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Abstract

Many applications, such as medical imaging, generate intensive
data traffic between the FPGA and off-chip memory. Significant
improvements in the execution time can be achieved with effec-
tive utilization of on-chip (scratchpad) memories, associated with
careful software-based data reuse and communication scheduling
techniques.

We present a fully automated C-to-FPGA framework to ad-
dress this problem. Our framework effectively implements data
reuse through aggressive loop transformation-based program re-
structuring. In addition, our proposed framework automatically im-
plements critical optimizations for performance such as task-level
parallelization, loop pipelining, and data prefetching. We leverage
the power and expressiveness of the polyhedral compilation model
to develop a multi-objective optimization system for off-chip com-
munications management. Our technique can satisfy hardware re-
source constraints (scratchpad size) while still aggressively exploit-
ing data reuse. Our approach can also be used to reduce the on-chip
buffer size subject to bandwidth constraint. We also implement a
fast design space exploration technique for effective optimization
of program performance using the Xilinx high-level synthesis tool.

Categories and Subject Descriptors B.5.2 [Hardware]: Design
Aids — optimization; D 3.4 [Programming languages]: Processor
— Compilers; Optimization

Keywords Compilation; Program Transformations; High-Level
Synthesis; Data Reuse

1. Introduction

High level synthesis (HLS) tools for synthesizing designs speci-
fied in a behavioral programming language like C/C++ can dra-
matically reduce the design time especially for embedded systems.
While the state-of-art HLS tools have made it possible to achieve
QoR close to hand coded RTL designs from designs specified com-
pletely in C/C++ [5], considerable manual design optimization is
still often required from the designer [17]. To get a HLS friendly
C/C++ specification, the user often needs to perform a number of
explicit source-code transformations addressing several key issues
such as on-chip buffer management, choice of degree of paral-
lelism/pipelining, attention to prefetching, avoidance of memory
port conflicts etc., before designs rivaling hand coded RTL can be
synthesized by the HLS tool.
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Our objective is to develop automated compiler support based
on the latest advances in polyhedral frameworks (e.g., [12, 38]) to
greatly reduce the human design effort currently required to cre-
ate effectively synthesizable specification of designs using HLS
tools. In particular, we develop compiler support for source-to-
source transformations to optimize critical resources such as mem-
ory bandwidth to off-chip memory and on-chip buffer capacity. We
present in this article algorithms and tools to automatically perform
the needed loop/data transformations as well as effective design
space exploration techniques. Specifically, we make the following
contributions.
1. A full implementation of a complete and automated technique

to optimize data reuse for a class of programs, for FPGAs.
This includes complete technique for dedicated on-chip buffer
management, that exploits the data reuse in the transformed
program.

2. A compile-time technique to automatically find communication
schedules and on-chip buffer allocations to minimize the com-
munication volume under maximal buffer size constraint.

3. A framework for fast design space exploration of transforma-
tion candidates based on an available high-level synthesis tool
and leveraging the specifics of the optimization framework we
use.

The rest of the paper is organized as follows. Section 2 covers
the related work. Section 3 presents our automated data reuse
framework, and Section 4 our buffer size/communication volume
optimization algorithm. Finally, Section 5 presents our fast design
space exploration framework and experimental results.

2. Related Work

Design automation and optimization for data reuse have been stud-
ied for decades. The data transfer and storage exploration (DTSE)
methodology [14, 15] is one of the milestones in this field. A data
reuse graph is introduced to express the possible data reuse candi-
dates between array references in the source program [28], where
a polyhedral model is used to analyze the data dependence. Then,
heuristics based on reuse buffer size and bandwidth reduction can
be applied to decide the allocation of the reuse candidates and their
memory hierarchy [13,29]. A large body of previous work has also
considered data locality optimization, but focuses exclusively on
CPU and data caches optimization [8, 30, 39]. Loop transforma-
tions for data locality optimization are only an enabler for effec-
tive on-chip data reuse. Numerous previous work for FPGAs and
GPUs, such as [9, 14, 15, 19, 24, 31], have considered automatic
techniques to promote memory references on-chip. However, pre-
vious work had systemic limitations based either on the program
representation used (which for instance only approximates the data
accessed by a reference), and/or constrained to managing an on-
chip buffer that corresponds precisely to a tile. Other work studied
the power of the polyhedral transformation framework for FPGA
design. For instance, DEFACTO combines a parallelizing compiler



technology (SUIF) with early hardware synthesis tools to propose
a C-to-FPGA design flow [21, 36], and MMAlpha [25] focused on
systolic designs. These works illustrated the benefit of using ad-
vanced compiler technologies for memory optimization and paral-
lelization analysis. However, to the best of our knowledge, none of
those frameworks consider a space of program transformation as
large as ours, and/or have limited loop tiling capabilities. Bayliss et
al. [11] used the polyhedral model to compute an address generator
exploiting data reuse, however they do not consider any loop trans-
formation and therefore do not restructure the program to better
exploit its inherent data locality potential. In contrast, loop trans-
formations for improving data locality is the starting point of our
framework.

Tiling in particular is a crucial loop transformation for data
locality improvement, and is one key transformation used in our
framework. As an illustration, on a matrix-multiply example pre-
vious work by Cong. et al using only loop permutation, (limited)
loop skewing, and loop fusion/distribution reduces the communi-
cation volume from 3.N3 to N3, using a buffer of size 2.N [19].
Using a simple square tiling with tile size T reduces the commu-
nication volume to to roughly N3/T 2, for a buffer of size T 2, and
even better solutions can be achieved with rectangular tiles, as used
in this paper. However in [19], finer-grain data reuse opportunities
are explored in a combined problem searching for buffer allocation
and loop transformation simultaneously, which can lead to even
smaller buffer sizes than achievable by our present work. Loop
tiling often requires a complex sequence of complementary loop
transformations such as skewing, fusion/distribution, shifting, etc.,
to be applied [6,12,27,40], and finding such sequence is a challeng-
ing problem. In this work, we address it in an automatic fashion by
using the Tiling Hyperplane scheduling method, which is geared
towards maximizing data locality and program tilability [12].

