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ABSTRACT
Sparse matrix-vector multiplication (SpMV) is a core kernel
in numerous applications, ranging from physics simulation
and large-scale solvers to data analytics. Many GPU im-
plementations of SpMV have been proposed, targeting sev-
eral sparse representations and aiming at maximizing over-
all performance. No single sparse matrix representation is
uniformly superior, and the best performing representation
varies for sparse matrices with different sparsity patterns.

In this paper, we study the inter-relation between GPU
architecture, sparse matrix representation and the sparse
dataset. We perform extensive characterization of perti-
nent sparsity features of around 700 sparse matrices, and
their SpMV performance with a number of sparse represen-
tations implemented in the NVIDIA CUSP and cuSPARSE
libraries. We then build a decision model using machine
learning to automatically select the best representation to
use for a given sparse matrix on a given target platform,
based on the sparse matrix features. Experimental results
on three GPUs demonstrate that the approach is very effec-
tive in selecting the best representation.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Efficiency

Keywords
GPU, SpMV, machine learning models

1. INTRODUCTION
Sparse Matrix-Vector Multiplication (SpMV) is a key com-

putation at the core of many data analytics algorithms, as
well as scientific computing applications [3]. Hence there
has been tremendous interest in developing efficient imple-
mentations of the SpMV operation, optimized for different
architectural platforms [6, 25]. A particularly challenging
aspect of optimizing SpMV is that the performance profile
depends not only on the characteristics of the target plat-
form, but also on the sparsity structure of the matrix. There
is a growing interest in characterizing many graph analytics
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applications in terms of a dataset-algorithm-platform tri-
angle. This is a complex relationship that is not yet well
characterized even for much studied core kernels like SpMV.
In this paper, we make a first attempt at understanding the
dataset-algorithm dependences for SpMV on GPUs.

The optimization of SpMV for GPUs has been a much re-
searched topic over the last few years, including auto-tuning
approaches to deliver very high performance [22, 11] by tun-
ing the block size to the sparsity features of the computa-
tion. For CPUs, the compressed sparse row (CSR) – or the
dual compressed sparse column – is the dominant represen-
tation, effective across domains from which the sparse ma-
trices arise. In contrast, for GPUs no single representation
has been found to be effective across a range of sparse matri-
ces. The multiple objectives of maximizing coalesced global
memory access, minimizing thread divergence, and maximiz-
ing warp occupancy often conflict with each other. Differ-
ent sparse matrix representations, such as COO, ELLPACK,
HYB, CSR (these representations are elaborated later in the
paper), are provided by optimized libraries like SPARSKIT
[22], CUSP and cuSPARSE [10] from NVIDIA because no
single representation is superior in performance across differ-
ent sparse matrices. But despite all the significant advances
in performance of SpMV on GPUs, it remains unclear how
these results apply to different kinds of sparse matrices. The
question we seek to answer in this paper is the following: Is it
feasible to develop a characterization of SpMV performance
corresponding to different matrix representations, as a func-
tion of simply computable metrics of sparse matrices, and
further use such a characterization to effectively predict the
best representation for a given sparse matrix?

We focus on four sparse matrix representations imple-
mented in the cuSPARSE and CUSP libraries [10] from
NVIDIA: CSR [5], ELLPACK (ELL) [21], COO, and a hy-
brid scheme ELL-COO (HYB) [6], as well as a variant of the
HYB scheme. To study the impact of sparsity features on
SpMV performance, we gathered a set of 682 sparse matri-
ces from the UFL repository [12] covering nearly all avail-
able matrices that fit in GPU global memory. We perform
an extensive analysis of the performance distribution of each
considered representation on three high-end NVIDIA GPUs:
Tesla K20c and K40c, and a Fermi GTX 580, demonstrat-
ing the need to choose different representations based on the
matrix features, library and GPU used.

We then address the problem of automatically selecting,
a priori, the best performing representation using only fea-
tures of the input matrix such as the average number of non-
zero entries per row (the average degree of graphs). This is
achieved by developing a machine learning approach using
decision tree classifiers. We perform extensive characteri-
zation of the performance of our automatically generated
models, achieving on average a slowdown of no more than
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1.05x compared to an ideal oracle approach systematically
selecting the best representation for every matrix. We make
the following contributions:

• an extensive performance evaluation of popular SpMV
schemes implemented in NVIDIA cuSPARSE and CUSP,
on three high-end NVIDIA GPUs;

• the development of a fully automated approach to se-
lect the best performing sparse representation, using
only simple features of the input sparse matrices;

• an extensive evaluation of numerous machine learn-
ing models to select sparse representations, leading to
portable and simple-to-translate decision trees of 30
leaf nodes achieving 95% of the maximal possible per-
formance.

The paper is organized as follows. Sec. 2 motivates our
work and presents the SpMV representations considered.
Sec. 3 presents and analyzes the sparse matrix dataset we
use. Sec. 4 characterizes the SpMV kernel performance for
all covered cases, and Sec. 5-6 presents and evaluates our ma-
chine learning method. Related work is discussed in Sec. 7.

2. BACKGROUND AND OVERVIEW
Sparse Matrix-Vector Multiplication (SpMV) is a Level-2

BLAS operation between a sparse matrix and a dense vector
(y = A× x+ y), described (element-wise) by Equation 1.

