
Optimistic Delinearization of Parametrically Sized Arrays
Tobias Grosser
INRIA/ETH Zurich∗

tobias.grosser@inf.ethz.ch

J. Ramanujam
Louisiana State University

ram@cct.lsu.edu

Louis-Noël Pouchet
The Ohio State University

pouchet@osu.edu
P. Sadayappan

The Ohio State University
sadayappan.1@osu.edu

Sebastian Pop
Samsung Austin R&D Center

sebpop@gmail.com

ABSTRACT
A number of legacy codes make use of linearized array references
(i.e., references to one-dimensional arrays) to encode accesses to
multi-dimensional arrays. This is also true of a number of opti-
mized libraries and the well-known LLVM intermediate represen-
tation, which linearize array accesses. In many cases, the only in-
formation available is an array base pointer and a single dimen-
sional offset. For problems with parametric array extents, this off-
set is usually a multivariate polynomial. Compiler analyses such as
data dependence analysis are impeded because the standard for-
mulations with integer linear programming (ILP) solvers cannot
be used. In this paper, we present an approach to delinearization,
i.e., recovering the multi-dimensional nature of accesses to arrays
of parametric size. In case of insufficient static information, the
developed algorithm produces run-time conditions to validate the
recovered multi-dimensional form. The obtained access descrip-
tion enhances the precision of data dependence analysis. Experi-
mental evaluation in the context of the LLVM/Polly system using
a number of benchmarks reveals significant performance benefits
due to increased precision of dependence analysis and enhanced
optimization opportunities that are exploited by the compiler after
delinearization.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processor – Compilers

Keywords
polyhedral analysis, linear memory layout, multi-dimensional ar-
rays

1. INTRODUCTION
Dense multi-dimensional arrays are data structures widely used

in programs, such as in scientific, engineering and image process-
ing applications. Multi-dimensional arrays are native constructs in
languages such as Java, FORTRAN or C99, but unfortunately not in
languages like C++ or C89. Given a dense C99 multi-dimensional

∗Finalized at the Dep. of Computer Science, ETH Zurich
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICS’15, June 8–11, 2015, Newport Beach, CA, USA.
ACM 978-1-4503-3559-1/15/06 ...$15.00.
DOI: http://dx.doi.org/10.1145/2751205.2751248.

array A[N][N], it can be equivalently viewed as a one-dimensional
array Alin[N*N]: the memory layout of data described by a dense
multi-dimensional array corresponds to a linear, consecutive chunk
of data that can be viewed as a vector of memory locations. There-
fore a particular memory cell reference in the multi-dimensional
view, e.g., A[i][j] is linearized to Alin[i*N + j].

Using a multi-dimensional view usually exposes simpler expres-
sions for the subscript in each dimension (e.g., i and j) while the
linearized view can complicate numerous compiler analyses and
optimizations: i*N + j is a polynomial. Dependence and data-
flow analysis on affine array accesses is a well known compiler
technique [3], whereas performing the same analyses on polyno-
mial expressions is significantly more complex and commonly not
performed by many compilers. Therefore the ability to recover
multi-dimensional array views is important to obtain precise data
dependences. Such information enables a wide range of loop opti-
mizations, and is essential for automatic parallelization, including
GPGPU off-loading and MPI parallelization. For the latter two,
the knowledge of multi-dimensional array views also eases precise
memory footprint analyses, as well as the generation of communi-
cation code.

With languages not offering native support for multi-dimensional
arrays, programmers must use explicitly linearized array index ex-
pressions with 1D arrays to encode algorithms that are naturally
expressed using multi-dimensional arrays. Even with languages
like C99 that provide native support for multi-dimensional arrays,
the internal representation of compilers like Clang/LLVM only pro-
vides a linearized view of multi-dimensional arrays, for consistency
across multiple input languages. Various legacy codes and several
modern C++ template libraries also make use of linearized array
references to encode accesses to multi-dimensional arrays. List-
ing 1 shows a function that initializes a sub-array of size s0×s1×s2
located at offset o0×o1×o2 inside a larger array of size n0×n1×
n2, implemented with C99 variable length arrays. Looking at the
internal LLVM [5] representation after compiling with Clang (List-
ing 2), it may be seen that all array references have been linearized.
LLVM’s scalar evolution analysis [10] derives the access to A as
A[(n2(n1o0 + o1) + o2) + n1n2i+ jn2 + k]. Neither the array di-
mensionality nor the extent of individual dimensions is preserved.

We use a simple example to illustrate the impact of multi-dimen-
sional array views on compiler optimization. The kernels in List-
ing 3 copy data from the odd rows of a 2D array to the even rows.
The code has been deliberately made inefficient by accessing the
data column-wise instead of row-wise. If a compiler can success-
fully prove the absence of data-dependences in this loop nest, it
can interchange the two loops to avoid the inefficient data accesses
and obtain significantly better performance. We compile three ver-
sions of the code. The first two versions mimic a multi-dimensional

351

void set_subarray(unsigned n1, unsigned n2,
unsigned o0, unsigned o1, unsigned o2,
unsigned s0, unsigned s1, unsigned s2,
float A[][n1][n2]) {

for (unsigned i = 0; i < s0; i++)
for (unsigned j = 0; j < s1; j++)
for (unsigned k = 0; k < s2; k++)

S: A[i + o0][j + o1][k + o2] = 1;
}

Listing 1: Initialization of sub-array (multi-dimensional)

define void @set_subarray(i32 %n1, i32 %n2, i32 %o0, i32 %o1,
i32 %o2, i32 %s0, i32 %s1, i32 %s2, float* %A) {
; for i:
; for j:
; for k:

%add = add i32 %k, %o2
%add1 = add i32 %j, %o1
%add2 = add i32 %i, %o0
%0 = mul nuw i32 %n1, %n2
%1 = mul nsw i32 %add2, %0
%2 = mul nsw i32 %add1, %n2
%idx1 = add i32 %1, %2
%idx2 = add i32 %idx1, %add
%idx3 = getelementptr float, float* %A, i32 %idx2
store float 1.000000e+00, float* %idx3

; endfor k
; endfor j
; endfor i

}
Listing 2: Internal representation in Clang/LLVM

array using a macro that yields a linearized access into a single-
dimensional array. Version #1 fixes the number of elements in
the inner array dimension at compile time (N = 20000) whereas
#2 uses a symbolic value for the size of the inner array dimen-
sion. Version #3 uses C99 variable-length arrays to make the two-
dimensional symbolically sized shape explicit to the compiler. If
compiled with the Intel icc 15.0 compiler both #1 and #3 are ex-
ecuted in 2 seconds, whereas #2 takes 15 seconds. icc is not able
to perform the beneficial loop interchange for #2, but performs it
for the other two versions. As loop interchange is clearly beneficial
here, icc’s inability to perform loop interchange is likely caused by
imprecise and overly conservative data dependence information.

#define A_2D(o0, o1) A[(o0) * N + (o1)]
void oddEvenCopyLinearized(long N, float *A) {
#ifdef FIXED_SIZE

N = 20000;
#endif
for (long i = 0; i < N; i++)
for (long j = 0; j < N; j++)

A_2D(2 * j, i) = A_2D(2 * j + 1, i);
}
void oddEvenCopy2DArray(long N, float A[][N]) {
for (long i = 0; i < N; i++)
for (long j = 0; j < N; j++)

A[2 * j][i] = A[2 * j + 1][i];
}

Listing 3: Dependence free odd-even copy within an array

In this paper, we address the delinearization problem: to infer
equivalent multi-dimensional views of linearized arrays. This prob-
lem has been previously addressed by the work of Maslov [7] and
Cierniak [2], but in a much more restricted context than we do.
These previous efforts developed static analysis approaches that
guaranteed a compile time solution under restricted scenarios: ei-
ther produce a delinearized version, or declare infeasibility. In con-
trast, we significantly broaden the scope of programs that are delin-
earized, by taking an hybrid static/dynamic approach. Our analysis

approach optimistically deduces a delinearized form, along with a
set of validity conditions to be dynamically checked at runtime. If
the runtime check passes, the deduced delinearized form is guar-
anteed to be equivalent to the linearized input, but if the dynamic
check fails, no delinearized form is available. Although the check is
dynamic, such an approach allows for conditional code with static
program transformations applied to the delinearized form: the run-
time check determines whether the statically optimized version us-
ing the delinearized form is executed or the unmodified version us-
ing the original linearized form is executed. We make the following
contributions:
• We develop an effective approach to delinearization, infer-

ring multi-dimensional views of arrays of parametric size;
this approach also handles cases where statically proving the
correctness of the recovered multi-dimensional view is infea-
sible.

