile: This was the first implementation of an approach for parallel execution of
parametrically tiled affine code. It utilizes wavefront parallelism in the tiled iteration
space corresponding to the convex hull of all the statement domains of the input
untiled code. Wavefront parallelism in the tiled iterationspace is exploited through
use of an inspector/executor approach. A statically generated inspector code scans
the tiles and places them in bins corresponding to the different wavefronts. Dynamic
scheduling of the tiles is then performed in order of increasing wavefronts.

– PTile: This was the first approach to compile-time generation of code for wavefront-
parallel tiled execution. Instead of the dynamic runtime scanning and binning of tiles
as done by the DynTile approaches, transformed code for wavefront parallel tiled
execution is automatically generated.

The rest of the paper is organized as follows. Section 2 presents an overview of the
three approaches that are compared. Experimental results on a number of benchmarks
are presented in Section 3. Related work is discussed in Section 4. We conclude the paper
with a discussion in Section 5.

2 Parametric Tiling

In this section, we provide a brief overview of the three approaches to parametric tiling
that we experimentally evaluate in this paper.

2.1 PrimeTile

We provide a short overview of PrimeTile by discussing the approach to generation of
parametric full tiles in the context of perfectly nested loops. Details on how imperfectly
nested loops are handled may be found in [12].

Consider the 2D perfectly nested loop shown in Figure 1(a). The perfect loop nest
contains an inner loopj whose bounds are arbitrary functions of the outer loop variable

for (i=lbi ; i <=ubi;i+=sti)
for (j=lbj (i); j <=ubj(i); j+=stj)

S(i , j);

(a) Original perfect loop nest

/∗ full tiles i ∗/
for (it =lbi ; it <=ubi−(Ti−sti);it+=Ti) {

/∗ code tiled along dimensions i and j ∗/
// ... omitted ...

}
/∗ epilog i ∗/
for (i= it ; i <=ubi;i+=sti)

for (j=lbj (i); j <=ubj(i); j+=stj)
S(i , j);

(b) After tiling loop i

for it {
[compute lbv,ubv]
if (lbv<=ubv){

[prolog j]
[full tiles j]
[epilog j]

} else
[untiled j]

}
[epilog i]

(c) After tiling loopsi and j

/∗ full tiles i ∗/
for (it =lbi ; it <=ubi−(Ti−sti);it+=Ti) {

/∗ compute lbv ,ubv ∗/
lbv=MIN INT; ubv=MAX INT;
for (i= it ; i <=it+(Ti−sti); i+=sti) {
lbv=max(lbv, lbj (i)); ubv=min(ubv,ubj(i));
}
if (lbv<=ubv){

/∗ prolog j ∗/
for (i= it ; i <=it+(Ti−sti); i+=sti)

for (j=lbj (i); j <=lbv−stj;j+=stj)
S(i , j);

/∗ full tiles j ∗/
for (jt =lbv; jt <=ubv−(Tj−stj);jt+=Tj)

for (i= it ; i <=it+(Ti−sti); i+=sti)
for (j= jt ; j <=jt+(Tj−stj); j+=stj)

S(i , j);
/∗ epilog j ∗/
for (i= it ; i <=it+(Ti−sti); i+=sti)

for (j= jt ; j <=ubj(i); j+=stj)
S(i , j);

} else
/∗ untiled j ∗/
for (i= it ; i <=it+(Ti−sti); i+=sti)

for (j=lbj (i); j <=ubj(i); j+=stj)
S(i , j);

}
/∗ epilog i ∗/
for (i= it ; i <=ubi;i+=sti)

for (j=lbj (i); j <=ubj(i); j+=stj)
S(i , j);

(d) Detailed parametric tiled code

j

Iteration space

i
Ti

(e) Iteration space (tiled along dimensioni)

j

Full tiles

Epilog

Prolog
Tj

Prolog

i
Ti

(f) Iteration space (tiled along dimensionsi
and j)

Fig. 1.Parametric tiling of a perfectly nested loop in PrimeTile

i. Consider a non-rectangular iteration space shown in Figure 1(e), corresponding to the
perfect loop nest in this example. Since loopi is outermost, strip mining or tiling this
loop is straightforward (i.e., to partition the loopi’s iteration space into smaller blocks
whose size is determined by the tile size parameterTi). Figure 1(e) shows the partition-
ing of the iteration space along dimensioni. Figure 1(b) shows the corresponding code
structure, with a first segment covering as many “full” tiling segments alongi as possible
(dependent on the parametric tile sizeTi). The outer loop in the tiled code is the inter-tile
loop that enumerates all tile origins. Following the full-tile segment is an epilog section
that covers the remainder of iterations (to be executed untiled). The loop enumerates
the points within the last incomplete group of outer loop iterations that did not fit in a
completei-tile of sizeTi.