Recently, the importance of considering platform-dependent
cost modeling in optimizing the loop transformation has been em-
phasized [32]. Loop transformation and data reuse optimization are
loosely coupled by introducing fast hierarchical memory size esti-
mators [26, 33] to evaluate the promising transformations. But the
search process lacks an analytic model for guidance, which makes
it inefficient to search a large transformation space. Previous work
tries to establish analytic optimization formulations for the com-
bined problem, such as optimizations of loop tiling parameters
and reuse buffer selections are formulated into quadratic program-
ming [9] and geometric programming [31] respectively. Alias et
al. uses tiling and prefetching to reduce the memory traffic [7], fo-
cusing on the Altera tool-chain. They proposed a formulation for
the prefetching problem and the pipelining of communications, but
their approach does not consider the balance between communi-
cation volume and scratchpad size/energy, nor any design-space
exploration, contrary to the present work.

3. Automatic Data Reuse Framework

3.1 Overview of the Method

In our framework, we perform a multi-stage process to automati-
cally optimize C programs for effective execution on a FPGA. Our
approach uses design-space exploration to determine the best per-
forming program variant. Specifically, we search for best perfor-
mance through the evaluation of different rectangular tile sizes.
Our framework is built so that different tile sizes lead to different
program candidates, with distinct features in terms of the commu-
nication schedule, buffer size, loop to be tiled (e.g. when a tile size
of 1 is used for this loop), etc. Each candidate is built as follows.
1. We first transform the input program, using polyhedral loop

transformations. The objective is to restructure the program so
that data locality is maximized (e.g., the ”time” between two

accesses to the same memory cell is minimized), and at the
same time the number of loops that can be tiled is maximized.
This is presented in Section 3.2. Tilable loops are tiled using a
tile size given as input.

2. We then promote all memory accesses to on-chip buffers in the
transformed program, and automatically generate off-chip/on-
chip communication code. Data reuse between consecutive it-
erations of a loop is automatically exploited. This is presented
in Section 3.3. The hardware constraints on the maximal buffer
size are automatically satisfied, using a lightweight search al-
gorithm that trades off communication volume for buffer size.
This is presented in Section 4.

3. We conclude the code transformation process by performing
a set of HLS-specific optimizations, such as coarse-grain and
fine-grain/task-level parallelism extraction. This is presented in
Section 3.4.

3.2 Polyhedral-Based Transformations for Data Reuse

Unlike the internal representation that uses abstract syntax trees
(AST) found in conventional compilers, polyhedral compiler frame-
works use an internal representation of imperfectly nested affine
loop computations and their data dependence information as a
collection of parametric polyhedra, this enables a powerful and
expressive mathematical framework to be applied in performing
various data flow analysis and code transformations.

Significant benefits over conventional AST representations of
computations include the effective handling of symbolic loop
bounds and array index function, the uniform treatment of per-
fectly nested versus imperfectly nested loops, the ability to view
the selection of an arbitrarily complex sequence of loop transfor-
mations as a single optimization problem, the automatic generation
of tiled code for non-rectangular imperfectly nested loops, etc.

3.2.1 Polyhedral Program Representation

The polyhedral model is a flexible and expressive representation
for loop nests with statically predictable control flow. Loop nests
amenable to this algebraic representation are called static control
parts (SCoP) [22,23], roughly defined as a set of consecutive state-
ments such that loop bounds and conditionals involved are affine
functions of the enclosing loop iterators and variables that are con-
stant during the SCoP execution (whose values are unknown at
compile-time). Numerous scientific kernels exhibit those proper-
ties; they can be found typically in image processing filters (such as
medical imaging algorithms) and dense linear algebra operations.

1 for (t = 0; t < T; ++t) {
2 for (i = 1; i < N-1; ++i)

3 for (j = 1; j < N-1; ++j)

4 R : B[i][j] = 0.2*(A[i][j-1] + A[i][j] + A[i][j+1]

5 + A[i-1][j] +A[i+1][j]);

6 for (i = 0; i < N; ++i)

7 for (j = 0; j < N; ++j)

8 S : A[i][j] = B[i][j];

}

Figure 1. Jacobi2D example

First, a program is analyzed to extract its polyhedral represen-
tation, including iteration domain, access pattern and dependence
information.

Iteration Domains For all textual statements in the program,
for example R in Figure 1, the set of its dynamic instances is
captured with a set of affine inequalities. When the statement is
enclosed by loop(s), all iterations of the loop(s) are captured in the
iteration domain of the statement. Considering the jacobi2D kernel



in Figure 1, the iteration domain of R is:

DR = {(t, i, j) ∈ Z
3 | 0≤ t < T∧1≤ i < N−1∧1≤ j < N−1}.

The iteration domain DR contains only integer vectors (or, inte-
ger points if only one loop encloses the statement R). The iteration
vector ~xR is the vector of the surrounding loop iterators; for R it is
(t, i, j) and takes values in DR. Each vector in DR corresponds to a
specific set of values taken by the surrounding loop iterators (start-
ing from the outermost to the innermost enclosing loop iterator)
when R is executed.

Access functions They represent the location of the data ac-
cessed by the statement. In SCoPs, memory accesses are performed
through array references (a variable being a particular case of an
array). We restrict ourselves to subscripts of the form of affine
expressions which may depend on surrounding loop counters and
global parameters. For instance, the subscript function for the read
reference A[i-1][j] of statement R is simply fA(t, i, j)= (i−1, j).

The sets of statement instances between which there is a
producer-consumer relationship are modeled as equalities and in-
equalities in a dependence polyhedron. This is defined at the gran-
ularity of the array cell. If two instances~xR and~xS refer to the same
array cell and one of these references is a write, then they are said to
be in dependence. Therefore to respect the program semantics, the
transformed program must execute ~xR before ~xS. Given two state-
ments R and S, a dependence polyhedron, written DR,S, contains
all pairs of dependent instances 〈~xR,~xS〉.

Multiple dependence polyhedra may be required to capture all
dependent instances, at least one for each pair of array references
accessing the same array cell (scalars being a particular case of
array). It is possible to have several dependence polyhedra per
pair of textual statements, as some may contain multiple array
references.

3.2.2 Program Transformation for Locality/Parallelism

The next step in polyhedral program optimization is to compute
a transformation for the program. Such a transformation captures,
in a single step, what may typically correspond to a sequence of
several tens of textbook loop transformations [23]. It takes the form
of a carefully crafted affine multidimensional schedule, together
with (optional) iteration domain or array subscript transformations.