• We implement and incorporate important parts of the ap-
proach into the Polly/LLVM system, thereby increasing the
precision of data dependence analysis in Polly.

• We present experimental results demonstrating the benefit of
the delinearization approach in enhancing performance opti-
mization.

2. PROBLEM STATEMENT
Given a set of single dimensional array accesses with index ex-

pressions that are multivariate polynomials in terms of loop iter-
ators and symbolic program parameters, and a set of correspond-
ing iteration domains, derive an equivalent multi-dimensional view
with linear array index expressions.

The view consists of 1) a multi-dimensional array definition (in-
cluding the number of array dimensions and sizes for all but the
outermost dimension), 2) for each original array access expres-
sion, a corresponding multi-dimensional array index expression.
We impose the following set of conditions on the derived multi-
dimensional view:
• (R1) Affine: The new access functions are affine in loop pa-

rameters and program parameters.
• (R2) Equivalence: For each array access, the memory lo-

cation referenced by the original linearized subscript expres-
sion and the memory location obtained from the multi-dimen-
sional view, after lowering it using the derived array sizes for
a row-major array layout, are identical for all loop instances
within the iteration space.

• (R3) Within bounds: The array subscript expressions (for
all but the outermost dimension) are within the bounds of the
multi-dimensional array, for all iteration instances within the
iteration space.

For cases where the multi-dimensional view cannot be statically
proven to be equivalent to the input linearized form, we derive
a multi-dimensional view and provide a set of conditions under
which the view is valid. R1 ensures that we can represent the result-
ing access expressions as affine integer maps. R2 ensures that the
multi-dimensional form of the array has the same access character-
istics as the single dimensional array. R3 ensures together with R2
that if we define a relation R between the elements of the linearized
and the multi-dimensional view of the linearized array such that
two elements are related if and only if they map to the same data
location, this relation is always bijective. This property is impor-
tant as it ensures that for each actual memory location there is only
a single data location in our model; this is necessary for the correct
computation of data dependences.

352

3. ARRAYS OF PARAMETRIC SIZE
We now present an algorithm to delinearize a 1D array reference

in the form of a multivariate polynomial indexing expression into
a set of affine indexing functions referencing a multi-dimensional
array of shape A[P0][P1] . . . [Pn−1], Pi ∈ P with P referring to the set
of program parameters. We obtain a multi-dimensional array shape
with the size of each dimension being defined by a single parame-
ter, with multiple dimensions possibly sharing the same parameter.

3.1 Basic algorithm
We propose a basic algorithm consisting of the following steps:
1. Collect possible array size parameters
2. Derive dimensionality and array size
3. Compute multi-dimensional access functions
4. Derive validity conditions

We first collect information about possible array size parameters,
symbolic values unknown at compile time that correspond to the
size of an array dimension in the multi-dimensional view. To do
this, we expand the given polynomial expression into a sum of
products. From this sum, we extract all terms that contain both a
loop induction variable and (possibly multiple) parameters. Those
terms are interesting as the presence of a term that multiplies a pa-
rameter with an induction variable makes the expression non-affine.
However, in case a parameter P is an array size parameter, P may
be removed from the index expressions during delinearization, so
that the original expression is turned into an access with affine sub-
script expressions. Consequently, we guess that P defines the size
of at least one array dimension.

As the second step, we derive the dimensionality and the size of
the array. To do this we start from the terms obtained in the previous
step and assume all of them form products. In case a term is not a
product, we treat it as a product with just a single factor. We remove
from each term all factors that are non-parametric. The resulting
terms are sorted according to the number of contained factors and
we check that the terms with fewer factors symbolically divide the
larger terms. If this is true, we assume the results of these symbolic
divisions are the sizes of the array dimensions.

As the third step, we extract the access functions of the individual
dimensions. We start with the original polynomial expression and
first divide it symbolically by the size of the elements accessed.
The resulting expression is then divided by the assumed dimension
sizes starting with the innermost size. The remainder is the access
function of the innermost dimension and the quotient is divided
again by the size of the next array dimension. The new remainder is
the access function of the second array dimension and the quotient
is divided further. If no more dimension sizes are available, the last
quotient becomes the access function of the outermost dimension.

As a last step, we derive the validity conditions. Up to this step,
the delinearization we propose is an educated guess. It is only valid
if ∀i ∈ [1,n− 1] : 0 ≤ fi(i) < di holds, with n being the number
of array dimensions computed, di being the size of dimension i
and fi(i) being the access function of dimension i, which given
a vector of loop induction variables and program parameters de-
rives a subscript expression. To check if these conditions hold, we
can simplify them taking into account the range of the surrounding
loop induction variables. In simple cases this simplification yields
>, which means the delinearization has been statically proven to
be unconditionally correct. In cases where this is not enough, the
remaining conditions need to be emitted as run-time checks.

We illustrate the delinearization algorithm using the sub-array
initialization example presented in the introduction, but now start
from its single-dimension version (Listing 4). To recover the multi-
dimensional nature of the access in statement S, we first expand

Figure 1: Sub-array accesses for different parameter values

the offset expression (n2(n1o0 + o1) + o2) + n1n2i+ n2 j + k to a
sum of products n2n1o0 + n2o1 + o2 + n1n2i+ n2 j + k. Next, all
products that involve induction variables are extracted, induction
variables are removed and the products are sorted by the number of
factors. This yields the set {n1n2,n2}. As the smaller terms in this
set evenly divide the larger ones, we assume a multi-dimensional
array of shape A[][n1][n2]. We now use the new array shape to
derive the individual index expressions. We do this by symbolically
dividing the original offset expression by the size of the individual
array dimensions, starting from the innermost dimension. As a first
step we divide by n2, which leaves us with a remainder o2 + k,
the index expression we assume for the innermost dimension. The
quotient of the division is n1o0 +o1 +n1i+ j. This quotient is now
divided by n1. The resulting remainder o1 + j allows us to derive
A[?][j+ o1][?] and the resulting quotient o0 + i allows us to derive
A[o0 + i][?][?]. The reconstructed full array access is A[i+ o0][j+
o1][k+o2].

void set_subarray(unsigned n1, unsigned n2,
unsigned o0, unsigned o1, unsigned o2,
unsigned s0, unsigned s1, unsigned s2,
float A[]) {

for (unsigned i = 0; i < s0; i++)
for (unsigned j = 0; j < s1; j++)
for (unsigned k = 0; k < s2; k++)

S: A[(n2 * (n1 * o0 + o1) + o2)
+ n1 * n2 * i + n2 * j + k] = 1;

}

Listing 4: Initialization of sub-array (single-dimensional)

As a last step, we check the correctness of the delinearization by
forming the following validity condition:

∀i, j,k : 0≤ i < s0∧0≤ j < s1∧0≤ k < s2 :
0≤ k+o2 < n2∧0≤ j+o1 < n1∧0≤ i+o0

Using isl [13], we simplify this condition to o1 ≤ n1− s1 ∧ o2 ≤
n2−s2, exploiting the fact that all parameters are given as unsigned
types. As further simplifications are not possible at compile time,
the remaining conditions need to be verified at run-time.