For each tiling segment alongi, full tiles along j are identified. For ease of expla-
nation, we show a simple “explicit scanning” approach to finding the start and end of
full tiles, but as discussed in [12], the actual implementation identifies tile boundaries
directly from affine loop bounds by evaluating the bound functions at corner points of
the outer tile extents. The approach is also applicable to general loops with arbitrary non-
affine and non-convex bounds, by using explicit scanning. The essential idea is that the
largest value for thej-lower bound (lbv) is determined over the entire range of ani-tile
and it represents the earliest possiblej value for the start of a fulli j-tile. In a similar
fashion, by evaluating the upper-bound expressions of thej loop, the highest possiblej
value (ubv) for the end of a fulli j-tile is found. If lbv is greater thanubv, no full tiles
exist over thisi-tile range. In Figure 1(f), this is the case for the last fulli-tile segment.
For the firsti-tile segment in the iteration space (the second vertical band in the figure,
the first band being outside the polyhedral iteration space), lbv is equal toubv. For the
next twoi-tile segments, we have some full tiles, while the followingi-tile segment has
ubv greater thanlbv but by a lesser amount than the tile size alongj.

The structure of the tiled code is shown in abstracted pseudo-code in Figure 1(c), and
with explicit detail in Figure 1(d). At each level of nesting, for a tile range determined
by the outer tiling loops, thelbv andubv values are computed. Ifubv is less thanlbv,
an untiled version of the code is used. Iflbv is less than or equal toubv, the executed
code has three parts: a prolog forj values up tolbv− st j (wherest j is the loop stride
in the j dimension), an epilog forj values greater than or equal tojt (where jt is the
inter-tile loop iterator in thej dimension), and a full-tile segment in between the prolog
and epilog, to coverj values between the bounds. The code for the full-tile segment is
generated using a recursive procedure that traverses the levels of nesting.

2.2 DynTile

When the tile sizes are parametric, it is problematic to generate parallel code using the
polyhedral framework since nonlinear expressions arise inthe specification of constraints
and objective functions. Hence for an arbitrary parametrictiled code, it is non-trivial to
extract parallelism. In [13], we developed an approach thatcircumvents the problems by
employing a dynamic scheduling approach to schedule tiles for parallel execution.

In the case of a program with single statement, the loop structure is a perfect loop
nest. Generating aligned tiled code involves syntactic processing of the loop bounds in
addition to generating the tile loops. The tile loops are generated as perfectly nested loops

that enumerate the tiles as tile numbers in the tile space. Fig. 2 illustrates an example for
generating aligned tiled code for a single statement program.

for (i=M;i<=N;i++)
for (j=b1+a1∗i;j <=min(b2−a2∗i,b3+a3∗i);j++)

S(i , j);

(a) Original loop structure

/∗ Intertile loops it , jt ∗/
for (it =floor (M/Ti); it <=floor(N/Ti); it ++)
for (jt =floor ((a1∗(it ∗Ti)+b1)/Tj);

jt <=floor((min(b2−a2∗(it∗Ti),
a3∗(it ∗Ti+Ti−1)+b3))/Tj);

jt ++)
/∗ Intratile loops i , j ∗/
for (i=max(M,it∗Ti); i <=min(N,it∗Ti+Ti−1);i++)
for (j=max(a1∗i+b1,jt∗Tj);

j<=min(min(b2−a2∗i,b3+a3∗i),jt∗Tj+Tj−1);
j++)

S(i , j);

(b) Tiled loop structure

(c) Tiled iteration space (shown with
region of active tiles)

Fig. 2.Parametric tiling of a single statement domain in DynTile

In the case of a program with multiple statements, the loop structure is an imperfectly
nested loop. Generating aligned tiled code in this case involves additional processing to
generate perfectly nested tile loops. The convex hull of theunion of the domains of all
statements is found and used to generate the loop structure of the tile loops.

With DynTile, a runtime scheduling approach is used to schedule tiles in a wavefront
for parallel execution. The approach involves generating an inspector code at compile-
time that at runtime createsbins of tiles where each bin represents a wavefront. The tiles
in a bin, henceforth, are scheduled for parallel execution.

2.3 PTile

In contrast to the DynTile approach described previously, the PTile approach uses a fully
polyhedral technique for compile-time generation of parallel parametric tiled code.

Let v1,v2, . . . ,vn represent the loop variables a loop nest of depthn (v1 representing
the outermost loop andvn representing the innermost loop). Letp1, p2, . . . , pk represent
symbolic parameters (such as problem sizes). The systemS (of m inequalities) represent-
ing the domain of the program is given by

S :
n

∑
j=1

Bi j.v j +
k

∑
j=1

Pi j.p j + ci ≥ 0, i ∈ [1..m]

where eachBi j andPi j represent the coefficients of the corresponding loop variable and
parameter, respectively, andci represents a constant in an inequality.