In order to expose coarse-grain parallelization as well as data
locality optimizations, we first compute a polyhedral transforma-
tion which is geared towards maximizing data locality while ex-
posing coarse-grain parallelism when possible. This optimization
is implemented via a possibly complex composition of multidi-
mensional tiling, fusion, skewing, interchange, shifting, and peel-
ing. It is known as the Tiling Hyperplanes method [12]. The Tiling
Hyperplane method has proved to be very effective in integrat-
ing loop tiling into polyhedral transformation sequences [12, 27].
Bondhugula et al. proposed an integrated optimization scheme that
seeks to maximally fuse a group of statements, while making the
outer loops permutable (i.e., tilable) [12] when possible. A schedule
is computed such that parallel loops are brought to the outer levels,
if possible. This technique is applied on each SCoP of the program.
When coarse-grain parallelism is exposed (such as pipelined tile
parallelism), we automatically exploit it to support concurrent exe-
cution on the FPGA.

From a data reuse standpoint, the Tiling Hyperplane method
schedules iterations that access the same data elements as close to
each other as possible, maximizing temporal data locality under the
framework constraints. We note that the Tiling Hyperplane method
attempts to maximize the number of loops that can be tiled, but
operates seamlessly on non-tilable (or non-fully tilable) programs,
also maximizing locality in those cases. In our framework, loop
tiling is applied on the set of loop nests that are made permutable

after applying the Tiling Hyperplane method. Finally, Syntactically
correct transformed code is generated back from the polyhedral
representation, and this code scans the iteration spaces according
to the schedule we have computed with the Tiling Hyperplane
method. We use the CLOOG, a state-of-the-art code generator [10]
to perform this task.

3.3 Automatic On-Chip Buffer Management

Most ICs, especially embedded systems, use on-chip buffer memo-
ries for fast and energy-efficient access to the most frequently used
data. For FPGAs, the total data for the application is much larger
than on-chip memory capacity. In contrast to general-purpose pro-
cessors that use hardware-managed caches to hold frequently ac-
cessed data, the use of on-chip buffers with explicit copy-in and
copy-out of data is a key optimization for embedded systems [18].
By storing frequently accessed data in the on-chip buffer, the band-
width contention is decreased, and the overall performance in-
creases significantly as the latency of accessing on-chip data is sig-
nificantly faster than off-chip accesses. In the following we present
a fully automated approach for on-chip buffer management that
consists of promoting to local memory (e.g., the on-chip buffer)
all memory references in the program.

Promoting the entire data accessed by a program to local mem-
ory is often infeasible, in particular for FPGA design where the on-
chip buffer resource is limited. Therefore, we want to enable the
promotion all program references to an on-chip buffer, while still
controlling its size. We chose to solve this problem by using the
granularity of the loop iteration, for any of the loops in the program.
That is, given an arbitrary loop in the program (which may very
well be surrounded by other loops), our technique will compute the
minimal on-chip buffer size requirement and associated communi-
cations to execute one iteration of this loop, while exploiting the
reuse between consecutive iterations of said loop. This implicitly
offers a lot of freedom for the on-chip buffer size. By consider-
ing the innermost loop, its size will be similar to the number of
registers required to execute the computation. By considering the
outermost loops it will be equivalent to the entire data space of the
program. Any loop in-between will trade off communication count
for on-chip buffer size (and its associated static energy).

For example, in Figure 1 if we put on-chip the data accessed by
one full execution of the j loop in line 3 (that is exactly one iteration
of the i loop), we need to store the ith row of A and B, as well as
the (i−1)th and (i+1)th rows of A, leading to a buffer requirement
of 4.N. This buffer must be filled for each iteration of the i loop,
that is roughly T.N times (total communication volume is roughly
4.N2.T ). Putting on-chip the full computation (that is, along the t

loop on line 1) leads to a 2.N2 buffer requirement, but to be filled
only once (total communication volume is reduced to 2.N2). So,
the trade-off here is between a buffer size N times smaller versus
a communication volume increase of 2.T . Below, we show how to
build better solutions exploiting reuse across executions of a loop.

3.3.1 Parametric Data Spaces for On-Chip Buffer Support

We now present our formalization to effectively promote memory
references for on-chip buffer usage. Our technique operates on each
array individually, and promotes optimally (under the framework
constraints) all references to this array into a dedicated on-chip
buffer for this array. Our approach is based on the concept of
parametric polyhedral sets to express the set of data elements
being used at various specific points of the computation. Those
sets correspond exactly to the data to be communicated, reused,
or stored. We then use a polyhedral code generator to scan those
sets, and properly modify the program by inserting the code that
scans communications sets, and change main memory references
in the modified source code to on-chip buffer references.



We first define the data space of an array A for a program. The
data space is simply the set of all data elements accessed through
the various access functions referencing this array, for each value
of the surrounding loop iterators where the reference is done. We
use the concept of the image of a polyhedron (e.g., the iteration
domain) by an affine function (e.g., the access function). The image
of a polyhedron D by an affine function F is defined as the set
{~y | ∀~x ∈ D , F(~x) =~y}.

DEFINITION 1 (Data space). Given an array A, a collection of

statements S , and the associated set of memory references FA
S

with S ∈ S , the data space of A is the set of unique data elements
accessed during the execution of the statements. It is the union of
the image of the iteration domain by the various access functions:

DS(A) =
⋃

S∈S

Image(FA
S ,D S)

We remark that DS(A) is not necessarily a convex set, but can still
be manipulated with existing polyhedral libraries. For example, in
Figure 1, the data space of DSR(B) for the first statement (R : line
4) is the 2-dimensional square set going from 1 to N− 2 in each
dimension. But for the second statement (S : line 7), DSS(B) is the
2D square set going from 0 to N. As we make the union, it means
DS(B) is the 2D square set going from 0 to N in each dimension.

In order to capture the data accessed at a particular loop level,
we must fix the value of the surrounding loop iterators to a certain
value in the data space expression, while preserving all inner loop
iterations. For the data space computation to be valid for any execu-
tion of this loop (nest), we resort to using parametric constants (i.e.,
whose value is fixed but unknown) in the formulation. All sets and
expressions computed will be parametric forms of those constants,
and therefore valid for any value these constants can take; they will
consequently be valid for any value the surrounding loop iterators
can take during the computation.

We first define the parametric domain slice, that will be the
enabler for defining the data space of a loop iteration.