∀ai,j ̸= 0 : yi = ai,j × xj + yi (1)

As a low arithmetic-intensity algorithm, SpMV is typically
bandwidth-bound, and due to the excellent GPU memory
bandwidth relative to CPUs, it has become a good candi-
date for GPU implementations [11]. Sparsity in the matrix
A leads to irregularity (and thus lack of locality) when ac-
cessing the matrix elements. Thus, even with optimal reuse
for the elements of vectors x and y, it is the accesses to ma-
trix A that significantly impacts the execution time of a ker-
nel. In particular, accessing the matrix A leads to irregular
and non-coalesced memory accesses and divergence among
threads in a warp. A number of efforts [5, 6, 28, 17, 27,
2] have sought to address these challenges. The NVIDIA
libraries, cuSPARSE [10] and CUSP [9, 5, 6], are two of
the most widely-used CUDA libraries that support differ-
ent sparse representations (e.g., COO, ELL, CSR, HY B).
The libraries also provide a “conversion”API to convert one
representation to another.

2.1 Problem Statement
From a performance perspective, for a given matrix A

with a certain sparsity structure, the representation is se-
lected based on required space (nonzero + meta-data), the
conversion time, and the kernel execution time. As shown
in Table 1, the required space is a factor of the number of
nonzeros (nnz), matrix dimensions (m × n), and other in-
ternal (matrix-specific) parameters (e.g., cut-off point k for
HYB).

The representation of the sparse matrix affects SpMV per-
formance on GPUs and none of the representations is consis-
tently superior as shown later in Sec. 4. Table 2 shows four
sparse matrices and performance of SpMV in GFLOP/s on
a single Tesla K40c GPU. It can be seen that each of the
four representations is the best for one of the four matrices.

The choice of “best representation” for a given matrix de-
pends on the sparsity structure (i.e. matrix features) as well

Format Space Required
COO 3× nnz
ELL 2×m× nnz max
CSR 2× nnz +m+ 1
HYB 2×m× k + 3× (nnz −X)

Table 1: Memory space required for every repre-
sentation. (matrix A is m × n with total nnz nonze-
ros and nnz max maximum nonzeros per row). k is
the cut-off point for ELL/COO partitioning in HYB
where X non-zero values handled by ELL.

Group Matrix COO ELL CSR HYB
Meszaros dbir1 9.9 0.9 4.4 9.4
Boeing bcsstk39 9.9 34.3 18.5 25.0

GHS indef exdata 1 9.5 4.3 31.5 11.3
GHS psdef bmwcra 1 11.5 26.7 24.8 35.4

Table 2: Performance difference for sparse matrices
from UFL matrix repository [12] (single-precision
GFLOP/s on Tesla K40c GPU)

as the GPU architecture (e.g. number of SMs, size/band-
width of global memory, etc.). However, using representa-
tive parameters from both matrix and architecture, we can
develop a model to predict the best performing representa-
tion for a given input matrix, as demonstrated in this paper.

2.2 Sparse Matrix Representations
In this work, we do not take into account pre-processing

(i.e. conversion) time and focus only on the performance
of the SpMV operation but the developed approach can be
extended to also account for the pre-processing time, if infor-
mation about the expected number of invocations of SpMV
for a given matrix is known. Some of the well-established
representations (for iterative and non-iterative SpMV) are
implemented and maintained in the NVIDIA cuSPARSE
and CUSP libraries [10, 9].

2.2.1 Coordinate Format (COO)
COO stores a sparse matrix using three dense vectors:

the nonzero values, column indices and row indices. Figure 1
demonstrates how a given matrix A can be represented using
the COO.

2.2.2 Compressed Sparse Row Format (CSR)
CSR [5, 6] compresses the row index array (into row offset)

such that the non-zeros of row i, as well as their column in-
dexes, can be found respectively in the values and col index
vectors, at index r, where row offset[i] ≤ r ≤ row offset[i+
1].

2.2.3 ELLPACK Format (ELL)
ELL [21] packs the matrix into a rectangular shape by

shifting the nonzeros in each row to the left and zero-padding
the rows so that they all occupy the same width as the one
with the largest number of nonzeros. In addition to the
padded values matrix, the representation requires an index
matrix to store the corresponding column index for every
non-zero element (as shown in Figure 1).

2.2.4 Hybrid COO-ELL Format (HYB)
HYB uses a mix of ELL and COO representations. It

partitions the input matrix into a dense part and a sparse
part. The “dense” part is represented and processed using
the ELL representation, while the “sparse” part uses COO.
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Figure 1: Sparse representations for matrix A in COO, CSR, ELL and HYB.

A parameter, k, is used to partition the first k non-zeros
from each row for storiage in the ELL part, and the rest are
stored in COO format. If a row has less than k non-zeros,
then it is padded with zeros as shown in Figure 1. The choice
of the cut-off point depends on the input matrix, and can
significantly affect performance.

2.3 GPUs and Compilation
Two NVIDIA Tesla GPUs (K20c and K40c) and one Fermi

GPU (GTX 580) were used for our experiments. Table 3
shows the details for each GPU. When selecting the GPUs,
we have considered variety in global memory bandwidth (i.e.
192 vs 288 GB/s) as well as the compute capacity (i.e. total
number of CUDA cores). The kernels were compiled using
the NVIDIA C Compiler (nvcc) version 6.5, with the max-
imum compute capability supported by each device. We
enabled standard optimizations using the −O3 switch.