Them inequalities represent the lower and upper bounds of all loop variables. Hence
the systemS is in arow echelon form where the inequalities expressing the loop bounds
of a variablevi have coefficient 0 for all variablesv j : i < j ≤ n. In other words, the
bounds of a loop variablevi are expressed as a function of its outer loop variables (v j :
1≤ j < i), parameters and constants. The loop bounds would look like:

max(f11(p,c), . . . , f1k(p,c)) ≤ v1 ≤
min(g11(p,c), . . .g1l(p,c))
max(f21(v1, p,c), . . . , f2q(v1, p,c)) ≤ v2

≤ min(g21(v1, p,c), . . .g2r(v1, p,c))
. . .
max(fn1(v1, . . . ,vn−1, p,c), . . . , fny(v1, . . . ,vn−1, p,c)) ≤
vn ≤ min(gn1(v1, . . . ,vn−1, p,c), . . .gnz(v1, . . . ,vn−1, p,c))

Conversely, given a system of inequalities in row echelon form, loops generated with
bounds for each loop variable derived directly from the system (in row echelon form)
scan all valid integer points represented by the system (details may be found in [3]).

The PTile approach to parameterized tiling relies on the above property for generat-
ing code from a system of inequalities in row echelon form andthe fact that a system
with tiling transformation (equivalent to the original system) can be derived. Each vari-
ablev j in the domain (which in turn represents each dimension in thedomain) can be
expressed in terms of tile coordinatest j, tile sizess j, and intra-tile coordinatesu j as:
v j = s j.t j +u j ∧0≤ u j ≤ s j −1. The systemS can now be (equivalently) represented as:

S′ :
n

∑
j=1

Bi j.s j.t j +
n

∑
j=1

Bi j.u j +
k

∑
j=1

Pi j.p j + ci ≥ 0,

i ∈ [1..m] ∧ 0≤ u j ≤ s j −1, j ∈ [1..n]

A new systemST is derived fromS′ such that the solutions toS′ satisfyST . In the new
systemST , the intra-tile coordinates are eliminated through a relaxed projection.ST is as
follows:

ST :
n

∑
j=1

Bi j.s j.t j +
n

∑
j=1

B+
i j .(s j −1)+

k

∑
j=1

Pi j.p j + ci ≥ 0, i ∈ [1..m]

Two important properties ofST (details may be found in [3]) are: (1) the solutions toS′

also satisfyST and (2)ST is in row echelon form. Hence scanningST will generate the
tile loops (loops with tile coordinates).

The constraints expressed byST together with that expressed byS′ represent the
complete set of inequalities characterizing the loop structure of sequential tiled code.
ScanningST generates the tile loops as discussed above. ScanningS′ generates the intra-
tile loops in terms of tile coordinates, tile sizes, and intra-tile coordinates.

Fig. 3(a) shows an example of a nested loop, whose statement domain can be ex-
pressed as a set of inequalities shown in Fig. 3(b). After theoriginal loop iterators are

for (v1=0; v1<=T−1;v1++)
for (v2=2∗v1+2;v2<=2∗v1+N−1;v2++)
for (v3=max(2∗v1+2,v2−N+4);
v3<=min(2∗v1+N−1,v2+N−4);v3++)

S1(v1,v2,v3);

(a) Loop nest

v1 ≥ 0

−v1 +T −1 ≥ 0

−2v1 + v2−2 ≥ 0

2v1− v2 +N −1 ≥ 0

−2v1 + v3−2 ≥ 0

2v1− v3 +N −1 ≥ 0

−v2 + v3 +N −4 ≥ 0

v2− v3 +N −4 ≥ 0

(b) Inequalities for statement domain

s1.t1 +u1 ≥ 0

−s1.t1−u1 +T −1 ≥ 0

−2s1.t1−2u1 + s2.t2 +u2−2 ≥ 0

2s1.t1 +2u1− s2.t2−u2 +N −1 ≥ 0

−2s1.t1−2u1 + s3.t3 +u3−2 ≥ 0

2s1.t1 +2u1− s3.t3−u3 +N −1 ≥ 0

−s2.t2−u2 + s3.t3 +u3 +N −4 ≥ 0

s2.t2 +u2− s3.t3−u3 +N −4 ≥ 0

(c) Inequalities for tiling iterators

s1.t1 + s1−1 ≥ 0

−s1.t1 +T −1 ≥ 0

−2s1.t1 + s2.t2 + s2−1−2 ≥ 0

2s1.t1− s2.t2 +2s1−2+N −1 ≥ 0

−2s1.t1 + s3.t3 + s3−1−2 ≥ 0

2s1.t1− s3.t3 +2s1−2+N −1 ≥ 0

−s2.t2 + s3.t3 + s3−1+N −4 ≥ 0

s2.t2− s3.t3 + s2−1+N −4 ≥ 0

(d) Row-echelon tiling iterators

for (t1 = ⌈−s1+1
s1 ⌉; t1 <= ⌊T−1

s1
⌋; t1++)

for (t2 = ⌈2∗s1∗t1−s2+3
s2

⌉; t2 <= ⌊2∗s1∗t1+2∗s1+N−3
s2

⌋; t2++)

for (t3 =max(⌈2∗s1∗t1−s3+3
s3

⌉,⌈ s2∗t2−s3−N+5
s3

⌉);

t3 <=min(⌊2∗s1∗t1+2∗s1+N−3
s3

⌋,⌊ s2∗t2+s2+N−5
s3

⌋); t3++)
(e) Parametrically tiled loop nest

Fig. 3. Illustration of sequential parametric tiling in PTile

rewritten in terms of tiling loops and intra-tile loops, thesystem of inequalities can be
rewritten as shown in Fig. 3(c). The intra-tile variables inthe system can be eliminated
by using upper/lower bounds to generate inequalities for the tile iterators in row-echelon
form, as shown in Fig. 3(d). The parametrically tiled code isshown in Fig. 3(e)