DEFINITION 2 (Parametric domain slice). Given a loop nest with
a loop l of depth n surrounded by k− 1 loops, and an integer
constant α, the parametric domain slice (PDS) of loop l is a subset
of Zn defined as follows:

Pl,α = {(x1, . . . ,xn) ∈ Z
n|x1 = p1, . . . ,xk−1 = pk−1,xk = pk +α}

where p1, . . . , pn are parametric constants unrestricted on Z.

For example, for loop i in line 3 of Figure 1, we have:

Pi,1 = {(t, i, j) ∈ Z
3|t = p1, i = p2 +1}

This is a (parametric) set of 3D integer points with the first two
components of each point always having the same (parametric)
values. This set contains an infinite number of points, as the third
component takes any value in Z.

We can now adapt the definition of a data space to the subset of
data which is accessed by a loop iteration.

DEFINITION 3 (Data space of a loop iteration). Given an array A,
a collection of statements S surrounded by a loop l and their

associated set of memory references FA
S with S∈ S ′, and ~Pl,0 a PDS

for loop l, the data space of A is the set of unique data elements
accessed during one iteration of l:

DS(A,~Pl,0) =
⋃

S∈S

Image
(

FA
S ,

(

D S ∩Pl,0

)

)

To illustrate the power and generality of this approach, in Fig-

ure 2 we show the sets DS(A,~Pj,0) (left) and DS(A,~Pj,−1) (center),
the data space of the immediately preceding iteration, for the first j

loop (line 3) in the Jacobi2D example. By computing the difference
or intersection between those sets (right), we can capture naturally
the data reused between two consecutive iterations, as well as the
data that is not alive at the previous iteration.
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Figure 2. Computation of the Reuse (top) and PerIterC (bottom)
sets for the j loop of jacobi2D

Formally, the reused data space between consecutive iterations
of a loop is defined as follows. All data which is reused does not
need to be communicated at the next iteration.

DEFINITION 4 (Reuse space). Given an array A, and ~Pl,0 and
~Pl,−1 two PDS for loop l, the reused data space between two con-
secutive iterations of l is:

Reuse(A,~Pl,0) = DS(A,~Pl,−1)∩DS(A,~Pl,0)

The communication required for each loop iteration is defined
as follows. It consists in only the data elements that were not
accessed by the previous iterations.

DEFINITION 5 (Per-iteration communication). Given an array A,

and ~Pl,0 a PDS for loop l, then assuming the data reused between
two consecutive iterations is still in local memory, the data space
required to communicate in order to compute a given iteration of l
is:

PerIterC(A,~Pl,0) = DS(A,~Pl,0)−Reuse(A,~Pl,0)

Finally, to ensure that for the first loop iteration, all data is ready
in the on-chip buffer, we must communicate the per-iteration data
set but also initialize the on-chip buffer with the reuse set at the first
loop iteration, as no previous iteration has already loaded the data.

DEFINITION 6 (Initialization). Given an array A, the data to be
stored in the buffer before the loop starts is:

Init(A, l) = Reuse(A,~Pl,c)

with c = lb(l)− pk, where lb(l) is the lower bound expression of
the loop l and pk is the parameter associated with the loop l.

It is also required to store back to main memory any data
element that is produced. This is captured by the copy-out set as
defined below.

DEFINITION 7 (Per-iteration copy-out). Given an array A and ~Pl,0

a PDS for loop l, the copy-out set CopyOut(A,~Pl,0) storing written
data in on-chip buffer back to main memory is the data space

DSw(A,~Pl,0) which considers only the access functions FA
S that

correspond to written references.

We remark that as our framework computes the data reuse only
between two consecutive iterations, it does not necessarily capture
all the reuse potential in a loop nest. In particular, reuse between
two non-consecutive iterations (e.g., A[3i] and A[3i+6]) is not
exploited. We believe that is is not a strong limitation in practice,
as those cases only rarely occur, especially after having applied the
Tiling Hyperplane method to transform the original program.



3.3.2 Code Generation

Local buffer computation The polyhedral set defining the buffer

requirement for a given loop l is DS(A,~Pl,0). We take a simple
approach, which is based on computing the rectangular hull of DS
(that is, the smallest rectangle that contains the set DS). It offers the
advantage of generating a simple code with equally simple access
functions. On the other hand, space can be wasted in particular
when DS is not convex and contains holes, and/or when DS is a
skewed parallelogram. In our experiments, buffer sizes of up to 2×
the minimal required size have been allocated, due to this over-
approximation. Optimal allocation techniques do exist [20], and we
plan to investigate their implementation as future work.

We compute the rectangular hull of DS(A,~Pl,0) dimension by
dimension, using the following formula, for each dimension i:

dimi = pro ject(rectangularHull(DS(A,~Pl,0)), i)

bsi = lexmax(dimi,1)− lexmin(dimi,1)

where pro ject(DS, i) projects the set DS onto the dimension i, and
lexmax(dimi,1) returns the coordinate of the extremal (maximal)
point of the one-dimensional set dimi. We remark that this stage,
this coordinate and the entire sets are parametric forms of the loop
bounds.

Code generation algorithm Because of our generalized formal-
ism above, the communication scheduling and final code gener-
ation has become straightforward. Our algorithm for the local
memory promotion of an array at a given loop is shown in Fig-
ure 3. Function createLocalBufferDecl creates a declaration to a
local buffer of same data type as the argument array, and its size is
computed as the rectangular hull of the argument set. Function cre-

ateScanningCodeIn creates an imperative C program that scans all
elements of the polyhedral set given as an argument. For each point
in this set, a statement A l[i%bsi].. = A[i].. (or the opposite
assignment for createScanningCodeOut) is executed, where bsi is
the buffer size along dimension i. All parameters pi introduced by
the PDS used are replaced with the loop iterator variable symbol
they were assigned to. convertGlobalToLocalRef replaces all refer-
ences to the original array with references to the local array, using
modulo indexing similar to the copy statement above.