Figure 1 illustrates a two dimensional version of this example
highlighting two sets of parameter values, one that satisfies the va-
lidity condition and one that does not. Both examples work on a
2D data array A[n0][n1] with n0 = 8∧ n1 = 9. The first set of
parameter values is o0 = 1∧o1 = 3∧ s0 = 3∧ s1 = 6, which yields
3 ≤ 9− 6 and evaluates to >. The corresponding set of data ele-
ments (illustrated in blue) are all within the bounds of the 2D array.
However, of the accesses that correspond to the parameter values
o0 = 4∧ o1 = 6∧ s0 = 3∧ s1 = 6 (red square) only the left half is
within the array bounds. The right half accesses are out-of-bounds.
In this case, the out-of-bounds accesses reference memory loca-
tions that correspond to the array elements {A[i, j] : 5≤ i≤ 7∧0≤
j ≤ 2} (red squares). This is problematic, as e.g., the data stored
to A[6][9] affects the values read from A[7][0]. This relation

353

is not visible in the delinearized program, which means the corre-
sponding data dependences are not modeled and certain program
transformations may be performed incorrectly. When checking the
validity conditions we see that o1 ≤ n1 − s1 ⇒ 6 ≤ 9− 6 ⇒ ⊥,
which correctly shows that for this set of parameters we cannot
rely on the delinearization.

3.2 Multiple array references
In case the kernel we analyze contains more than one access to

the same array (e.g., identified by its base pointer), it is important
to ensure that all accesses are properly delinearized using the same
assumed array shape. Ensuring this requires only a slight adjust-
ment of the algorithm. In the case of multiple arrays, we extract the
terms from all arrays and derive the assumed array size from the
combined terms. Using this common array size, we can once again
derive the array accesses individually. The validity conditions are
also derived individually, but redundant conditions are removed in
a subsequent step. In case data accesses reference different arrays,
we group the data accesses by the different arrays they access and
analyze each group individually assuming the absence of aliasing
between accesses to different arrays. To generate the run-time con-
ditions we merge the constraints from the individual arrays, remove
redundant constraints and generate a single run-time check to ver-
ify the analysis.

3.3 Subscripts containing size parameters
float A[][N][M];
for (i = 0; i < L; i++)
for (j = 0; j < N; j++)
for (k = 0; k < M; k++)

S1: A[i][j][k] = ...; // A[i N M + j M + k]

S2: A[1][1][1] = ...; // A[N M + M + 1]
S3: A[0][0][M - 1] = ...; // A[M − 1]
S4: A[0][N - 1][0] = ...; // A[N M − M]
S5: A[0][N - 1][M - 1] = ...; // A[N ∗ M − 1]

Listing 5: Array sizes in subscripts (multi-dimensional)

Listing 5 shows an example of multi-dimensional array accesses
where the subscript expressions contain array size parameters. In
case these accesses are linearized (see comments) for an access
A[0][0][M-1] with array size A[][N][M], the algorithm presented
in Section 3 derives the access A[0][1][-1], as it associates multi-
ples of M with the second dimension. This delinearization is invalid,
as the subscript in the inner dimension becomes negative.

In general, there is always a set of delinearizations that differ in
their derived subscript expressions, even though they all compute
the same address expression. For the above example, the accesses
A[0][-1][2*M-1], A[0][0][M-1] and A[0][1][-1] all compute
the same address expression. In fact, for a given two dimensional
access and an arbitrary k ∈ N the following holds:

A[f0][f1] with A[][s1]

= A[f0s1 + f1] = A[(f0− k)s1 +(ks1 + f1)] with A[]

= A[f0− k][ks1 + f1] with A[][s1]

For d-dimensional accesses and any pair of neighboring dimensions
(t, t +1), t ∈ [0,d−2] the following equality holds for all kt ∈ N:

&A[. . . , ft , ft+1, . . .] = &A[. . . , ft − kt ,ktst+1 + ft+1, . . .]

This means there exists a set of values kt , t ∈ [0,d−2] which can be
arbitrarily chosen to generate an infinite number of array accesses
that all yield the same linearized address expression. However, for a
specific set of loop iterators and parameters, not all kt values ensure

array accesses within bounds. We need to find the right values of kt
that avoid out-of-bounds accesses. One idea is to look at the loop
bounds and to statically derive the right values of kt . This is pos-
sible as long as the range of the subscript expression is known, but
causes problems for accesses such as A[N * i + N + p], which
might be modeled as an array access A[i + 1][p] to an array of
shape A[][N] in case 0 ≤ p < N holds, but which would better be
modeled as A[i][N + p] in case −N ≤ p < 0 holds. In general it
is not possible to derive an optimal value for k without knowledge
about the values p can take. In some cases (e.g.,−10≤ p<N−10)
there is not even a single optimal value for k. To still be able to
model such cases we can create a piece-wise delinearization that
chooses the correct value of k depending on the values of the sub-
script expressions. For the 2D case, we could be tempted to use a
mapping (f0, f1)→ (f0 + k,−ks1 + f1) | ∃k : ks1 ≤ f1 < (k+1)s1,
which models all possible values of k. Unfortunately, the product
between k and s1 is non-affine and consequently this map cannot
be represented as an affine integer map. However, if we bound k
such that k ∈ [kl ,ku] with kl ,ku being known integer values, we can
model this map with a finite number of affine pieces.

(f0, f1)→



(f0 + kl ,−kls1 + f2) f1 < kls1
...

(f0 +(1), (1)s1 + f2) (1)s1 ≤ f1 < 0
(f0, f1) 0 ≤ f1 < 1s1

(f0 +1, (1)s1 + f2) 1s1 ≤ f1 < 2s1
...

(f0 + ku,−kus1 + f2) kus1 ≤ f1

For d-dimensional accesses, we now define a set of maps Mt , t ∈
[0,d − 2], where a map Mt is an identity map with dimension t
and t + 1 modified to use a generalized version of the above map-
ping. Each Mt approximates a map (. . . , ft , ft+1, . . .)→ (. . . , ft +
k,−k ∗ st+1 + ft+1, . . .) | ∃k : kst+1 ≤ f1 < (k+ 1)st+1 using a fi-
nite set of affine pieces. Starting from the highest t, we apply all
maps Mt one by one to the delinearized (i.e., the multi-dimensional
view) accesses. Using the original algorithm on the example given
in Listing 5, we obtain the following set of delinearized accesses:
{S1(i, j,k)→ A(i, j,k), S2()→ A(1,1,1), S3()→ A(0,1,−1),
S4()→ A(1,−1,0),S5()→ A(1,0,−1)}. After applying a set of
maps Mt generated with values kt,l = 0,kt,u = 0 chosen to only
cover two cases, one with no transformation and one with a sin-
gle multiple of the problem size parameter added, we obtain the
following delinearized accesses:

S1(i, j,k)→


A(i−1,N + j−1,M+ k) k ≤−1∧ j−1≤−1
A(i, j−1,M+ k) k ≤−1∧ j−1≥ 0
A(i−1,N + j,k) k ≥ 0∧ j ≤−1
A(i, j,k) k ≥ 0∧ j ≥ 0

S2()→ A(1,1,1), S3()→ A(0,0,M−1)
S4()→ A(0,N−1,0), S5()→ A(0,N−1,M−1)

S2, S3, S4 and S5 show directly the correct delinearization. The
access function for S1 is now slightly more complicated, but the
three additional cases only apply under conditions that are removed
when simplifying the access under the constraints implied by the
iteration domain of S1. After these simplifications we obtain the
mapping S1(i, j,k)→ A(i, j,k) for S1. So the piecewise mappings
have all been statically reduced to maps with just a single piece.