After tiling as described above, if any of the tiling loops isparallel (i.e. has no
loop carried dependences), coarse-grained parallel tiledexecution is directly possible.
However, even if none of the tiling loops is parallel, wavefront parallelism is always
feasible among the tiles. But instead of viewing wavefront-parallel tile execution as
involving a unimodular transformation from onen-dimensional space (nesting order
t1, t2, . . . , tn of sequential tiled execution) to anothern-dimensional space (nesting order

w, t1, t2, . . . , tn−1), it is viewed in terms of a sparsen +1 dimensional space with nesting
orderw, t1, t2, . . . , tn. While this might seem very wasteful, by optimizing the scanning
of this higher dimensional space, parameterized parallel tiled execution is achieved with
negligible overhead of scanning empty tiles. The primary problem of generating loop
bounds for the outermostw loop via Symbolic Fourier Motzkin elimination is elimi-
nated by generating the lowest and highest numbered wavefronts in the untiled form of
the loops (which can be generated as a parametric expressionin the problem parameters
by use of an integer linear programming solver such as PIP [10, 22]) and then generating
bounds for the lowest and highest numbered tiled wavefront loop. No explicit “skew-
ing” of the tile space is done; thet1, t2, . . . , tn loops are executed in original lexicographic
order but constrained to include only those tiles that actually belong in the current tile
wavefrontw. Then+1 dimensional loop nestw, t1, t2, . . . , tn is optimized by addition of
constraints derived from the wavefront inequalities.

Starting with the systemST that would generate the tile loops for sequential tiled
execution, the equalityw = ∑n

j=1 t j is added, representing the relation between the tile
loop variables and the wavefront number. This equality is introduced using the two in-
equalities:

w−
n

∑
j=1

t j ≥ 0 and −w+
n

∑
j=1

t j ≥ 0.

These new inequalities are combined with the existing inequalities representing the loop
bounds for sequential tiled execution through a symbolic Fourier Motzkin procedure.
The main challenge is that with symbolic parameters, certain terms may have ambiguous
sign. If such ambiguity occurs in the symbolic FM process, a relaxation of the inequality
is performed to generate a weaker inequality, i.e., one thatis guaranteed to be true for
any values that satisfy the original inequality. The relaxation is performed in a manner
that removes any critical ambiguity in the sign of variable coefficients in the inequality.
The approach is illustrated using an example below.

Consider the systemST for generating sequential tile loops (as discussed earlier)
and the wavefront inequalities representingw = Σn

j=1t j. The RSFME procedure starts
by combining the lower bound inequalities oftn from ST with the wavefront inequal-
ity w−Σn−1

j=1t j − tn ≥ 0 and upper bound inequalities oftn from ST with the wavefront

inequality−w + Σn−1
j=1t j + tn ≥ 0, to eliminatetn and hence derive new lower and upper

bound inequalities fortn−1. However while combining the bounds, there is a possibility
that we might need to add symbolic coefficients of two terms with opposite signs and
the resulting sign may be indeterminate at compile-time. Atthis point, we replace the
tile loop variables with their parametric bounded values (tmin

j or tmax
j) and use relaxed

bound inequalities. At any levelk of the RSFME procedure, we combine new wavefront
inequalities added at levelk with the existing lower bound and upper bound inequalities
at levelk to eliminate the tile loop variable at levelk and derive new lower and upper
bound inequalities for levelk−1.

3 Qualitative Analysis of Parametric Tiling

We now present a comparative evaluation of the three parametric tiling techniques dis-
cussed: PrimeTile, DynTile and PTile. Our objective is to measure the impact on perfor-

Lower-bound constraint Upper-bound constraint

Outermost
wavefront
loop: (1a): wmin≤ w (1b): w≤ wmax
Loop it: (2a): (1-Ti+1)/Ti≤ it (2b): it≤ N/Ti
Loop jt: (3a): (1-Tj+1)/Tj≤ jt (3b): jt≤ (N-it.Ti)/Tj
Loop kt: (4a): (it.Ti-Tk+1)/Tk≤ kt (4b): kt≤ N/Tk
Wavefront
constraints:(5a): w-it-jt≤ kt (5b): kt≤ w-it-jt
Eliminate
variable kt (6a): Combine (5a) and (4b) (6b): Combine (5b) and (4a)
to derive w-it-jt ≤ N/Tk (it.Ti-Tk+1)/Tk ≤ w-it-jt
new w-it-N/Tk ≤ jt jt ≤ w-it-it.Ti/Tk+1-1/Tk
wavefront (w.Tk-it.Tk-N)/Tk ≤ jt jt ≤ (w.Tk-it.Tk-it.Ti+Tk-1)/Tk
constraints
for loop jt:
Eliminate
variable jt (7a): Combine (6a) and (3b) (7b): Combine (6b) and (3a)
to derive w-it-N/Tk ≤ N/Tj-it.Ti/Tj 2/Tj-1≤ w-it-it.Ti/Tk+1-1/Tk
new w-N/Tj-N/Tk ≤ it-it.Ti/Tj it+it.Ti/Tk ≤ w+2-2/Tj-1/Tk