GPU Model Fermi Tesla K20c Tesla K40c

Chip GTX580 GK110 GK110B
Compute Capability 2.0 3.5 3.5
Num. of SMs 16 13 15
ALUs per SM 32 192 192
Warp size 32 32 32
Threads per CTA 1024 1024 1024
Threads per SM(X) 1536 2048 2048
Sh-mem /CTA(KB) 48 48 48
L2 cache(KB) 768 1536 1536
Glob-mem (GB) 1.5 5 12
Glob-mem (GB/s) 192 208 288
Tera-FMA/s (SP/DP) 1.5/- 3.5/1.2 4.3/1.4

Table 3: GPUs hosted the experiments.

3. DATASET FEATURE ANALYSIS

3.1 Dataset Selection
We first needed a dataset of sparse matrices representa-

tive of most sparsity feature cases. For this purpose, we
analyzed sparse matrices from the UFL repository [12] in
Matrix Market format [18]. From more than 2650 matri-
ces (from 177 groups of applications) in the repository, we

selected 682 matrices from 114 groups. These matrices in-
cluded all those used in numerous previous GPU studies [6,
8, 2, 1, 27]. While previous work using sparse matrices has
usually tried to group matrices based on the domain where
they arise, in this work we instead look to obtain a sta-
tistically relevant coverage among several key quantitative
features describing the sparsity structure of the matrix.

Our selection mechanism applied the following constraints
to set bounds on two metrics: nnz tot, the total number of
non-zero entries in the matrix, and n rows, the number of
rows:

• C1: the sparse matrix does not fit in the CPU LLC
(8 MB for our machines). This is to focus on matrices
where GPU execution is most beneficial.

• C2: the sparse matrix fits in the “effective” space on
the global memory of the device (i.e. single-GPU exe-
cution).

• C3: the number of rows is large enough to guaran-
tee minimum GPU concurrency. This is achieved by
assuming that a warp works on a row; thus the mini-
mum number of rows equals the maximum warp-level
concurrency on a given device.

The size of the matrix (for C1 and C2) is conservatively
computed as S = 16 × nnz tot, where a nonzero in COO,
double-precision, needs 16 bytes (8 bytes for data plus two
4-byte indexes). It is also assumed that up to 80% of the
global memory on the device is available to hold the sparse
matrix data. In C3, the maximum warp-level concurrency is
computed by dividing the maximum number of threads per
GPU (i.e. Threads/SMX ×#SMXs) by the warp size.

3.2 Feature Set
Our objective is to gather relevant information about the

sparsity structure of the matrix without utilizing any do-
main knowledge, i.e., without considering the domain where
the matrix originates. For this work, we computed a set of
features as shown in Table 4.

These features were (re-)computed by doing an initial
traversal of the input matrix to gather these statistics. We
show later in Sec. 6 that only a small subset of these fea-
tures are actually needed for effective prediction of the best
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Figure 3: nnz mu (682 matrices)
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Figure 4: nnz sigma (682 matrices)

Feature Description

n rows Number of rows
n cols Number of columns
nnz tot Number of non-zeros
nnz frac Percentage of non-zeros

nnz {min,max,mu, sig}
Min, max, average (µ) and std.
deviation (σ) of non-zero per row

nnzb tot Number of non-zero blocks

nnzb {min,max,mu, sig}
Min, max, average (µ) and std.
deviation (σ) of number of
non-zero blocks per row

snzb {min,max,mu, sig}
Min, max, average (µ) and std.
deviation (σ) of the size of
non-zero blocks per row

Table 4: Matrix features

representation. Nevertheless, the use of more features could
possibly improve the quality of the prediction. The nnz frac
feature is simply derived from the sparse data structure size
and the number of matrix rows and columns, similarly for
nnz mu.

3.3 Feature Distribution
The selected matrices represent a wide range of structure

(i.e. diagonal, blocked, banded-diagonal, etc.) from differ-
ent application domains. We now focus on three critical fea-
tures that are group/domain-independent, and discuss their
distribution and correlation below.

Feature statistics. Table 5 summarizes, across the 682 ma-
trices, the minimum, maximum, average and standard devi-
ation of the main features considered.

We observe that the dataset covers a wide spectrum of
matrix sizes, with an average of 4.5 million non-zero en-
tries. The average block size represents the average number
of contiguous columns with non-zero entries in the rows of a
matrix. As shown by the snzb mu metric of 5.27, the average
block size is quite low. These statistics provide sensible in-
formation about the UFL database concerning GPU-friendly
matrices, and confirm via the standard deviation values of
these features (last column) that we do cover wide ranges
for the various features and that our selection of matrices is
effective.

Figures 2-4 show the distribution for the three critical
features considered.

Fraction of non-zeros. This feature represents the frac-
tional sparsity of the matrix, in a manner independent of
the matrix size. Figure 2 plots its value for each matrix,
sorted in ascending order. We observe a near perfect cover-
age of this feature, but with a lower density at the extremes
of the range. It may be observed that this feature is an ex-

Min Max Avg. Std. Dev.
n rows 1301 12M 377k 118k
n cols 2339 12M 399k 126k
nnz tot 350k 53M 4.5M 1.7M
nnz frac 0.000018 12.48 0.31 0.92
nnz min 1 130 8.90 11.63
nnz max 3 2.3M 13k 8k
nnz mu 1.60 3098 60.46 108.73
nnz sigma 0 6505 107.38 213.77
nnzb tot 8256 27M 2.1M 696k
nnzb min 1 49 2.17 2.43
nnzb max 2 462k 2203 2580
nnzb mu 1.5 1333 21.73 28.95
nnzb sigma 0 2720 29.21 71.69
snzb min 1 18 1.77 0.82
snzb max 1 309k 1101 365.8
snzb mu 1 126.3 5.27 6.02
snzb sigma 0 737.4 8.45 11.09

Table 5: Statistics on main features

cellent discriminant between matrices in our database, from
the absence of horizontal segments. This motivates its in-
clusion in all feature sets for prediction of the best sparse
representation.