354

3.4 Arrays of size A[][β1P1][β2P2]

In certain cases (e.g., resizing of images) we may have array
sizes of the form A[][β1P1][β2P2], Pi ∈ P , βi ∈N. Accesses to such
arrays would be delinearized to an access A[β1 f0][β2 f1][f2], into an
array of size A[][P1][P2]. As f1 can be in the range 0≤ f1 < β1P1,
the expression β2 f1 may not fit into the new range. To address this,
we can find the gcd of the values in each dimension and use it to
adjust the array sizes. Specifically, if all subscript expressions in a
certain dimension can be divided by a value x, we can divide all of
them by x and multiply the size of the next innermost dimension by
x. This transformation is always beneficial in the sense that it only
increases the chance that the delinearization will be correct. As it
reduces the range of the subscript expression, the subscript expres-
sion is more likely to fit into the ranges implied by the array size.
Similarly, as we increase the size of the inner dimension the cor-
responding subscript expressions on this dimension are also more
likely to fit in.

4. PARAMETER + CONSTANT
We look now at a specific case, where the shape of the array is of

the form A[P0 +α0] . . . [Pn−1 +αn−1] with ∀i ∈ [0,n− 1] : Pi ∈ P ,
αi ∈ N, with Pi being different for different values of i.1 As an
example we show in Listing 6 a simplified 3D stencil computation
which computes the average over the elements in a diagonal stencil
and which uses a one element border around the actual data ele-
ments to avoid the need for special boundary statements.

int In[Q+2][R+2][S+2]; int Out[Q+2][R+2][S+2];

for (int i = 1; i <= Q; i++)
for (int i = 1; i <= R; i++)
for (int i = 1; i <= S; i++)

Out[i][j][k] = 0.33f * (In[i][j][k]
+ In[i+1][j+1][k+1] + In[i-1][j-1][k-1]);

Listing 6: Dimensions of size Pi +αi (multi-dimensional)

int In[]; int Out[];

for (int i = 1; i <= Q; i++)
for (int i = 1; i <= R; i++)
for (int i = 1; i <= S; i++)

Out[i*R*S+2*i*S+2*i*R+4*i+j*S+j*2+k] =
0.33f * (In[i*R*S+2*i*S+2*i*R+4*i+j*S+j*2+k]

+ In[7+2*j+k+2*R+3*S+j*S+
R*S+4*i+2*R*i+2*S*i+R*S*i]

+ In[-7+2*j+k-2*R-3*S+j*S-R*S
+4*i+2*R*i+2*S*i+R*S*i]);

Listing 7: Dimensions of size Pi +αi (linearized)

When analyzing the linearized access to Out, as visible in List-
ing 7, two problems become visible. First of all, the previous al-
gorithm fails to guess an array size, as the terms R, S and RS all
appear in products that contain induction variables. Our previous
approach can consequently not define an order on the parameters
that allows it to assign parameters to array dimensions. Assum-
ing we could still derive an array shape (e.g., Out[][R][S]), we
obtain from the remaining algorithm the access Out[i][2i + j]
[4 i + 2 j + k + 2 i R]. This delinearization is incorrect. As
it has been derived according to the wrong array size, it causes out-
of-bound accesses and even fails to fully eliminate non-affine terms
in the subscript expressions. Before presenting the general ap-
proach to delinearize polynomial expressions to d-dimensional ar-

1This does not include shapes such as A[][N+1][N+1]

ray shapes of the form A[P0 +α0] . . . [Pd−1 +αd−1], Pi ∈ P , α ∈N,
we present the special case of two and three dimensions.

An access to a two dimensional array A[f0(i)][f1(i)] with shape
A[][P1 +α1] corresponds to the single dimensional array access
A[f0(i)(P1 +α1)+ f1(i)], which after expansion becomes the ac-
cess A[f0(i)P1 + f0(i)α1 + f1(i)]. However, it is unlikely that this
structure is preserved. The only structure that can be assumed is a
sum of terms g{1}(i)P1+g /0(i) where each term contains a different
subset of the program parameters. In the general case we write this
expression as ∑S∈℘([0, f−1])(gS(i)∏s∈S Ps), where f is the number
of parameters, ℘([0, f − 1]) is the powerset of [0, f − 1], the dif-
ferent gS(i) are expressions in loop induction variables, and the
different Ps are program parameters. To delinearize this polyno-
mial expression we need to recover expressions f0(i), f1(i),α1 as
a function of gx’s. As f0(i) is the only coefficient to P1, recov-
ering the relation f0(i) = g{1}(i) is easy. The second equality we
can obtain is g /0(i) = f0(i)α1 + f1(i). With f0(i) plugged in we ob-
tain g /0(i) = g{1}(i)α1+ f1(i), which allows us to express f1(i) as a
function of α1: f1(i)= g /0(i)−g{1}(i)α1. For different values of α1
we obtain different array sizes and the corresponding delineariza-
tions, which all are lowered to the very same linearized function,
perform the same memory accesses and consequently model the
program behavior correctly. However, depending on the iteration
space boundaries only certain delinearizations ensure the absence
of out of bounds accesses. As boundary offsets are commonly small
and there is only one value α1 to verify, it is possible to scan a
certain number of α1 by either statically checking for valid delin-
earizations or possibly even by generating run-time versioned code
for different values of α1.

Looking at the three dimensional case, we observe that an access
A[f0(i)][f1(i)][f2(i)] to an array of shape A[][P1+α1][P2+α2] has,
after linearization and expansion, the form:

f0(i)P1P2 + f0(i)P1α2 + f0(i)P2α1 + f0(i)α1α2 +

f1(i)P2 + f1(i)α2 + f2(i)

It corresponds to the polynomial expression:

g{1,2}(i)P1P2 +g{1}(i)P1 +g{2}(i)P2 +g /0(i)

From the single term that contains P1P2, the product of all sym-
bolic parameters defining the array sizes, we recover the relation
f0(i) = g{1,2}(i). Assuming P1 is the outermost parameter, we ob-
tain the value of α2 from the single term that contains P1, but not
P2: g{1}(i) = f0(i)α2 ⇒ α2 = g{1}(i)/ f0(i) = g{1}(i)/g{1,2}(i).
Looking at the P2 terms, we obtain the relation g{2}(i) = f0(i)α1 +

f1(i). This allows us to derive f1(i) = g{2}(i)− f0(i)α1 = g{2}(i)−
g{1,2}(i)α1. Again, an expression containing α1 as a free variable.
To obtain f2(i) we look at the terms without any parameters. Here
we have g /0(i) = f0(i)α1α2 + f1(i)α2 + f2(i) from which we can
derive f2(i) = g /0(i)− f0(i)α1α2− f1(i)α2 = g /0(i)− f0(i)α1α2−
(g{2}(i)− f0(i)α1)α2 = g /0(i)− f0(i)α1α2−g{2}(i)α2+ f0(i)α1α2
= g /0(i)−g{2}(i)α2. As α1 cancels out, we can unambiguously de-
rive f2(i). We can conclude that delinearizing to a three-dimensional
array shape does not introduce more freedom. Only α1 remains un-
known and different values may need to be explored.

We now present with Algorithm 1 a general algorithm to delin-
earize polynomial expressions to array shapes of arbitrary dimen-
sionality. We first collect the set of possible array size parameters
and then try for each order to find a valid delinearization. To check
if a valid delinearization exists, we first compute f0(i) and use it
to try to derive a set of consistent α values. If we succeed, we
derive subscript expressions and run-time conditions. In case the
run-time condition is not a contradiction, we assume we found a

355

Algorithm 1: Derive a delinearization
Data: A polynomial expression in function of induction

variables and parameters, a list of array size parameters
Result: A set of values αk,k ∈ [1,d−1], index expressions

fk,k ∈ [0,d−1] and set of array size parameters
Pk,k ∈ [1,d−1] or an error if no delinearization found.

collect possible array sizes parameters;
foreach permutation of array sizes parameters do

derive f0;
alpha = derive alpha values;
if alpha 6= [] then

derive subscript expressions;
derive run-time condition;
if run-time condition is a contradiction then

continue;
else

return subscript expressions, run-time-condition,
array-sizes

return No delinearization found!

valid delinearization and finish, otherwise we try the next permu-
tation. To obtain the set of possible array size parameters, we take
the expanded version of the polynomial expression and look again
for parameters that are multiplied with a loop induction variable.