wavefront (ambiguous sign encountered) it ≤ (w.Tj.Tk2+2.Tj.Tk2-Tj.Tk-2.Tk2)
(Ti.Tj.Tk+Tj.Tk2)

constraints→ (i) Relaxation to obtain a new
for loop it: lower-bound constraint:

w-N/Tj-N/Tk+itmin.Ti/Tj ≤ it
(w.Tj.Tk-N.Tk-N.Tj+itmin.Ti.Tk)

(Tj.Tk) ≤ it

→ (ii) Relaxation to obtain a new
upper-bound constraint:

it.Ti/Tj ≤ itmax-w+N/Tj+N/Tk

it ≤ (itmax.Tj.Tk-w.Tj.Tk+N.Tj+N.Tk)
(Ti.Tk)

Fig. 4. Example of application of Relaxed Symbolic Fourier Motzkin Elimination (RSFME) on a
non-rectangular tiled loop nest

mance of the different alternatives to generate tiled code.We first study the impact of the
relaxation step in the RSFME algorithm, then measure the loop control overhead for the
three techniques, and finally compare the performance of theparametrically tiled code
when run sequentially and run using coarse-grain parallelism.

3.1 Experimental Setup

Target machine The experiments were run on a dual-socket quad-Core AMD Opteron
Shangai 8218 processors running at 2.5GHz, with 64+64kB L1 cache/core, 512kB L2
cache/core and 6MB L3 cache. This processor is a node of the Ohio Supercomputer
Center clusters. We used two vendor compilers: GNU GCC 4.4.0and Intel ICC 11.0.
For each we experimented with and without vectorization support: gcc-novec uses op-
tion-O3 -fno-tree-vectorize, gcc-vec uses option-O3, icc-novec uses option-fast

-no-vec and icc-vec uses option-fast. Finally, for parallel execution experiments,
we marked the outer-most parallel loop with an OpenMP pragmaand turned on the
-fopenmp flag for GCC, and-openmp flag for ICC.

Benchmarks We focus our study on four numerical kernels. They are listedin Table 1.
All these benchmarks use double-precision floating point arithmetic. Note that although
we do use a specific problem size for the experiments, the parametric tiling software
is presented with an arbitrarily-nested input code with parametric loop bounds, which
forms the most general setting of affine-control programs. Hence the code does not need
to be generated again for a different problem size.

Table 1.Benchmarks used in the experiments

Name Description Max loop depth Problem size

2d-fdtd 2D Finite Difference Time Domain method 3 T=1500, N=1500
cholesky Cholesky factorization 3 N=2500
dtrmm Triangular matrix multiplication 3 N=2000

lu LU factorization 3 N=2000

For each benchmark, a sequence of affine loop transformations was applied to make
the loop nest(s) fully permutable, and hence tilable [4, 23]. Note that for stencils, such
as2d-fdtd for instance, it is necessary to skew the original iterationdomains to enable
tiling for all loops; this skewed and tiled version is generated seamlessly using the affine
framework. For all experiments, the tile size was set to 16 for all tiled dimensions.

We experimented with three approaches to parametric tilingcode generation, namely
PrimeTile [12, 24],Dyntile [13], andPTile [3].

3.2 Tightness of Relaxed Symboliv Fourier-Motzkin Elimination

The extension of the Fourier-Motzkin elimination algorithm to symbolic affine con-
straints raises the problem of possibly combining two inequalities containing parametric
constants of opposite signs. For instance, one may need to combine the following in-
equalities

Ti/Tj ∗ it − jt ≥ 0

−Ti ∗ it +Tk ∗ jt ≥ 0

in order to eliminate thejt variable. As there is no assumption made at compile-time on
the actual value of the parametersTi, Tj andTk, combining the above constraints results
in:

(Ti/Tj −Ti/Tk)∗ it ≥ 0

where the sign of(Ti/Tj−Ti/Tk) could be positive or negative, and thus represent either a
lower bound or an upper bound forit. Because the input code has affine bounds, the only

source of such ambiguity cases comes from the relative values of tile size parameters
[3]. The tile iterators (e.g.,it, jt) are bounded by parametric constants since we are
tiling a bounded iteration domain, so that we have:itmin ≤ it ≤ itmin and jtmin ≤ jt ≤
jtmin. Therefore, a sufficient approximation for correctness is to relax the constraint by
substitutingjt with jtmin and jtmax, thus leading to the constraints:

Ti/Tj ∗ it − jtmin ≥ 0

−Ti ∗ it +Tk ∗ jtmax ≥ 0,

which define a bounding box around theit variable. The drawback is the scanning of
empty points, as the relaxation introduces over-approximation of the bounds forit. This
may lead to control overhead and in the worst case to scanningempty tiles.