Average number of non-zeros per row. This feature is
plotted in Figure 3, using the same order along the x axis
as in Figure 2, i.e., it plots nnz mu in increasing order of
nnz frac. We also observe an excellent coverage of the fea-
ture range. We observe only a mild correlation between
the two features, as seen by the overall increasing trend of
nnz mu. Nevertheless there are significant outliers to this
trend, indicating that nnz mu carries complementary infor-
mation to nnz frac.

Standard deviation of number of non-zeros per row.
This feature is plotted in Figure 4 in increasing order of
nnz frac. While we also observe an excellent coverage of
the feature range, there is a clear decorrelation between the
two features. This is indicative of different information be-
ing carried by nnz sigma than nnz frac, and motivates its
inclusion in all feature sets.

4. PERFORMANCE ANALYSIS
We now perform a characterization of the performance of

each representation tested, on all matrices in the dataset.
We conducted experiments by measuring the performance
of the SpMV kernel in GFLOP/s, on three GPUs (K40c,
K20c and Fermi, as described in Sec. 2). The figure reports
the total kernel execution time; data transfer time between
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CPU and GPU is not included. This is appropriate since
we particularly target iterative SpMV schemes, where the
matrix is expected to be loaded once and the kernel repeated
numerous times.

Best performing representations. Table 6 reports how
many matrices, out of the 682 considered, are best executed
(i.e., highest GFLOP/s achieved), with a given representa-
tion.1 For cuSPARSE, we also evaluated HYB-MU, a vari-
ation of the hybrid scheme, where the cut-off point between
ELL and COO is not chosen by the library, but instead set
to the nnz mu value of the matrix. Such a user-specified
control is not available with CUSP.

COO ELL CSR HYB HYB-MU
K40c-cusparse 10 278 104 103 185
K40c-cusp 0 168 172 339 N/A
K20c-cusparse 10 269 95 134 174
K20c-cusp 1 194 168 318 N/A
Fermi-cusparse 5 200 302 86 87

Table 6: Fastest representation statistics

First, we observe that the hybrid scheme is the best per-
forming one in the highest number of matrices for CUSP,
while for cuSPARSE ELL dominates on the Teslas. We also
observe an apparent consistency between Tesla GPUs: sim-
ilar trends in the distribution of the best appears for both
K20c and K40c. On the older Fermi architecture, CSR ac-
tually performs consistently best, but as shown below, the
true performance differences with HYB are minimal. How-
ever, care must be taken with these numbers: we conducted
a more precise analysis showing that the matrices for which
CSR is best for K40c are not strictly the same as the ones for
K20c, and similarly between CUSP and cuSPARSE. While
ELL, COO and HYB have correlation, since HYB combines
the first two, we observe that CSR remains an important
representation for getting the best performance for around
20% of the matrices.

Performance differences. The previous table only shows
a fraction of the information. In practice, what matters is
not only which representation performs best, but also the
performance difference between them. Table 7 shows the
average slowdown in always using the same representation
for the entire dataset, compared to using the best repre-
sentation found for each matrix individually. For instance,
1.97x for COO / K40c-cusparse means that we lose about
50% of the performance by always using COO for the 682
matrices, compared to using the best representation for each
of them.

COO ELL CSR HYB HYB-MU
K40c-cusparse 1.97x 1.60x 1.54x 1.18x 1.18x
K40c-cusp 2.21x 1.87x 1.54x 1.14x N/A
K20c-cusparse 1.88x 1.60x 1.55x 1.17x 1.17x
K20c-cusp 2.16x 1.90x 1.52x 1.14x N/A
Fermi-cusparse 2.02x 1.71x 1.20x 1.20x 1.20x

Table 7: Average slowdown over the 682 matrices
when a fixed representation is used instead of the
individual best

The HYB representation performs best overall, and there
is overall consistency across libraries and GPUs. However,

1The latest version of CUSP did not work on the older Fermi
GPU; we only report cuSPARSE results for this GPU.

it also clearly demonstrates that using the popular CSR can
lead to a significant average slowdown on Tesla GPUs.

Large slowdowns. While it seems from the above that
HYB is a good overall representation in terms of perfor-
mance, these average numbers mask very significant slow-
downs on some matrices, due to the large number of matri-
ces in the dataset. Table 8 reports the number of matrices
(out of 682) for which use of a fixed representation across
the entire dataset results in a slowdown greater than 2x over
the best representation.

COO ELL CSR HYB HYB-MU
K40c-cusparse 360 243 166 47 37
K40c-cusp 422 322 248 50 N/A
K20c-cusparse 339 245 134 45 33
K20c-cusp 410 326 231 42 N/A
Fermi-cusparse 404 268 68 20 23

Table 8: Number of > 2x slowdown cases

This table carries critical information and dismisses the
one-size-fits-all strategy that might be suggested from the
previous data. If HYB is always used, between 20 and 50
matrices would achieve less than 50% of the possible perfor-
mance. Slowdowns of up to 10x can actually arise by always
using HYB. The numbers are even more staggering for the
other representations, where such loss of performance can
occur for half of the matrices. This data clearly motivates
the need for an effective approach to select the best represen-
tation for each matrix in order to achieve consistently good
performance. This metric of the number of cases with 2x
slowdown is a particular point of focus in the quality of our
machine learning approach described in Sec. 5, where we
succeed in reducing this number to no more than 6 out of
682 matrices.