For the remaining analysis it is necessary to understand the shape
of the analyzed polynomial expression. Specifically, we must be
able to group them in a manner that each term is the product be-
tween a subset of the assumed array size parameters and an expres-
sion g?(i) in loop indexes, non array-size parameters and integer
constants:

g /0(i)+ g{1}(i)P1 +g{2}(i)P2 + · · ·+g{d−1}(i)Pd−1

+ g{1,2}(i)P1P2 +g{1,3}(i)P1P3 + · · ·+g{2,3}(i)P2P3 + . . .

+ g[1,d−1](i)P1 . . .Pd−1

= ∑
K∈P ([1,d−1])

(
gK(i) ∏

k∈K
Pk

)

We now want to express the previous polynomial as a d-dimensional
access A[f0(i)] . . . [fd−1(i)] to an array of size A[][P1+α1] . . . [Pd−1+
αd−1]. To do so, look at how such an array is linearized:

f0(i)(P1 +α1)(P2 +α2) . . .(Pd−1 +αd−1)

+ f1(i)(P2 +α2) . . .(Pd−1 +αd−1)

+ . . . + fd−2(i)(Pd−1 +αd−1)

+ fd−1(i)

= ∑
j∈[0,d−1]

(
f j(i) ∏

k∈[j+1,d−1]
(Pk +αk)

)

and assume this linearized form yields the same access computation
as the one-dimensional expression we want to delinearize:

∑
K∈P ([1,d−1])

(
gK(i) ∏

k∈K
Pk

)
= ∑

j∈[0,d−1]

(
f j(i) ∏

k∈[j+1,d−1]
(Pk +αk)

)
= ∑

j∈[0,d−1]
∑

K∈P ([j+1,d−1])

(
f j(i) ∏

k∈K
Pk ∏

k∈[j+1,d−1]\K
αk

)

We now equate terms that contain the same set of parameters and,
assuming the parameters to be positive, drop the common parame-

gS(i)
gT (i)

=

∑
j∈[0,d−1]

∧S⊆[j+1,d−1]

(
f j(i) ∏

x∈[j+1,d−1]\S
αx

)

∑
j∈[0,d−1]

∧T⊆[j+1,d−1]

(
f j(i) ∏

x∈[j+1,d−1]\T
αx

) =

∑
j∈[0,d−1]

∧S⊆[j+1,d−1]

(
f j(i)αk ∏

x∈[j+1,d−1]\T
αx

)

∑
j∈[0,d−1]

∧T⊆[j+1,d−1]

(
f j(i) ∏

x∈[j+1,d−1]\T
αx

)

=

αk · ∑
j∈[0,d−1]

∧S⊆[j+1,d−1]

(
f j(i) ∏

x∈[j+1,d−1]\T
αx

)

∑
j∈[0,d−1]

∧T⊆[j+1,d−1]

(
f j(i) ∏

x∈[j+1,d−1]\T
αx

) =

αk · ∑
j∈[0,d−1]

∧T⊆[j+1,d−1]

(
f j(i) ∏

x∈[j+1,d−1]\T
αx

)

∑
j∈[0,d−1]

∧T⊆[j+1,d−1]

(
f j(i) ∏

x∈[j+1,d−1]\T
αx

)

= αk

Figure 2: Deriving αk

ters on both sides. As a result, we obtain ∀K ∈ P ([1,d−1]):

gK(i) = ∑
j∈[0,d−1]

∧K⊆[j+1,d−1]

(
f j(i) ∏

k∈[j+1,d−1]\K
αk

)

Having established this set of equalities, we start to relate our terms
g?(i) to the terms f?(i) and α? that we want to derive. We first
derive f0(i) = g[1,d−1](i), which can be trivially derived by setting
K = [1,d−1] in the previous equation.

Algorithm 2: Derive alpha values
Data: A dimensionality d, a set of expressions gs(i)
Result: A list of values αk,k ∈ [2,d−1] or [] in case of

inconsistencies
foreach k ∈ [2,d−1] do

if g[1,d−1] not evenly divides g[1,d−1]\{k}(i) then
return [];

αk = g[1,d−1]\{k}(i)/g[1,d−1](i);
foreach S ∈ P ([2,k−1]\ (/0∪ ([1,d−1]\{k})) do

if g[1,d−1](i) not evenly divides S then
return [];

α′k = gS(i)/g[1,d−1](i);
if α′k 6= αk then

return [];
return {k→ αk : k ∈ [2,d−1]}

We derive the values αk from the terms g[1,d−1]\{k}(i). In the
four-dimensional case such terms have the form:

g{2,3,4}(i) = α1 f0(i)+ f1(i)

g{1,3,4}(i) = α2 f0(i) ⇒ α2 = g{1,3,4}(i)/g[1,d−1](i)

g{1,2,4}(i) = α3 f0(i) ⇒ α3 = g{1,2,4}(i)/g[1,d−1](i)

g{1,2,3}(i) = α4 f0(i) ⇒ α4 = g{1,2,3}(i)/g[1,d−1](i)

In general αk,k ∈ [2,d−1] is αk = g[1,d−1]\{k}(i)/g[1,d−1](i). Sim-
ilar to the two and three dimensional case, we cannot derive a value
for α1, as we do not know the value of f1(i). However, for higher
dimensional cases we can make an interesting observation. The
values of αk can not just be obtained by the equalities presented
above. In fact, there is a larger set of equalities that all need to
return the same values αk for an array view to be a valid delin-
earization. Specifically, to derive αk,k ∈ [1,d− 1] we can choose
any pair of sets (S,T), /0⊂ S⊆ [1,k−1]∧T = S∩{k} which can be
used to compute αk as shown in Figure 2. The following lists the

356

closed form expressions that compute α2 and α3 for the 4D case:

α2 = g{1,3}(i)/g{1,2,3}(i), α3 = g{1}(i)/g{1,3}(i)

α3 = g{2}(i)/g{2,3}(i), α3 = g{1,2}(i)/g{1,2,3}(i)

We can see that α3 can be derived in multiple ways. The delin-
earization is correct only if all yield the same result. By checking
all of them and comparing them, we can validate the order of the
array size parameters. Algorithm 2 gives the full algorithm used to
obtain the different alpha values.

After deriving the different values of αk, we can now derive the
terms f j, j ∈ [2,d− 1] by looking at the terms g[j+1,d−1](i) (only
interesting terms listed):

g{1,...,d−1}(i) = f0(i)

g{2,...,d−1}(i) = α1 f0(i)+ f1(i)

g{3,...,d−1}(i) = α1α2 f0(i)+α2 f1(i)+ f2(i)

= α2g{2,...,d−1}(i)+ f2(i)

g{ j,...,d−1}(i) = α j−1g{ j−1(i),...,d−1}(i)+ f j−1(i)

g /0(i) = αd−1g{d−1}(i)+ fd−1(i)

from which we derive f j(i) = g[j+1,d−1](i)− α jg[j,d−1](i). The
general algorithm (Algorithm 3) is straightforward, as it mainly
uses the equalities just given to derive the relevant values. As a
last step, we obtain the set of necessary run-time conditions. This
step is unchanged from Section 3.