LocalMemoryPromotion:

Input:

A: array to promote

l: loop along which A is promoted

Output:

l: in-place modification of l

1 Al ← createLocalBu f f erDecl(A, DS(A, l))
2 pre ← createScanningCodeIn(Al , Init(A, l))
3 pic ← createScanningCodeIn(Al ,PerIterC(A, l))
4 wout ← createScanningCodeOut(Al ,WriteOut(A, l))
5 convertGlobalToLocalRe f (l,A,Al)
6 insertFirstInLoopBody(l, pic)
7 insertLastInLoopBody(l,wout)
8 prependBlock(l, pre)
9 prependBlock(getEnclosingFunc(l),Al)

Figure 3. Code generation algorithm for a loop l

Correctness of the algorithm Our algorithm is robust to any
value taken by the loop iterator for which the buffer communication
is computed, per virtue of the PDS mechanism. As a consequence,
simply translating the various sets described above for each value
of the surrounding and current loop iterators is sufficient to capture
exactly the data accessed by each iteration. We also note that this
algorithm is a data layout transformation only: the scheduling of

the operations remains unchanged after application of the local
memory promotion pass. Finally, to ensure correctness we write
back all data elements written during a loop iteration at the end of
the iteration. While there are occurrences where a lower amount of
write communications may be performed, such as with reduction
loops, this ensures that an element being written and then accessed
at a much later iteration will hold the correct value.

3.4 HLS-Specific Optimizations

Despite very significant advances in HLS, a variety of comple-
mentary source-level transformations are often needed to produce
the best result. In particular, fine-grain parallelism exposure and
explicit overlapping of computation and communications dramati-
cally impacts the performance. We leverage the power of the poly-
hedral model to precisely capture all sources of parallelism, reorga-
nize the computation to pack sequential tasks together and recog-
nize sets of parallel tasks, and produce a fine-grain task dependence
graph that is used for task scheduling by the HLS tool.

3.4.1 Communication Prefetching and Overlapping

It is critical to properly overlap communication and computation,
in order to minimize the penalty of data movements. A common
technique is to prefetch in advance the data that will be required
later by the computation. Following our paradigm of managing
communications at the loop iteration level, the set of data elements
that should be prefetched at the current iteration is defined as
follows.

DEFINITION 8 (Communication prefetch). Given an array A, and
~Pl,0 and ~Pl,1 two parametric iteration vectors for loop l, the data
that needs to be communicated to execute the next iteration is:

Pre f etch(A,~Pl,0) = PerIterC(A,~Pl,1)

When operating on tiled programs, we remark that if the loop along
which we bufferize is a tile loop, this set corresponds to the data
set being used by the next tile, minus elements which are reused
between consecutive tiles. Therefore inter-tile reuse between con-
secutive tiles is automatically captured in our framework.

This set is scanned at the beginning of the current loop iteration,
and the associated code segment is put in a dedicated function (i.e.,
a task) that can be executed in parallel with the rest of the loop
iteration that has also been put in a dedicated function.1 In terms of
storage, one can implement a simple double-buffer for the PerIterC
and Pre f etch sets, with a buffer swap at the beginning of each loop
iteration.

3.4.2 Loop Pipelining and Task Parallelism

One of the most important hardware optimizations for high-
performance RTL design leverages the fine-grain parallelism avail-
able in the program. Loop pipelining pipelines consecutive itera-
tions of the loop, and this amounts to executing loop iterations in
parallel if the loop is synchronization-free. In this work we auto-
matically apply post-transformations to expose parallelism at the
innermost loop level, if possible. Previous work on SIMD vec-
torization for affine programs has proposed effective solutions to
expose inner-loop-level parallelism [12, 37], and we seamlessly
reuse those techniques to enable effective loop pipelining on the
FPGA. This is achieved by using additional constraints during and
after the tiling hyperplanes computation, to preserve one level of
inner parallelism. As a result, we mark all innermost loops with a
specific #pragma AP pipeline II=1, and let the HLS tool find
the best II it can for this loop. And for all innermost parallel loops,
we also insert #pragma AP dependence inter false pragmas

1 AutoESL is able to exploit task-level parallelism in this case.



for all variables which are written in the loop iteration, to prevent
conservative dependence analysis.

There exists a significant amount of parallelism inside loop it-
erations, in particular when prefetching is implemented. That is,
some operations inside a loop iteration can be executed concur-
rently, and synchronization is (possibly) required at the end of the
loop iteration. Such parallelism can be captured effectively in the
polyhedral representation by focusing the analysis on the modeling
of the possible order of statements within an iteration of a given
loop. We implemented this analysis as a post-pass, after polyhedral
code generation for the parallelism/locality extraction. Polyhedral
transformations may indeed expose more task-level parallelism in-
side a loop iteration after code generation (precisely, after the sep-
aration step [10]) has been been performed. Focusing on a single
loop at a time by using the appropriate PDS, we are able to auto-
matically compute a graph of dependent operations within a given
iteration of the loop body. This dependence graph is used to re-
structure the code as a collection of separate functions with distinct
arguments for functions/tasks that can be run in parallel.

3.4.3 Additional Optimizations

Finally, we have implemented a series of complementary optimiza-
tions that have a significant impact on the performance of the fi-
nal design. Specifically, we implemented a simple common sub-
expression elimination, loop bound normalization [8], simplifica-
tion and hoisting, and a simplification of the circular buffer access
functions. Indeed, affine loops generated increment by stride of 1,
and modulo expressions can easily be replaced by a simple loop in-
crement and a test against the modulo value at the end of each loop
iteration.

4. Resource-Constrained On-Chip Buffer

Management

The algorithm presented above to compute communications and
the associated on-chip buffer size is designed to work seamlessly
for any loop in the program. We now show how to leverage the
generality of this approach to transform any affine program to use
on-chip memory for all computations, while meeting any user-
defined resource constraint on the maximal on-chip buffer size. We
proceed in two steps: first we present how to build the solution
space, and then we show how to find an optimal solution satisfying
both bandwidth minimization and buffer size requirement.

4.1 Search Space Construction

The first step is to build the set of possible solutions for each
array and each loop in the program. This is shown in Figure 4.
In order to build the solution set, we simply apply the process
described in the previous section for each arrays and each loop
individually. That is, for the cross-product of all arrays and loops,
we produce a tuple containing the buffer size requirement (BS)
if bufferizing this specific array along this specific loop, and the
bandwidth requirement (BW ). BS is computed using the formula
shown in Section 3.3.2, and BW is computed as the product of the
cardinality of the PerIterC set by the number of executions of the
loop, which can be exactly computed at compile-time for SCoPs,
as later shown in Section 5.