Impact of ELL and CSR. Table 9 focuses on the K40c,
considering the 2x-slowdown cases when using HYB, and
reports which representation actually performing best, and
the actual average slowdown for each of these. For example,
out of the 47 cases where HYB has a 2x slowdown, for 18
of them CSR was the best representation, and a speedup of
2.36x on average can be achieved by using CSR instead of
HYB for these 18 cases.

COO ELL CSR HYB-MU
(CS) > 2x slowdown 0 29 18 0
(CS) Avg. slowdown N/A 2.36x 2.54x N/A
(CU) > 2x slowdown 0 22 28 N/A
(CU) Avg. slowdown N/A 2.28x 2.75x N/A

Table 9: K40c using HYB

This shows that while the HYB-MU case does not lead
to any improvement greater than 2x over HYB, both ELL
and CSR are equally critical to address the cases with large
slowdowns. In other words, to ensure good overall perfor-
mance and avoid cases with significant loss of performance,
a model must select at least between HYB, CSR and ELL.

SpMV performance breakdown. Finally Figures 5-9 plots
the matrix distribution of performance (GFLOPS/s) achieved
by the SpMV kernel, for all configurations. The range of
GFLOP/s achieved for a configuration is split into 10 buck-
ets, and the number of matrices achieving no more than the
GFLOP/s label on the x axis (and no less than the value for
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the previous bucket) is reported. For example, 394 matri-
ces achieve between 8.3 GFLOP/s and 12.4 GFLOP/s using
COO with K40c/cuSPARSE in Fig. 5.
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We observe that CSR is almost never in any of the three
right-most buckets, and COO is mainly represented at the
low end of the spectrum, while both HYB and ELL are
spread across the entire spectrum. In other words, the GPU
computing power may be better harnessed for matrices where
HYB and ELL perform best. We remark that for the cases
where ELL failed to convert from MatrixMarket format on
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the GPU, we report its GFLOP/s as 0 which artificially
increases its representation in the first bucket. Such cases
of failure of conversion occur typically because of very large
nnz max values, where ELL is not appropriate to use. While
we could simply have removed ELL for these matrices, for
consistency of the protocol, we chose to simply set their
GFLOP/s to 0 (and their speedup compared to other rep-
resentations also to zero).

We conducted additional study to observe if there is any
correlation between the fraction of non-zero in the matrix
and the GF/s achieved by each representation. We sepa-
rated the set of matrices in 10 classes, by increasing range
of the value of nnz frac, and computed the average GF/s of
each representation in this class. We observed that while
for COO and to a more limited extent CSR the higher
the nnz frac the higher the GF/s on average, this trend is
reverted for ELL and the hybrid schemes: the lower the
nnz frac the better the average GF/s. Note that there are
numerous outliers to these trends: while previous results
showed that, on a restricted dataset, nnz frac was a possi-
ble predictor of the best representation [23] the extensive
study we conduct in this paper showed the requirement to
consider additional features to properly determine the best
representation in general.

5. MACHINE LEARNING MODELING
We now elaborate on the machine learning approach we

use to automatically predict the best representation, based
only on efficiently computed features of the input matrix.
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5.1 Problem Learned
Based on our findings presented above, we concluded on

the need to develop an approach which would predict, at
the very least, which of CSR, ELL or HYB is the best rep-
resentation for a matrix. While this is a simpler problem
instance (3 categories), in order to achieve the truly best
overall performance we keep each possible representation for
prediction. We build a predictor of the form:

Predictor(x⃗) = c

where c ∈ { COO, ELL, CSR, HYB, HYB-MU } for cuS-
PARSE, and we remove HYB-MU for CUSP. x⃗ is the vector
of features we consider as input; these are metrics computed
for each dataset.

Learning Algorithms. A classification tree is a form of de-
cision tree where the predicted value is a category. It takes
the form of a series of conditions on the input feature values,
leading to a leaf containing the predicted category when the
conditions are met. Figure 10 shows an example of an ex-
cerpt of a tree built in our experiments, the number in com-
ment (e.g., #(22)) shows the number of matrices correctly
predicted by matching the input features against each con-
ditional, until a leaf is reached. For example a matrix with
nnz sigma = 2, nnz frac = 0.00005 is predicted as HYB here.

nnz_sigma < 14.9
| nnz_mu < 5.3
| | nnz_sigma < 2.05
| | | nnz_frac < 1.0E-4
| | | | nnz_frac < 3.0E-5: HYB-MU #(3)
| | | | nnz_frac >= 3.0E-5: HYB #(4)
| | | nnz_frac >= 1.0E-4: ELL #(22)

Figure 10: Classification tree example

Tree models have numerous advantages over other algo-
rithms, including (1) the ability for a human to read and
understand them, favoring knowledge transfer; (2) their ex-
cellent evaluation speed and quick training speed, enabling
use with large datasets; (3) their widespread availability in
machine learning libraries and ease of implementation.