Algorithm 3: Derive subscript expressions
Data: A dimensionality d, a set of expressions

gs(i),s ∈ P ([0,d−1]), a set of values αk,k ∈ [2,d−1]
Result: A set of expressions fk(i),k ∈ [0,d−1]
f0(i) = g[1,d−1](i);
/* The next line assumes α1 = 0. */
f1(i) = g2,d−1](i);
foreach j ∈ [2,d−1] do

f j(i) = g[j+1,d−1](i)−α jg[j,d−1](i)
return { j→ f j(i) : j ∈ [0,d−1]}

5. EVALUATION
Essential parts of the presented approach have been implemented

within LLVM and Polly [4]. In our implementation, LLVM’s scalar
evolution analysis has been used to perform the necessary trans-
formations of index expressions, for example to extract the array
size parameter candidates or to perform the division and remainder
computations for obtaining subscript expressions. Besides basic
delinearization support (Section 3.1), we also implemented support
for array size parameters in the index expressions (Section 3.3),
as well as support for deriving a unique array shape for a set of
accesses (Section 3.2). We also have full support for the genera-
tion of run-time conditions that validate the delinearization. For
the generation of run-time conditions, we rely on a new AST gen-
erator developed as part of isl [13] and use its support to generate
AST expressions from user-provided integer sets. This feature al-
lows us to use isl to compute the set of run-time constraints that
need to be checked, the AST generator to generate optimal code for
them, and Polly’s code generation back-end to translate the result-
ing AST expressions to LLVM IR. One optimization that has shown
to be useful for reducing the complexity of run-time conditions is
to use isl to remove constraints that are only valid for parameter
values for which no memory access is executed. This is obviously

valid. In case no data access is executed, we cannot possibly model
this access incorrectly. Finally, even though our implementation is
reasonable robust, the delinearization problem itself is not always
nicely exposed by LLVM. For example, sometimes LLVM can not
prove that certain symbols are loop invariant, the use of different
integer types causes type casts in subscript expressions or informa-
tion about the absence of integer wrapping is not available. The
manual modifications required to expose the delinearization prob-
lems will be stated for each experiment. We generally assume the
absence of integer wrapping.

5.1 C99 arrays in PolyBench/C
We tested the implementation of the delinearization on all 30

PolyBench/C 3.2 kernels [11] with the use of C99 variable length
arrays enabled (-DPOLYBENCH_USE_C99_PROT0). From the 30 ker-
nels, Polly could correctly recover (after removal of ternary con-
ditions and the use of ’long’ to avoid spurious casts), the multi-
dimensional view of arrays in 28 of them (Figure 3b). Two kernels
(ludcmp, fdtd-apml) are currently skipped, due to the array size it-
self being of the form N +1. However, with both of these kernels,
using either two dimensional arrays or arrays with different param-
eters in each size declaration, the approach proposed in Section 4
is applicable and would allow us to extend Polly to handle these
cases as well. It is also interesting to note that the PolyBench/C
code is written in a way that almost all delinearizations are stat-
ically provable. Nevertheless, our delinearization concluded that
run-time checks are necessary for six benchmarks (correlation, co-
variance, 2mm, doitgen, symm, and reg_detect). On looking closer
as to why run-time checks are still generated, we understand that
for the first five benchmarks in the original PolyBench/C source
code certain parameters have been accidentally swapped in the ar-
ray declarations and loop bounds. This unintentionally changed
the semantics of the loop kernels in a way that only if a certain re-
lation between the different parameter holds (e.g., the matrices are
square), the execution does not inhibit out-of-bound accesses. The
run-time conditions computed directly reflect those conditions and
ensure that only in such cases the optimized loop is used. For the
last benchmark, reg_detect, a condition length> 0 is derived which
is required as S2 will access negative locations in the innermost di-
mension in case length is smaller or equal to zero. This is visible
in Listing 8. Even though not foreseen, these examples show the
benefits of the approach to delinearization. Not only did it prevent
a possible mis-compilation, but it also ensured that we could still
optimize it even though there exists a set of parameter values under
which this optimization is not correct.

for (j = 0; j <= n - 1; j++)
for (i = j; i <= n - 1; i++) {

S0: sum_diff[j][i][0] = ...
for (cnt = 1; cnt <= length - 1; cnt++)

S1: sum_diff[j][i][cnt] = ...
S2: ... = sum_diff[j][i][length - 1];

}

Listing 8: PolyBench/C’s reg_detect requires length > 0.

To understand if the more precise access information enables ad-
ditional compiler transformations we optimized the PolyBench/C
test suite with ’clang -O3’, ’clang -O3 -polly’, and ’clang -O3 -
polly -delinearize’ and run the resulting binaries single-threaded on
an Intel Xeon E5430 CPU. The results in Figure 3a show that delin-
earization has a very visible impact on performance. Several bench-
marks show speedups of 5.0x and beyond, but we also see for trmm
and floyd-warshall significant performance reductions due to addi-
tional loop transformations that became legal, but that have been

357

poorly chosen by Polly. ludcmp and fdtd-apml, the benchmarks
where we do not yet delinearize the kernels, do not show any per-
formance impact. Also, benchmarks with run time checks, e.g.,
covariance and 2mm, show visible performance changes, which
means their run-time check is evaluated to true. There is also a
set of kernels that do not see performance changes. In general this
is because Polly’s current set of optimizations do not affect any of
these kernels.

5.2 C++ template libraries – boost::ublas
We also evaluated our approach in the context of C++ template

libraries. C++ template libraries are widely used to raise the level of
abstraction in programming, but at the same time they make it a lot
harder to gather information about the execution of a program via
analysis of the source code. In general, heavy inlining is required
to remove C++ iterators, virtual method calls as well as other tools
of abstraction. Only after these have been removed can a compiler
possibly understand the memory access pattern of a program. How-
ever, at this point of the compilation, high level information about
the original array shapes is not available any more.

For our evaluation we have chosen boost::ublas, a C++ tem-
plate library for dense, packed, and sparse matrices that uses ef-
ficient code generation via expression templates to avoid unnec-
essary memory and object allocation. For our evaluation, we im-
plemented a simple dgemm kernel in boost::ublas and compiled it
in production mode -DNDEBUG -DBOOST_UBLAS_NDEBUG and with-
out exceptions to evaluate how different compilers can optimize
this code. We considered gcc 4.8.3, icc 15.0 and clang+Polly pre-
3.6 (r226126) and run our experiment on an Intel i7-3520M. For
Polly we ensured the inliner is run before Polly is executed and
we manually performed some simple manual LICM to expose the
delinearization problem. As visible in Figure 3c, the binaries pro-
duced by the different compilers all run in 2.2 seconds. With Polly
and our delinearization approach enabled, we achieve a speedup of
1.8x, just by applying some simple cache tiling.

5.3 Julia
We also considered Julia [1], a dynamic high-level language for

scientific computing. One specialty of Julia is that it is very easy to
write generic code that can be specialized for different data types.
We used this feature to evaluate our approach on different data
types, again using a gemm kernel as the computational pattern. As
with the ublas example, after some simple loop-invariant code mo-
tion is performed manually, delinearizing the array accesses yields
the expected results, run-time checks are emitted (and required) and
the Julia kernel can be optimized with Polly. For matrices of size
1024×1024, Polly’s default optimizations (mainly loop tiling) al-
ready give speedups from 3.5x–5.0x across all different data types,
compared to compilation without delinearization, where Polly is
not able to apply any transformation. Even though Julia’s perfor-
mance is still far from a tuned library such as ATLAS, reaching rea-
sonable performance also for data-types that commonly lack spe-
cialized blas libraries is valuable. As arrays in Julia are commonly
of parametric size, understanding their structure at the IR level is
essential to enable a wide range of loop optimizations.

5.4 UTDSP
The UTDSP [6] benchmark evaluates the ability of C compil-

ers to generate efficient code for kernels and applications from the
digital signal processing domain. UTDSP provides each kernel in
multiple versions, including versions that are specialized for a spe-
cific input size by relying on fixed-size multi-dimensional arrays
and versions relying on pointer arithmetic, which could conceptu-

ally support inputs of varying size. To evaluate the delinearization
algorithm, we modified the UTDSP edge detection benchmark to
take problem sizes as command line arguments and use these sizes
to both dynamically allocate the data arrays and to provide para-
metric bounds for the computation. In addition, we also replaced a
scalar summation variable with a direct summation into the output
image to remove spurious scalar dependences that can complicate
later optimizations. We also ensured consistent use of 64-bit inte-
ger types to avoid complications due to sign-extensions and trunca-
tions.