To determine the potential penalty introduced by such a relaxation, we analyzed the
execution of the RSFME algorithm on our benchmark suite. Interestingly, in our experi-
ments we found that the relaxation step of RSFME was never needed by the algorithm:
no parametric expressions of opposite signs were combined during the resolution. We
extended this analysis to five additional benchmarks:2d-jacobi, adi, gemver, trisolve and
3d-stencil, and also observed thatthe relaxation step was never required to successfully
compute the tile loop bounds. Hence, it is expected that for most cases the bounds for
the tile loops as generated by PTile will match the convex hull of the iteration domain to
be tiled.

3.3 Control Overhead Comparison

There is a trade-off between the code size and the control complexity between the code
generated by the three considered techniques for parametric tiling. PrimeTile generates
simple loop bounds at the expense of increasing the code sizeby explicitly expanding
the various possible cases of tiles into distinct code blocks. On the other hand, DynTile
and PTile produce significantly smaller sized codes, because a single loop nest has its
bounds parameterized to deal with all tile cases. The drawback is much more complex
loop bounds for DynTile and PTile (presence of multiplications, divisions, min and max
expressions) that may be detrimental to performance.

The purpose of this experiment is to measure the control overhead for the three tech-
niques. For this experiment, we substituted all statementsin the program with a dummy
scalar increment (which is executed about 3× 109 times for all benchmarks). So any
effect from the floating point operations or memory accessesare removed and the only
remaining timed operations are either control-related, orthe dummy scalar increment.
We report in Table 2 the execution time, in seconds, for each benchmark using dummy
statements. For all experiments, the tiled code implementsseparation of partial and full
tiles.

We observe that forcholesky, dtrmm and lu benchmarks, the execution time differ-
ence between the three techniques is small enough to be attributable to experimental
noise. For these benchmarks, there is no penalty in using more complex controls such
as in PTile or DynTile to generate the loop bounds. For2d-fdtd, we observe a control
overhead difference of 20–40% between the three techniques. After manual inspection
of the generated codes, we have been unable to identify a clear source for the perfor-

Table 2.Control Overhead Comparison for PrimeTile, DynTile and PTile

Benchmark Compiler PrimeTile DynTile PTile

2d-fdtd gcc-novec 4.16s 4.23s 5.91s
2d-fdtd gcc-vec 4.15s 4.23s 5.89s
2d-fdtd icc-novec 4.04s 4.12s 4.63s
2d-fdtd icc-vec 2.97s 3.25s 3.72s

cholesky gcc-novec 3.11s 3.05s 3.24s
cholesky gcc-vec 3.19s 3.05s 5.07s
cholesky icc-novec 4.06s 3.04s 3.23s
cholesky icc-vec 2.26s 2.30s 2.46s

dtrmm gcc-novec 4.97s 4.96s 5.07s
dtrmm gcc-vec 4.97s 4.96s 6.51s
dtrmm icc-novec 6.44s 6.44s 4.94s
dtrmm icc-vec 3.50s 3.75s 3.64s

lu gcc-novec 3.30s 3.23s 3.38s
lu gcc-vec 4.20s 3.23s 4.35s
lu icc-novec 3.20s 3.23s 4.32s
lu icc-vec 2.28s 2.43s 2.60s

mance drop, and one can only suspect that the control structure became too complex for
the compiler to efficiently optimize.

3.4 Performance of Tiled Code

Next, we present the actual execution times of the program generated with the three
techniques. For a fair comparison, all versions implemented separation of full tiles from
partial tiles, but no register tiling was done. The execution times are shown in Table 3.

We observe that for sequential execution, PrimeTile performs best in our experi-
ments, with a performance often comparable with DynTile, inparticular when consider-
ing ICC. We also observe that GCC has more trouble in optimizing the code generated
by DynTile than the one generated by PrimeTile. The slowdownof PTile is explained by
the order in which tiles are executed: PTile generates a wavefront outer-most tile loop,
that is needed to ensure correctness of parallel tile execution. However, for sequential
execution, this wavefront order is detrimental to locality, and thus to performance.