By design of the algorithm, the number of possibilities is very
tractable. It is the product of the number of loops in the program
by the number of arrays; in practice most of the time for SCoPs
this number is below 100. Our implementation is very fast, and
computing all solutions is achieved in a matter of seconds for
complex tiled 3D stencil programs.

We note that in order to guarantee correctness for the case of
imperfectly nested loops, we enforce that, for a given array, all

BuildSolutionSet:

Input:

P: input SCoP

Output:

solset: solution set for loop selection

solset ← createEmptySetofTuples

forall arrays a in P do

forall loops l in P do

ldup ← cloneAST(l)

LocalMemoryPromotion(a,ldup)

BS ← getBufferVolume(ldup)

BW ← getCommVolume(ldup)

insertTuple(solset,{a,l, (BW,BS)})
end do

end do

return solset

Figure 4. Create solution space

loops at a same nesting level are bufferized. This may lead to
conservative solutions, but greatly simplifies the code generation
process.

4.2 Optimization Problem

We seek a solution that will systematically satisfy the objective that
the sum of the buffer sizes required does not exceed the available
on-chip resources (e.g., the number of BRAMs). That is, we want
to find the loops l for all arrays a such that:

∑
a∈Arrays(P)

BS(a, l)< maxBuffSize

We note that as soon as the largest data space of a single iteration
of the inner loops (that is usually in the order of the number of
registers required to execute the iteration, assuming no spilling) is
below maxBuffSize, our algorithm will find a solution. In practice,
the number of BRAMs available on-chip is significantly larger than
the number of registers required to execute a single iteration; hence
our method will always find a valid solution.

Satisfying the above constraint let us find a solution that will
meet hardware resource limitations. In order to find an (optimal)
solution, we need to add the optimization objective. In this work
we choose to minimize the bandwidth requirement (i.e., the com-
munication volume). We note that this solution relates only to the
communication scheduling, for a given fully specified program. We
aim here at computing a valid generated code for a given tiled pro-
gram whose tile sizes have been already set. The problem of finding
a final solution that will maximize bandwidth usage is addressed
in the next section, and is framed as a tile size selection problem,
solved using fast design-space exploration techniques. The final
constrained bandwidth minimization problem is stated as:

minimize ∑
a∈Arrays(P)

BW(a, l)

s.t. ∑
a∈Arrays(P)

BS(a, l)< maxBuffSize

Solving this problem is achieved by repeatedly scanning the so-
lution set obtained with BuildSolutionSet. For each array and
each loop we compute the total bandwidth and buffer size require-
ment to find the solution with minimal bandwidth that meets the
buffer size constraint. The complexity of finding the optimal solu-
tion is nd , where n is the number of loops in the program and d the
number of arrays. Despite being an exponential solver, in practice it
is extremely fast. For instance a 3D image processing algorithm we
tested has 12 loops and 4 arrays, leading to computing about 20,000
sums of 4 elements, which is done in a negligible time on modern
processors. For too large spaces, one can implement approximate



solving heuristics based for instance on dynamic programming. No
such case has been encountered in our test suite.

5. Fast DSE for Complete Optimization

5.1 Methods for Fast DSE

Our objective is to enable quality of result (QoR) computa-
tion by AutoESL without having to resort to complete synthe-
sis/simulation, in order to speed up the design-space exploration
phase. This is particularly important for our method as we employ
DSE to search the space of possible tile sizes, for tilable programs.

5.1.1 Capturing the Exact Control Flow

In order to obtain accurate metrics from AutoESL RTL latency
estimator, we must provide it with complete information about each
loop in the program. The loop trip count (minimal, average and
maximal) of a loop must be provided for each and every loop to be
mapped to the FPGA. While for general programs it is impossible
to accurately compute the loop trip count at compile-time, this is
not an issue with SCoPs as addressed in this paper. As the control
flow is static and therefore not data dependent, we can compute the
number of times each statement in the loop body is executed, thus
deducing the trip count of the surrounding loop. This is a critical
benefit of manipulating SCoPs: design-space exploration can be
accurately achieved without synthesizing/running or simulating the
application. We use again our concept of PDS to capture the trip
count of a statement in the following formula.

DEFINITION 9 (Statement trip count for a loop). Given a state-

ment S surrounded by a loop l, and ~Pl,0 a parametric iteration
vector, the trip count (noted STC) of l for S is:

D S,l = D S∩Pl,0

STC(D S, l) = lexmax(D S,l ,k+1)− lexmin(D S,l ,k+1)

where k is the number of loops surrounding l dimension.

The computation of the minimal and maximal trip count of a
loop follows naturally.

DEFINITION 10 (Loop trip count). Given a loop l and a collection
S l of statements surrounded by l. The minimal and maximal trip
count of l are given by:

TCmin(l) = min
S∈S l

(STC(D S, l)) TCmax(l) = STC((
⋃

S∈S l

D S), l)

This trip count computation is performed for each loop of the
program. We note that as we have described the communication
sets in a purely polyhedral fashion, loops introduced to scan the
various data sets are necessarily following the static control flow
requirements, and can be exactly analyzed at compile-time. When
entering the final design space exploration stage, only numerical
values can be provided to AutoESL to represent the loop trip count.
At this stage, parameters (such as problem size, etc.) are inlined to
their numerical value, leading to simple scalar expressions for the
loop trip count.

5.1.2 Accurate Memory Latency Estimation

Off-chip SDRAM memory access has a high latency and limited
bandwidth. To fully utilize the memory bandwidth, we use two
FIFOs as to bufferize (a) the memory requests and (b) the fetched
data, and access the off-chip memory in bursts. AutoESL does not
natively model the latency consumed by off-chip memory accesses.
To model this latency and throughput of the off-chip accesses, we
modify the functions scanning the various communication sets. We
insert cycle-wasting operations to emulate the time spent doing the
corresponding off-chip accesses.

A property of our approach is that communications are ex-
ecuted in bursts, for each array and set to be scanned. So, at
the beginning of each chunk of off-chip accesses we insert a
burst wait() function call, which corresponds to the burst time
overhead (startup latency). We also insert data wait() function
calls for each word access. We have implemented these functions
to force the design of a p-cycle long operation in the critical path
of the function, so that AutoESL will count the additional latency
introduced by burst wait() and data wait() in the final execu-
tion latency report, so as to emulate the time taken by transferring
data to/from off-chip memory. In our experiments, we have micro-
benchmarking on the Convey HC-1ex, and obtained p= 131 cycles
for the burst waiting time, and p = 1.15 cycles for the per-word ac-
cess time. Using this mechanism we accurately capture the band-
width throughput per communication FIFO in our target platform.