Listing 9 shows the core loop of the UTDSP edge detection ker-
nel used for our evaluation. The loop implements a generic convo-
lution, that is executed three times. First, a Gaussian convolution is
performed to smoothen the image; then, both a horizontal and a ver-
tical Sobel filter are applied. When analyzing the kernel with Polly,
three interesting compute statements are detected. They have been
marked as S0, S1 and S2. When recovering the data accesses in
these statements without using our delinearization approach, the re-
peating addition of NN into the pointer variables yields access func-
tions that contain products between the parameter NN and (virtual)
loop induction variables. Such non-affine functions prevent precise
dependence analysis and parallelism detection.

Using our delinearization approach, we recognize the variables
output_image, input_image and kernel as base pointers of two
dimensional array accesses. This allows us to derive the following,
possibly multi-dimensional, but always affine access functions:

S0(r,c)→write output_image(dead_rows+ r,dead_cols+ c)

S1(r,c, i, j)→dead output_image(dead_rows+ r,dead_cols+ c)

S1(r,c, i, j)→write output_image(dead_rows+ r,dead_cols+ c)

S1(r,c, i, j)→dead input_image(r+ i,c+ j)

S1(r,c, i, j)→dead kernel(i, j)

S2(r,c)→dead output_image(dead_rows+ r,dead_cols+ c)

S2(r,c)→write output_image(dead_rows+ r,dead_cols+ c)

S2(r,c)→dead normal_factor()

We compiled the kernel with gcc 4.8.3, clang+Polly pre-3.6 (r226126)
and icc 15.0. Using the flags -O3 alone and in combination with
automatic parallelization (-ftree-parallelize-loops=2 (gcc),
-polly-parallel -lgomp (clang + Polly) or -parallel (icc))
we automatically optimized and parallelized the code. Executing
the benchmark on an Intel i7-3520M dual core system using an ar-
ray of size 4096×4096 with a convolution kernel of size 3×3, we
obtain the results shown in Figure 3e.

We can see that neither icc nor gcc is able to automatically par-
allelize the loop. Clang itself does not have any automatic paral-
lelization facilities. However, in combination with Polly and our
improved analysis, the loop nest is successfully parallelized and
the execution time is reduced by 50%, now outperforming both icc
and gcc. When optimizing the code in Listing 9, Polly generates
the following run-time check:

KK≥ NN+1∨ (NN≥ KK∧KK≥ dead_cols+1∧dead_cols≥ 0)

The first condition under which the delinearization is valid is KK≥
NN+ 1. This is trivially true. If this condition is false, then the
loop nest is not entered at all and there is consequently no access
that can be out-of-bounds. The second condition verifies the va-
lidity of the delinearization in case the loop is actually executed.
Theoretically, the source code shown provides enough information
to statically prove the validity of the delinearization for all input
values. However, LLVM’s scalar evolution analysis does not sup-
port signed divisions, which prevents Polly from understanding that

358

co
rre

lat
ion

co
va

ria
e.c

2m
m

3m
m

ata
x

bg
.c

ch
ole

sk
y

do
itg

en
ge

mm
ge

mv
er

ge
su

mm
v

mv
t

sy
mm sy
r2

k
sy

rk
tri

so
lv

trm
m

du
rb

in
dy

np
ro

g
gr

am
hm

idt
.c lu

lum
p.c

flo
yd

-w
ar

sh
all

re
g_

de
tt.c ad

i
fd

td
-2

d
fd

td
-a

pm
l

job
i-1

d-
im

pe
r.c

job
i-2

d-
im

pe
r.c

se
ide

l-2
d0.1

0.2
0.3
0.5

1.0

2.0
3.0
5,0

10.0
Sp

ee
du

p

Linear arrays
Delinearized arrays

(a) PolyBench/C – Speedup of Polly over ’clang -O3’ using linear and delinearized arrays

Name

1D arrays

2D arrays

3D arrays
Run-time checks
Parameter in subscript

co
rr

el
at

io
n

2

2

+
+

co
va

ri
an

ce

1

2

+

2m
m

5

+

3m
m

7

at
ax

3

1

bi
cg

4

1

ch
ol

es
ky

13

1

do
itg

en

1

2
+

ge
m

m

3

ge
m

ve
r

8

1

ge
su

m
m

v

3

2

m
vt

4

1

sy
m

m

5

3

+

sy
r2

k

3

sy
rk

2

tr
is

ol
v

8

1

tr
m

m

2
du

rb
in

4

2

+

dy
np

ro
g

4

2

1

+

gr
am

sc
hm

id
t

5

3

lu

1

lu
dc

m
p

flo
yd

-w
ar

sh
al

l

1

+

re
g_

de
te

ct

3

2
+

ad
i

3

+

fd
td

-2
d

1

3

fd
td

-a
pm

l
ja

co
bi

-1
d-

im
pe

r

2

ja
co

bi
-2

d-
im

pe
r

2

se
id

el
-2

d

1

(b) PolyBench/C – Statistics about the delinearized array views

Compiler linear delin. Speedup
icc 2.2 - -
gcc 2.2 - -
clang 2.2 - -
Polly 2.2 1.2 1.8x
(c) Run time [s] of dgemm written in boost::ublas

Type linear delin. Speedup
single float 13 3 4.3x
double float 14 3 4.6x
i16 7 2 3.5x
i32 13 3 4.3x
i64 15 3 5.0x
i128 22 5 4.4x
(d) Run time [s] of different Julia gemm kernels

Compiler O3 parallel Speedup
icc 1.4 1.4 1.0x
gcc 1.0 1.0 1.0x
clang 1.4 - -
Polly 1.4 0.7 2.0x
(e) Run time [s] of UTDSP edge detection kernel

Compiler O3 parallel Speedup
(2/4/8)

icc 2.5 2.5/2.5/2.5 1.0x
gcc 2.5 2.5/2.5/2.5 1.0x
clang 2.5 - -
Polly 2.5 1.6/1.4/1.4 1.6/1.8/1.8x
(f) Run time [s] of MATLAB convolution kernel

Figure 3: Experimental Results

dead_cols = KK/2 holds; consequently, there is insufficient static
information available to Polly to derive the validity of the delin-
earization. However, as our approach is optimistic, Polly emits
run-time checks that still allow it to optimize the program. The
basic validity conditions Polly derives require dead_cols to be pos-
itive and strictly smaller than KK, a condition that always holds for
dead_cols = KK/2. Overall, we see that for the UTDSP edge de-
tection benchmark our delinearization approach has enabled a com-
plex transformation that showed significant speedups compared to
use of competing production quality compilers. Even though short-
comings in LLVM’s scalar evolution would have hindered a stati-
cally proven delinearization, our optimistic approach enabled us to
verify the needed optimization at run-time.

5.5 MATLAB
MATLAB [9] is a high-level language primarily focused on nu-

merical computations, and is widely used for signal and image
processing, communications, control systems and computational fi-
nance. Besides directly executing the developed programs within
MATLAB, MATLAB provides a facility, called MATLAB Coder,
that allows the generation of independent C and C++ programs
from an algorithm implemented in MATLAB.

To evaluate our work we use a simple convolution kernel im-
plemented in MATLAB. Even though the original MATLAB code
consists of a single call to a built-in function, the derived C code
consists of more than 100 lines of comment-free auto-generated
program code and includes four loop levels that use pointer ad-
dressing to model the multi-dimensional arrays. For reasons of
brevity we cannot present the full loop nest, but present in List-
ing 10 the struct definition used to model the multi-dimensional

arrays. As we can see, arrays in MATLAB use a manually imple-
mented multi-dimensional array of parametric size, where accesses
use a base pointer in combination with a possibly polynomial off-
set, requiring delinearization to perform precise dependence analy-
sis.