We also report the execution time of the programs generated with DynTile and PTile
for parallel tiled execution. PrimeTile is not used for thiscomparison as it cannot na-
tively generate parallel parametric tiled code. For the experiments shown in Table 3, tiles
were executed in pipeline-parallel fashion using a sequential outer-loop to capture wave-
fronts. The next outer-most loop was marked with#pragma omp for and the program
run using 8 H/W threads, from within a single OSC cluster node. We observe that Dyn-
Tile slightly outperforms PTile for parallel execution. The explanation lies in the amount
of parallelism that is exploited by the two approaches. For DynTile, all tiles that can be
executed in parallel for a given wavefront are indeed markedas parallel, with a#pragma

Table 3.Execution Time with PrimeTile, DynTile and PTile GeneratedCode

Sequential Parallel
Benchmark Compiler PrimeTile DynTile PTile DynTile PTile

2d-fdtd gcc-novec 43.84s 49.19s 56.78s 9.32s 10.98s
2d-fdtd gcc-vec 43.82s 49.22s 56.85s 9.37s 10.98s
2d-fdtd icc-novec 40.27s 48.12s 54.29s 13.30s 12.96s
2d-fdtd icc-vec 40.52s 49.61s 54.63s 13.03s 13.18s

cholesky gcc-novec 6.13s 10.50s 13.43s 1.91s 2.81s
cholesky gcc-vec 6.08s 10.46s 13.45s 1.89s 2.82s
cholesky icc-novec 5.63s 5.86s 8.19s 1.21s 2.40s
cholesky icc-vec 5.36s 5.74s 8.22s 1.27s 2.61s

dtrmm gcc-novec 9.29s 14.34s 18.99s 2.55s 4.50s
dtrmm gcc-vec 9.25s 14.57s 18.99s 2.54s 3.69s
dtrmm icc-novec 9.84s 9.19s 13.27s 2.17s 3.22s
dtrmm icc-vec 9.91s 9.12s 13.44s 2.33s 3.27s

lu gcc-novec 8.30s 9.15s 10.98s 2.56s 2.94s
lu gcc-vec 8.29s 9.15s 10.98s 2.98s 2.43s
lu icc-novec 6.30s 5.63s 7.49s 6.18s 1.60s
lu icc-vec 6.36s 5.58s 6.52s 6.36s 1.62s

omp for around the loop which iterates over all tiles belonging to the wavefront. How-
ever, for PTile, only the next outer-most loop is marked as parallel, the outer-most loop
being the wavefront loop. So even though the remaining tile loops are also parallel, this
parallelism is not exploited. It is expected that coalescing the parallel tile loops into a
single loop would improve load balancing, and exploit all the available parallelism. For
lu with ICC, we remark that the execution time is excessively high for DynTile. Al-
though there is no clear explanation after scrutiny of the generated code, we suspect that
effective ICC optimization is somehow being inhibited by this specific input code.

We also observed that for all considered benchmarks, neither ICC nor GCC was
able to vectorize loops in the computational kernel. For most cases, the compiler was
unable to analyze the loops because of complex controls and/or access patterns. The
increased complexity of controls generated by polyhedral parametric tiling challenges
the compiler’s loop analyzer, and it has been shown that for such cases it is beneficial to
expose and explicitly mark vectorizable loops from within the polyhedral transformation
framework [4].

4 Related Work

Much work exists in the area of tiling (with fixed tile sizes) of perfectly nested loops for
both the sequential and parallel case [16, 9, 28, 29, 25, 5, 34, 15, 27]. Goumas et al. [11]
presented a code generation technique for fixed-size parallel tiling of perfectly nested
loops.

Parameterized sequential tiling has received much attention recently. Renganarayana
et al. [26, 32] developed an effective code generation technique for parameterized tiling
of perfectly nested loops , based on enumerating tile origins using a method called the
“outset method.” Later Kim et al. [20, 14] extended the approach to multi-level parame-
terized tiling of perfectly nested loops. Both these systems generate sequential tile code.
Kim and Rajopadhye [19] recently developed a non-polyhedral approach to sequential
parametric tiling of loop nests. Jimenez et al. developed techniques for register tiling of
non-rectangular iteration spaces [17] and also a code generation technique for parame-
terized multi-level tiling of perfectly nested loops [18].

A script-based compositional transformation framework has been developed by Chen
et al. [8]; their framework can be used for fixed-size tiling of imperfectly nested loops.
Specialized frameworks [6, 30, 35] have been developed for fixed-size tiling of particu-
lar classes of imperfectly nested loops. Parallel tiling ofgeneral imperfectly nested loops
was developed by Bondhugula et al. [4] in the Pluto [23] system, but tile sizes are re-
stricted to be compile-time constants.

5 Conclusion

Tiling is a key loop transformation for coarse-grained parallelization as well as data lo-
cality optimization. Parametrically tiled code with symbolic tile size variables is of great
interest since it enables empirical tuning and optimization on different target platforms.
In this paper, a comparative experimental assessment was performed on three recently
developed parametric tiling approaches.

Acknowledgment This work was funded in part by the U.S. National Science Founda-
tion through awards 0541409, 0811457, 0811781, 0926687 and0926688, by the Defense
Advanced Research Projects Agency through AFRL Contract FA8650-09-C-7915, and
by the Army through contract W911NF-10-1-0004. We thank for the Ohio Supercom-
puter Center for access to their parallel systems.

References

1. N. Ahmed, N. Mateev, and K. Pingali. Synthesizing transformations for locality enhancement
of imperfectly-nested loop nests.IJPP, 29(5), Oct. 2001.