5.1.3 Communication/Computation Functions

Finally, in order to effectively exploit the FIFO communication
mechanism, and in order to simplify the DSE method, we perform
a final AST-based transformation to the generated program. First,
we create a communication prefetch function by cloning the en-
tire program generated by the previous algorithms and removing
all loops/code segments that do not relate to off-chip/on-chip com-
munication. We then replace all communications by non-blocking
FIFO send requests. That is, all requests are sent as fast as possible
until the request buffer of the FIFO module is full (the number of
in-fly requests is limited by the implementation), which makes the
prefetch function wait.

Second, we modify the transformed program (that contains the
actual computations) such that all communications are blocking
FIFO receive requests. That is, until the data is available on the
FIFO, the program will wait. We finish by encapsulating the pro-
gram in a computation function.

We conclude the transformation process by calling the commu-
nication prefetch and computation functions simultaneously in the
main FPGA function, so that communication prefetch and com-
putation are perfectly overlapped. We note that for the fast DSE
approach, the cycle wasting functions are inserted in the prefetch
function, thus emulating the time taken to transfer the data from
off-chip memory to the FIFOs.

5.2 Experimental Results

5.2.1 Implementation Details

The entire tool-chain presented in this paper has been fully imple-
mented as an open-source software, PolyOpt/HLS.2 Specifically,
we have based our work on the PolyOpt/C polyhedral compiler [34]
we have implemented, which is itself based on the LLNL ROSE
source-to-source compiler; and on PoCC, the Polyhedral Compiler
Collection [4] we have implemented. All polyhedral operations are
performed using Sven Verdoolaege’s ISL library [38], and we use
CLooG [10] for the polyhedral code generation part. Starting from
an input sequential C program to be executed on the CPU, our tool-
chain automatically extracts regions where the framework can be
applied, performs data locality, parallelization and tiling loop trans-
formations, local memory promotion and all the additional HLS-
specific optimizations mentioned above. Each SCoP is mapped to
the FPGA, using a custom FIFO data management module.

5.2.2 Experimental Setup

Target FPGA platform We design the optimized codes for a
multi-FPGA platform Convey HC-1ex [2], which provides four
Xilinx Virtex-6 FPGAs (xc6vlx760-1-ff1760) and total bandwidth
up to 80GB/s. We use the Xilinx ISE toolchain, version 14.2, which

2 Available at http://cadlab.cs.ucla.edu/PolyOptHLS.



has been validated by Convey for the HC-1. For HLS, we use
AutoESL, version 2011.4 [3]. The RTL is connected to memory
interfaces and control interfaces provided by Convey, which have
been designed to operate at 150MHz. Hence the working frequency
of our core design is set to 150MHz. Off-chip memory runs at
300HMz.

Benchmark Description We evaluate our framework using two
core image processing algorithms for 3D MRI, denoise and seg-

mentation. These algorithms are taken from the CPU implementa-
tion of the CDSC medical imaging pipeline [1,16,17]. We also eval-
uate 2 benchmarks from the PolyBench/C test suite, representative
of compute-bound and memory-bound numerical kernels. They are
described in Table 1. We report the total number of operations as
x×y where x indicates the number of operations per loop iteration,
and y the number of iterations. All benchmarks use single-precision
floating point arithmetic in the input C code. is well-known that

Table 1. Description of the benchmarks used
Benchmark Description #fp ops

denoise 3D Jacobi+Seidel-like 7-point stencils 61×2563×15

segmentation 3D Jacobi-like 7-point stencils 67×2563×150

DGEMM matrix-multiplication 3×20483 +20482

GEMVER sequence of mv 11×20482

5.2.3 Details of DSE Results

The time taken by our framework is decomposed as follow. For
each point in the design space (e.g., a different tile size), the end-
to-end transformation from the original C program to the AutoESL-
friendly input C file (this includes program transformations for lo-
cality, on-chip buffer management and optimizations, and HLS-
specific optimizations) takes about one minute, for the most com-
plex program. AutoESL transforms the input C program and gener-
ates RTL as well as complete latency/usage reports in at most two
minutes in our experiments. So, testing 100 points takes at most
five hours, and took usually around two hours in our experiments.

We have set a maximal buffer size limit to 1440 BRAMs, as
it is the maximum for the Virtex-6 FPGA on the Convey HC-1.
To capture multiple scenarios of bandwidth usage, we evaluated
about 100 different rectangular tile sizes, using different power-of-
two values in each of the three tile dimensions. Each tile size will
have a different buffer requirement, and a different communication
volume.

Figure 5 plots the results of the fast DSE framework that we im-
plemented on three representative benchmarks, for a subset of the
entire computation. In this figure, we compare side-by-side the off-
chip communication volume on the y axis, in number of 32-bit el-
ements communicated, with the total off-chip communication time
on the x axis, as reported by AutoESL. DSE results are reported
using a single PE per FPGA.

We observe significant variations in the communication volume
that can be transferred in the same amount of time. For instance,
the time to transfer the same amount of data can vary by more than
3× for Segmentation. This is because the quality of the RTL gen-
erated by AutoESL depends on the source code generated by our
framework. Multiple factors influence the performance of the gen-
erated code. First, loop bounds used to compute the data space to
communicate may be significantly more complex between two tile
sizes. This is an artifact of polyhedral code generation, where gen-
erated loop bounds may contain tens or more sequences of min,
max, ceil and f loor functions. For some tile sizes not evenly divid-
ing the data space to communicate, more complex code is generated
and the QoR is lowered. Second, the benefit of loop pipelining de-
pends on the loop trip count of the innermost loops. For loops with
a too-small trip count (lower than the pipeline depth), the benefit of
pipelining will be reduced. As a consequence, two tile sizes having

a similar communication volume (e.g., 4×8×1 and 1×4×8) will
see a different QoR. While analytical modeling of those specific
factors may be achievable, it is important to note that AutoESL is a
production compiler. As such, it is fragile and sensitive to the input
program shape, as different source codes triggers different internal
optimizations, therefore leading to different QoR. Such effect is a
well-known artifact of compilers, and has been widely observed
and discussed for production compilers [35].