In this work we conducted an extensive study using the
Weka library version 3.6.12 [19] on most of the available
decision tree algorithms implemented. This included Ran-
domTree, J48, BFTree, and SimpleCart. We determined
that BFTree and SimpleCart outperformed the other al-
gorithms and therefore focused particularly on those two.
BFTree [14] is a best-first decision tree classifier, while Sim-
pleCart [7] implements a hierarchical optimal discriminant
analysis using minimal cost-complexity pruning [19]. Both
these algorithms can be parameterized to control the size of
the tree generated, trading off generalization and prediction
quality.

5.2 Training and Testing
Our experimental protocol is as follows. First the GFLOP/s

for all representations and all matrices is computed, and each
matrix is given a class attribute corresponding to the actual
best performing representation (c above). Then, the entire
set of 682 matrices is split into two sets, following the 80%-
20% rule. The training of the model is done on the largest
bucket containing 80% of the dataset, while the evaluation
is done on the remaining 20%. This process is repeated 5
times, each with another 80-20 split, so that each matrix
is used for testing exactly once. We use a stratified cross-
validation with randomization to create each case, using the

available Weka tools. This seeks to approximately retain the
original class (c) distribution in both sets.

In our experiments the training was completed in less than
2 seconds on a standard laptop, and the testing in less than
0.1s, for one particular machine learning algorithm instance.

6. SELECTING A REPRESENTATION
We now present the evaluation of BFTree and SimpleCart

on the prediction problem.

6.1 Experimental Protocol

Feature sets. We evaluated several feature sets, described
in Table 13. The Simple feature set is meant to capture
features that are extremely easy to compute, only nnz sigma
needs a scan of the matrix or sampling to be obtained. The
Advanced1 and Advanced2 sets on the other hand consider
statistics on the number and size of blocks of non-zeros, and
typically requires a scan of the matrix, or a good knowledge
of the regularity in the sparsity pattern.

Name Description
Simple nnz frac, nnz mu, nnz sigma

Advanced1
nnz frac, nnz mu, nnz sigma, nnzb mu,
nnzb sigma, snzb mu, snzb sigma

Advanced2
nnz frac, nnz max, nnz mu, nnz sigma,
nnzb mu, nnzb sigma, snzb mu, snzb sigma

Table 13: Feature sets evaluated

Algorithm parameters. Both algorithms take two parame-
ters as argument for the training stage, determining (1) min-
Num the minimal number of instances at the terminal node;
and (2) numFold the number of folds used in the pruning. We
have explored the Cartesian product of combinations gener-
ated with the values minNum = {2, 3, 4, 5} × numFold =
{5, 10, 15}.

Invalidating the random approach. We have evaluated
a classical random classifier to ensure the problem cannot
be addressed using a simple random selection of the best
representation. As expected this approach failed, giving an
average slowdown compared to the best representation of
1.7x for cuSPARSE and 4.7x for CUSP— significantly worse
than always using HYB.

6.2 Evaluation of Specialized Models
We first analyze the results of a first approach of training

a different model for each GPU and each library indepen-
dently, before discussing the use of a single model for all
cases.

Tables 10-12 presents statistics about the best perform-
ing models founds, after exploring all algorithm parameters.
The criterion retained for optimality was the minimization
of the number of matrices for which a 2x slowdown or more
was experienced, compared to the best representation. A
total of 12 configurations was tested per entry in these ta-
bles, for a grand total of 144 models trained and evaluated
per GPU, from which we report the 12 best. The parame-
ters used to train the best model are shown, along with the
percentage of testing matrices that were mispredicted from
the testing set, the number of matrices achieving a 2x slow-
down or more compared to the best performing matrices,
and the average slowdown compared to the best per-matrix
representation. These tables should be put in perspective
with Tables 7-8.
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minNum numFold misprediction > 2x slowdown Avg. slowdown

cuSPARSE

BFTree
Simple 2 5 34.8% 6 1.07x

Advanced1 2 10 34.2% 7 1.08x
Advanced2 2 5 20.4% 3 1.04x

SimpleCart
Simple 2 10 35.2% 6 1.08x

Advanced1 2 10 18.8% 3 1.04x
Advanced2 2 10 19% 3 1.04x

CUSP

BFTree
Simple 2 10 24% 4 1.06x

Advanced1 2 10 18.8% 3 1.04x
Advanced2 2 5 16.2% 1 1.02x

SimpleCart
Simple 5 15 25% 3 1.05x

Advanced1 2 10 19% 3 1.04x
Advanced2 2 5 16.2% 1 1.02x

Table 10: Results for K40c, training one model per library

minNum numFold misprediction > 2x slowdown Avg. slowdown

cuSPARSE

BFTree
Simple 2 15 33.6% 6 1.08x

Advanced1 2 15 30.2% 5 1.07x
Advanced2 2 5 26.2% 1 1.03x

SimpleCart
Simple 2 5 29.8% 7 1.08x

Advanced1 3 15 24.2% 2 1.03x
Advanced2 3 5 24% 2 1.03x

CUSP

BFTree
Simple 2 5 31.4% 3 1.06x

Advanced1 2 10 24% 4 1.05x
Advanced2 2 10 21.2% 1 1.02x

SimpleCart
Simple 2 10 29.6% 4 1.05x

Advanced1 2 10 24.4% 4 1.05x
Advanced2 2 15 23.6% 2 1.03x

Table 11: Results for K20c, training one model per library

minNum numFold misprediction > 2x slowdown Avg. slowdown

cuSPARSE

BFTree
Simple 3 5 35.4% 6 1.08x

Advanced1 2 10 33.5% 5 1.07x
Advanced2 2 5 26.6% 2 1.03x

SimpleCart
Simple 4 5 35.1% 5 1.08x

Advanced1 2 5 27.3% 2 1.03x
Advanced2 2 15 26.6% 2 1.03x

Table 12: Results for Fermi

General observations. First and foremost, we observe the
very strong gain of our approach compared to using a single
representation (HYB), both in terms of average slowdown
and especially in terms of number of matrices for which we
use an ineffective representation. Even limiting to a simple
feature set made of nnz frac, nnz mu and nnz sigma, we can
achieve on average 92% or more of the maximal performance
and limit the number of ineffective cases to 6 or less, for both
libraries and GPUs. Considering a more complicated feature
set, these numbers improve to 96% and 3.