2. Workshop on Automatic Tuning for Petascale Systems.http://cscads.rice.edu/
workshops/summer08/autotuning.

3. M. Baskaran, A. Hartono, S. Tavarageri, T. Henretty, J. Ramanujam, and P. Sadayappan. Pa-
rameterized tiling revisited. InCGO, April 2010.

4. U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. Apractical automatic poly-
hedral program optimization system. InPLDI, 2008.

5. P. Boulet, A. Darte, T. Risset, and Y. Robert. (Pen)-ultimate tiling?Integration, the VLSI
Journal, 17(1):33–51, 1994.

6. S. Carr and K. Kennedy. Compiler blockability of numerical algorithms. In Proc. Supercom-
puting ’92, pages 114–124, 1992.

7. C. Chen, J. Chame, and M. Hall. Combining models and guided empirical search to optimize
for multiple levels of the memory hierarchy. InCGO’05, 2005.

8. C. Chen, J. Chame, and M. Hall. Chill: A framework for composing high-level loop transfor-
mations. Technical Report 08-897, USC Computer Science TechnicalReport, June 2008.

9. S. Coleman and K. McKinley. Tile Size Selection Using Cache Organizationand Data Layout.
In PLDI’95, pages 279–290, 1995.

10. P. Feautrier. Parametric integer programming.Operations Research, 22(3):243–268, 1988.
11. G. I. Goumas, N. Drosinos, M. Athanasaki, and N. Koziris. Automatic parallel code genera-

tion for tiled nested loops. InSymposium on Applied Computing, pages 1412–1419, 2004.
12. A. Hartono, M. Baskaran, C. Bastoul, A. Cohen, S. Krishnamoorthy, B. Norris, J. Ramanujam,

and P. Sadayappan. Parametric multi-level tiling of imperfectly nested loops. In ICS, 2009.
13. A. Hartono, M. Baskaran, J. Ramanujam, and P. Sadayappan. Parametric tiled loop generation

for effective parallel execution on multicore processors. InIPDPS, 2010.
14. HiTLoG: Hierarchical Tiled Loop Generator.www.cs.colostate.edu/MMAlpha/tiling.
15. K. Hogstedt, L. Carter, and J. Ferrante. Selecting tile shape for minimal execution time. In

SPAA, pages 201–211, 1999.
16. F. Irigoin and R. Triolet. Supernode partitioning. InPLDI, 1988.
17. M. Jiḿenez, J. Llaberı́a, and A. Ferńandez. Register tiling in nonrectangular iteration spaces.

ACM Trans. Program. Lang. Syst., 24(4):409–453, 2002.
18. M. Jiḿenez, J. Llaberı́a, and A. Ferńandez. A cost-effective implementation of multilevel

tiling. IEEE Trans. Parallel Distrib. Syst., 14(10):1006–1020, 2003.
19. D. Kim and S. Rajopadhye. Parameterized tiling for imperfectly nestedloops. Technical

Report CS-09-101, Colorado State U., Dept. Computer Science, February 2009.
20. D. Kim, L. Renganarayanan, M. Strout, and S. Rajopadhye. Multi-level tiling: ’m’ for the

price of one. InSC, 2007.
21. A. Lim and M. Lam. Maximizing parallelism and minimizing synchronizationwith affine

partitions.Parallel Computing, 24(3-4):445–475, 1998. Extended version of PoPL’97 paper.
22. PIP: The Parametric Integer Programming Library.http://www.piplib.org.
23. The Pluto automatic parallelizer.sourceforge.net/projects/pluto-compiler, 2010.
24. PrimeTile: A Parametric Multi-Level Tiler for Imperfect Loop Nests.http://www.cse.

ohio-state.edu/∼hartonoa/primetile/.
25. J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration spaces for multicomput-

ers.Journal of Parallel and Distributed Computing, 16(2):108–230, 1992.
26. L. Renganarayana, D. Kim, S. Rajopadhye, and M. Strout. Parameterized tiled loops for free.

In PLDI’07, pages 405–414, 2007.
27. L. Renganarayana and S. Rajopadhye. A geometric programmingframework for optimal

multi-level tiling. In SC, 2004.
28. G. Rivera and C. Tseng. Locality optimizations for multi-level caches. In SC, 1999.
29. R. Schreiber and J. Dongarra. Automatic blocking of nested loops.Tech. Report 90.38,

RIACS, NASA Ames Research Center, 1990.
30. Y. Song and Z. Li. New tiling techniques to improve cache temporal locality. In PLDI, 1999.
31. A. Tiwari, C. Chen, J. Chame, M. Hall, and J. Hollingsworth. Scalableautotuning framework

for compiler optimization. InIPDPS ’09, May 2009.
32. TLoG: A Parametrized Tiled Loop Generator.http://www.cs.colostate.edu/MMAlpha/

tiling/.
33. R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra software. InSC, 1998.
34. J. Xue.Loop tiling for parallelism. Kluwer Academic Publishers, Norwell, MA, USA, 2000.
35. Q. Yi, K. Kennedy, and V. Adve. Transforming complex loop nestsfor locality. J. Supercom-

put., 27(3):219–264, 2004.