All those factors confirm our claim that using fast DSE ad-
dresses important considerations for the final performance. It is
very unlikely that all artifacts related to QoR obtained by the HLS
tools can be modeled analytically, as it would be equivalent to
building an analytical model of an optimizing compiler. In addition,
because of the very fast speed of AutoESL, this modeling effort is
non-necessary. So, RTL generation is used to capture those effects
such as as how good a compiler (our framework or AutoESL) will
be at optimizing different program variants.

Figure 6 shows, for the same benchmark and design space, the
Pareto-optimal points for total time and buffer size requirement.

We observe a trade-off between the buffer size requirement and
the total time, illustrative of tile size exploration results. Indeed,
the majority of data reuse is achieved with tile sizes that fit in a few
tens of kB; for instance for segmentation a tile size of 4×8×256
uses only 73 BRAMs, and has achieved a communication volume
reduction of 20× with respect to a non-tiled variant. Using a larger
tile size requires a significantly larger buffer size (typically holding
a complete 2D slice of the image), but achieves only a small
communication improvement (21× vs. 20× above). In addition,
as pointed out above, one key challenge in improving the total
execution time is taking into account all compiler optimization
effects. With our DSE approach, we can select the transformed
variant that achieves the best estimated total time, this takes into
account all high-level synthesis/RTL generation artifacts.

5.2.4 Complete Results

Table 2 summarizes the best version found by our framework, for
each tested benchmark. We report #PEs the number of replications
of the full computation we have been able to place on a single
Virtex-6 FPGA as in the Convey HC-1, showing the level of coarse-
grain parallelization we have achieved. BRAM and LUT are totals
for the set of PEs placed on the chip.

Table 2. Characteristics of Best Found Versions
Benchmark tile size #PEs #BRAM #LUT

denoise 4×8×128 2 132 178544

segmentation 4×8×256 8 584 177288

DGEMM 8×256×32 16 320 112672

GEMVER 128×128 10 500 140710

Table 3 reports the performance, in GigaFlop per second, of
numerous different implementations of the same benchmark. out-

of-the-box reports the performance of a basic manual off-chip-
only implementation of the benchmark, without our framework.
PolyOpt/HLS-E reports the performance achieved with our auto-
mated framework. Those are AutoESL results obtained with our
fast DSE framework. Hand-tuned reports the performance of a
manually hand-tuned version serving as our performance reference,
from Cong et al. [17]. It has been designed through time-consuming
source code level manual refinements, specifically for the HC-1ex
machine. It demonstrated that a 4-FPGA manual design for denoise

and segmentation systematically outperforms a CPU-based imple-
mentation, both in terms of performance improvement (from 2×
to 20×) and energy-delay product (up to 2000×), therefore show-
ing the great potential of implementing such 3D image processing
algorithms on FPGAs [17].
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Figure 5. Communication time vs. Communication volume
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Figure 6. Total time vs. On-Chip Buffer Size Requirement, Pareto-optimal points

We observe that for denoise (only 2 PEs were generated by
PolyOpt/HLS) the final performance, despite being significantly
better than an off-chip-based solution, remains far from the man-
ual design (which uses 4 PEs). On one hand, the code we generate,
and especially the loop structures, are more complex for denoise

than, e.g., segmentation. This leads to under-performing execution
for our automatically generated code. On the other hand, the ref-
erence manual implementation uses numerous techniques not im-
plemented in our automatic framework, such as in-register data
reuse, fine-grain communication pipelining, and algorithmic modi-
fications leading to near-optimal performance for this version.

For segmentation, we outperform the manual design, despite the
clear remaining room for improvement our framework still has, as
shown by the denoise number. We mention that semi-automated
manual design can be performed on top of our framework, to
address optimizations we do not support, such as array partitioning.

Table 3. Side-by-side comparison
Benchmark out-of-the-box PolyOpt/HLS-E hand-tuned [17]

denoise 0.02 GF/s 4.58 GF/s 52.0 GF/s
segmentation 0.05 GF/s 24.91 GF/s 23.39 GF/s

dgemm 0.04 GF/s 22.72 GF/s N/A
gemver 0.10 GF/s 1.07 GF/s N/A

Finally Table 4 compares the latency as reported by AutoESL
using our memory latency framework for fast DSE, against the
wall-clock time observed on the machine after full synthesis of
the generated RTL. We report the performance of a single PE call
executing a subset (slice) of the full computation.

Table 4. AutoESL vs. full synthesis comparison (in cycles)
Benchmark AutoESL only full synthesis

denoise-1PE (1/32 slice) 23732704 25254164 (+6%)
segmentation-1PE (1/32 slice) 131984559 148878928 (+12%)

dgemm-1PE (1/64 slice) 5022287 5055335 (+1%)

6. Conclusion

High Level Synthesis (HLS) tools for synthesizing designs spec-
ified in a behavioral programming language like C/C++ can dra-
matically reduce the design time especially for embedded systems.
HLS systems have now reached a level of advancement to be able
to generate RTL that comes quite close to hand generated designs.
However, the current state-of-the art is still very far from being able
to take a simple high-level description of a system in C/C++ and
derive an efficient FPGA implementation. Currently, an expert de-
signer must perform a number of manual source-level transforma-
tions of the input C/C++ code to create an “HLS-friendly” C/C++
program before an effective hardware design can be synthesized by
the HLS tool.

We have provided in this paper a complete and fully imple-
mented compiler support to alleviate the burden of manually trans-
forming an input sequential C program into a version that can
be effectively mapped to FPGA using HLS tools. Our approach
leverages the polyhedral compilation framework to automatically
transform the input program for data reuse improvement, as well
as for outer and inner parallelism extraction. We have designed
and implemented a novel and powerful end-to-end solution for on-
chip buffer optimization, that automatically implements the avail-
able data reuse in a loop nest. This approach is able to meet any
hardware-based resource constraint on the maximal buffer size.
In addition we presented a complete fast design space exploration
technique, leveraging the specifics of polyhedral program. As a re-
sult, we have performed extensive design space exploration using
the Xilinx ISE tool-chain on medical imaging algorithms. Exper-
iments showed very significant performance improvements over
purely out-of-the-box off-chip automatic solutions, and our auto-
mated framework even beats in one case a hand-tuned reference
implementation of a segmentation algorithm.
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