Another interesting aspect is the somewhat marginal gain
that increasing the feature set provides: considering features
on the block size and distribution result in a decrease of the
number of ineffective cases only from 6 to 3 or less. So it
appears that simple features are overall good enough for a
predictor, which enhances the simplicity of the approach:
such features can be computed from the size of the data
structures and provided by a domain expert.

Regarding mispredictions, we observe an overall high num-
ber of matrices being mispredicted, ranging from 16% to
38% of the testing set in the worst case. We initially used
this metric as the criterion to select the best parameter con-
figuration. However, reducing this metric only led to larger
trees, with no improvement in average slowdown. The rea-
son for the lack of apparent correlation between the mis-

prediction rate and the average slowdown is found in the
performance distribution, and the overall comparable per-
formance of different representations in numerous cases. For
these, our models may not predict the absolute best repre-
sentation, but at least predict a representation achieving
very good performance, close to the best of the selected rep-
resentations. Allowing for higher misprediction rate while
preserving the average slowdown and number of ineffective
cases enabled the building of simpler and smaller trees, im-
proving generalization and knowledge transfer.

Finally, we observe that while BFTree performs overall
best for the K20c GPU, SimpleCart slightly outperforms
BFTree with the Fermi and K40c for CUSP. Nevertheless,
with differences being so marginal, we can use either model.
A more challenging observation relates to the algorithm pa-
rameters. Clearly, different parameters are needed across
GPUs, and even across libraries, to achieve the best perfor-
mance.

Single parameter set. Table 14 shows performance statis-
tics for use of a single parameter configuration and classifica-
tion algorithm. As no algorithm/parameter setup performs
best across all configurations, we chose the one that mini-
mizes the total number of ineffective configurations.
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> 2x slowdown Avg. slowdown
K40c/cuSPARSE 6 1.07x
K40c/CUSP 5 1.06x
K20c/cuSPARSE 8 1.09x
K20c/CUSP 6 1.05x
Fermi/cuSPARSE 6 1.08x

Table 14: BFTree minNum=2, numFold=5, Simple
features

These results show a slight degradation of the results when
parameter selection is avoided, making it a good candidate
for single-shot training (i.e., no auto-tuning on the parame-
ters). We however remark that, as the training time is a mat-
ter of a few seconds per configuration, such training auto-
tuning on the proposed range of parameter remains feasible
at library installation time. Nevertheless, running all SpMV
cases on all representations to collect the classified data for
this supervised learning will remain a task-consuming task.

A trained tree for K40c. We conclude our presentation by
showing the tree produced for K40c / cuSPARSE in Fig. 11.
This very simple tree was trained on the entire dataset and
as such can be embedded as-is as a predictor in the cuS-
PARSE library, to provide the user guidance on the possi-
ble fastest representation. It is particularly interesting to
note how 102 (122-18) ELL cases are correctly predicted us-
ing only conditions on nnz mu and nnz sigma, and 34 more
considering nnz frac.

7. RELATED WORK
There is an extensive amount of work in the literature on

customizing sparse matrix representations and optimizing
SpMV on different platforms. This paper follows our previ-
ous work [23] and raises the question of how to choose be-
tween these representations in an automated, portable and
systematic way.

In the CPU domain, Vuduc [25] studied SpMV on single-
core CPUs and presented an automated system for generat-
ing efficient implementations of SpMV on these platforms.
Williams et al. [26] moved toward multi-core platforms with
the implementation of parallel SpMV kernels. SpMV kernels
have been studied and optimized for GPUs as well. Bell and
Garland implemented several sparse matrix representations
in CUDA [6] and proposed HYB (hybrid of ELL and COO),
that generally adapts well to a broad class of unstructured
matrices.

Baskaran and Bordawekar [4] optimized CSR so that it
performs about the same (modestly faster with more mem-
ory cost) as CSR-Vector [6] (in which a row is assigned to
each warp, which then performs segmented reduction). Choi
et al. [8] introduced blocking to CSR and ELL (BCSR and
BELLPACK). These representations outperform HYB for
matrices with dense block substructure but on average their
auto-tuned version is not as good as HYB for general un-
structured and sparse matrices.

Liu et al. [17] proposed ELLPACK Sparse Block (ESB) for
the Intel Xeon Phi Co-processor, and show that on average
ESB outperforms cuSPARSE on NVIDIA K20X.