For our evaluation we use the MATLAB generated C code, which
is in its structure more complicated than the UTDSP code. Hence,
we first perform some simplifications to ensure compilers are able
to address the delinearization problem. This includes loop invari-
ant code motion to avoid Array->size[0] style loads in the core
loop, the removal of one unnecessary maximum computation in the
access function, the consistent use of 64 bit integer types and the
simplification of an if-condition.

We then compile the canonicalized C code with gcc 4.8.3, icc
15.0 and clang 3.6 pre (+ Polly) using ’-O3’ as well as automatic
parallelization capabilities. The resulting binary, performs a 3x3
convolution on a 4096× 4096 floating point matrix repeating it 5
times. The results (median over 5 runs) for running on an 8-core
Intel Xeon E5430 CPU are shown in Figure 3f. We can see that
if compiled sequentially, there is no performance difference with
the different compilers. However, when generating parallel code,
our delinearization algorithm has been able to recover the multi-
dimensionality of the array and generated relevant run-time checks
that allow the verification of the delinearization. Using this infor-
mation Polly was able to compute precise data-dependences that
prove that executing the loop nest in parallel is correct. Parallel
execution reduces the execution time of the correlation kernel from
2.5 to 1.4 seconds and yields a 1.6 to 1.8x speedup. Even though
we see improving performance due to parallel execution only for

359

dead_rows = KK / 2; dead_cols = KK / 2;
...
row = 0;
output_image_ptr = output_image;
output_image_ptr += (NN * dead_rows);
for (r = 0; r < NN - KK + 1; r++) {
output_image_offset = output_image_ptr;
output_image_offset += dead_cols;
col = 0;
for (c = 0; c < NN - KK + 1; c++) {
input_image_ptr = input_image;
input_image_ptr += (NN * row);
kernel_ptr = kernel;

S0: *output_image_offset = 0;
for (i = 0; i < KK; i++) {

input_image_offset = input_image_ptr;
input_image_offset += col;
kernel_offset = kernel_ptr;
for (j = 0; j < KK; j++) {

S1: temp1 = *input_image_offset++;
S1: temp2 = *kernel_offset++;
S1: *output_image_offset += temp1 * temp2;

}
kernel_ptr += KK; input_image_ptr += NN;

}
S2: *output_image_offset =

((*output_image_offset)/ normal_factor);
output_image_offset++; col++;

}
output_image_ptr += NN; row++;

}

Listing 9: Core loop nest in UTDSP edge detection benchmark

struct emxArray_real_T {
double *data; long *size; long allocatedSize;
long numDimensions; boolean_T canFreeData;

};

Listing 10: MATLAB multi-dimensional array declaration

up to 4-cores, the analysis and transformation capabilities enabled
by our delinearization will prove useful for future optimizations.

6. RELATED WORK
There have been previous efforts at delinearization, starting with

the work of Maslov [7], who introduced delinearization to speed
up dependence analysis for arrays of fixed size and also briefly dis-
cussed non-linear references arising from arrays of symbolic size.
He required iteration spaces of rectangular shape, along with suf-
ficient information to statically validate the delinearization. Loop
induction variables can only appear in at most one dimension of
a recovered array access. Maslov contributed a second approach
in his work on polynomial constraint simplification [8], where de-
linearization in the context of triangular iteration spaces and pos-
sibly non-rectangular (triangular) arrays is discussed, but most of
the other previously mentioned restrictions still apply. Simbürger
and Größlinger [12] recently addressed delinearization in the con-
text of Polly. Their approach is specific to dependence analysis and
does not recover array sizes or even array subscripts. The use of
advanced mathematical tools such as quantifier elimination tech-
niques makes it hard to incorporate their techniques into a produc-
tion compiler. Cierniak [2] presented a solution independent of
dependence analysis, discussed delinearization for non-rectangular
arrays and also provided on ideas how to unify the delinearization
of multiple subscripts. He did not discuss a symbolic solution and
he required each loop index to appear in index expressions of most
one array dimension.

7. CONCLUSION
We have developed an approach to recovering a multi-dimensional

array view from single-dimensional polynomial array access ex-

pressions. Multi-dimensional array shapes with sizes given as indi-
vidual parameters, parameters times a constant, or parameters plus
a constant are handled, with the first two cases also supporting the
use of identical parameters for extents along multiple dimensions.
Our approach can recover the multi-dimensional view for array ac-
cesses even in those cases where we cannot prove the validity stat-
ically. Instead, we provide a set of conditions that can be used to
verify the validity of the multi-dimensional view at run-time. The
approach has been partially implemented in the context of LLVM
and Polly and this implementation has been used to evaluate the
approach on kernels from Julia, blast::ublas, PolyBench/C, UTD-
SPs and MATLAB. With our optimistic approach to delineariza-
tion, we have been able to recover the multi-dimensional structure
of data accesses in all these contexts and we have shown that the re-
sulting increase in dependence analysis precision can enable large
speedups. We have observed several kernels with more than 5.0x
speedup compared to Clang, large improvements compared to the
Julia compiler, and 1.8x improvement on the sequential execution
of a standard dgemm kernel over icc. The new support for anal-
ysis of parametrically sized arrays significantly widens the set of
compute kernels for which precise data dependences can be com-
puted, thereby enabling much greater opportunities for application
of optimizing transformations.

Acknowledgments
The LLVM community and especially Hal Finkel, Armin Größlinger and
Andrew Trick provided important inputs. We received funding from Google
Europe (Fellowship of Efficient Computing), Swissuniversities (Platform
for Advanced Computing Initiative), the U.S. National Science Foundation
(0811457, 0926127, 0926687, 1059417, 1321147 and 1440749), the U.S.
Department of Energy (DE-SC0012489) and the Louisiana State Univer-
sity.

8. REFERENCES
[1] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman. Julia: A fast

dynamic language for technical computing. CoRR, abs/1209.5145,
2012.

[2] M. Cierniak and W. Li. Recovering logical data and code structures.
Technical report, 1995.

[3] P. Feautrier. Dataflow analysis of array and scalar references.
International Journal of Parallel Programming, 20(1):23–53, 1991.

[4] T. Grosser, A. Größlinger, and C. Lengauer. Polly – performing
polyhedral optimizations on a low-level intermediate representation.
Parallel Processing Letters (PPL), 22(04), 2012.

[5] C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In Int. Symp. on Code
Generation and Optimization (CGO), 2004.

[6] C. Lee and M. Stoodley. Utdsp benchmark suite, 1998.
[7] V. Maslov. Delinearization: An efficient way to break multiloop

dependence equations. SIGPLAN Not., 27(7):152–161, July 1992.
[8] V. Maslov and W. Pugh. Simplifying polynomial constraints over

integers to make dependence analysis more precise. In Int. Conf. on
Parallel and Vector Processing, 1994.

[9] MATLAB. version 8.4.0150421 (R2014b). The MathWorks Inc.,
Natick, Massachusetts, 2014.

[10] S. Pop, A. Cohen, and G.-A. Silber. Induction variable analysis with
delayed abstractions. In High Performance Embedded Architectures
and Compilers, pages 218–232. Springer, 2005.

[11] L.-N. Pouchet. PolyBench/C 3.2.
http://sourceforge.net/projects/polybench/.

[12] A. Simbürger and A. Größlinger. On the variety of static control parts
in real-world programs: from affine via multi-dimensional to
polynomial and just-in-time. In Proc. of the 4th Inter. Workshop on
Polyhedral Compilation Techniques, Vienna, Austria, Jan. 2014.

[13] S. Verdoolaege. isl: An integer set library for the polyhedral model.
In Mathematical Software (ICMS’10), LNCS 6327, 2010.

360

http://sourceforge.net/projects/polybench/

	Introduction
	Problem statement
	Arrays of parametric size
	Basic algorithm
	Multiple array references
	Subscripts containing size parameters
	Arrays of size A[][1 P1][2 P2]

	Parameter + constant
	Evaluation
	C99 arrays in PolyBench/C
	C++ template libraries – boost::ublas
	Julia
	UTDSP
	MATLAB

	Related work
	Conclusion
	References