Yang et al. [28] developed a representation suited for ma-
trices with power-low characteristics, by combining Trans-
posed Jagged Diagonal Storage (TJDS) [13] with COO and
blocking. Ashari et al. [1] presented a CSR-based approach
(ACSR) crafted for power-law matrices, using binning and
dynamic parallelism on Kepler GPUs. Liu et. al. [16]
recently proposed CSR5 (a CSR-based representation) for
SpMV on different target platforms (CPU, GPU and Xeon

nnz_sigma < 14.9
| nnz_mu < 5.3
| | nnz_sigma < 2.05
| | | nnz_frac < 1.0E-4: HYB-MU #(5.0/5.0)
| | | nnz_frac >= 1.0E-4: ELL #(22.0/4.0)
| | nnz_sigma >= 2.05
| | | nnz_sigma < 2.75: HYB-MU #(7.0/6.0)
| | | nnz_sigma >= 2.75: HYB-MU #(27.0/15.0)
| nnz_mu >= 5.3
| | nnz_sigma < 5.95
| | | nnz_mu < 34.45: ELL #(122.0/18.0)
| | | nnz_mu >= 34.45: HYB #(19.0/13.0)
| | nnz_sigma >= 5.95
| | | nnz_mu < 26.9
| | | | nnz_frac < 0.01521
| | | | | nnz_frac < 0.00319
| | | | | | nnz_sigma < 6.95: HYB #(4.0/1.0)
| | | | | | nnz_sigma >= 6.95: HYB-MU #(5.0/5.0)
| | | | | nnz_frac >= 0.00319: HYB-MU #(8.0/2.0)
| | | | nnz_frac >= 0.01521: ELL #(6.0/7.0)
| | | nnz_mu >= 26.9
| | | | nnz_frac < 0.63702: ELL #(45.0/11.0)
| | | | nnz_frac >= 0.63702: CSR #(4.0/1.0)
nnz_sigma >= 14.9
| nnz_frac < 0.0411
| | nnz_mu < 79.4
| | | nnz_mu < 20.95
| | | | nnz_frac < 0.00144: HYB-MU #(14.0/1.0)
| | | | nnz_frac >= 0.00144
| | | | | nnz_sigma < 97.3
| | | | | | nnz_mu < 13.7
| | | | | | | nnz_mu < 8.15
| | | | | | | | nnz_sigma < 33.6: HYB #(9.0/1.0)
| | | | | | | | nnz_sigma >= 33.6: HYB-MU #(3.0/2.0)
| | | | | | | nnz_mu >= 8.15: HYB-MU #(23.0/11.0)
| | | | | | nnz_mu >= 13.7: HYB #(9.0/1.0)
| | | | | nnz_sigma >= 97.3: HYB-MU #(20.0/7.0)
| | | nnz_mu >= 20.95: HYB-MU #(27.0/10.0)
| | nnz_mu >= 79.4: HYB #(5.0/0.0)
| nnz_frac >= 0.0411
| | nnz_frac < 0.69183
| | | nnz_sigma < 102.8
| | | | nnz_sigma < 31.45
| | | | | nnz_mu < 21.4: HYB-MU #(3.0/3.0)
| | | | | nnz_mu >= 21.4
| | | | | | nnz_sigma < 24.4
| | | | | | | nnz_mu < 52.2: HYB #(4.0/5.0)
| | | | | | | nnz_mu >= 52.2: ELL #(4.0/2.0)
| | | | | | nnz_sigma >= 24.4: ELL #(15.0/2.0)
| | | | nnz_sigma >= 31.45: CSR #(22.0/29.0)
| | | nnz_sigma >= 102.8
| | | | nnz_sigma < 209.2: CSR #(9.0/5.0)
| | | | nnz_sigma >= 209.2
| | | | | nnz_sigma < 1519.35
| | | | | | nnz_frac < 0.06378: HYB #(3.0/2.0)
| | | | | | nnz_frac >= 0.06378: HYB-MU #(12.0/9.0)
| | | | | nnz_sigma >= 1519.35: COO #(4.0/1.0)
| | nnz_frac >= 0.69183: CSR #(35.0/8.0)

Size of the Tree: 59
Number of Leaf Nodes: 30

Figure 11: Tree trained on all input data, K40c

Phi), which is insensitive to the sparsity structure of the in-
put sparse matrix. Reguly and Giles [20] also presented a
CSR-based solution with an auto-tuning algorithm to select
the number of rows for a thread to work on based on avail-
able resources on the device. Additionally, there have been
developments towards having a runtime to select the best-
performing representation for a given matrix (e.g. Cocktail
Format [24]).

As briefly summarized above, sparse storage representa-
tions have been studied extensively for GPUs. Proposed
optimizations have followed changes in the GPU architec-
ture. GPU implementation of such representations are sig-
nificantly impacted by the way nonzeros are distributed across
the thread-blocks and threads [6, 15, 5, 8, 27, 28, 1].

While we restricted ourselves to a set of standard repre-
sentations available in NVIDIA cuSPARSE [10] and CUSP
[9], our approach does not depend on the representation used
and we believe it can be effectively extended to cover addi-
tional sparse matrix representations.

107



8. CONCLUSION
Implementing an effective SpMV algorithm on GPUs has

proven to be challenging task which is only feasible in the
presence of efficient sparse representation and exploitation
of the matrix sparsity. NVIDIA cuSPARSE (among oth-
ers) implements several such representations (e.g. CSR,
ELLPACK, COO and a hybrid scheme ELL-COO). But the
choice of which representation is the best for a given matrix
remains mostly unknown.

In this work we have addressed the problem of automat-
ically selecting the best sparse representation for effective
SpMV execution on GPU, by using input-dependent features
on the sparse matrix to be operated on. Our approach allows
to achieve within 95% on average of the best performance
available. We have extensively characterized the feature
distribution of the popular UFL repository, selecting 682
matrices suitable for GPU acceleration. We have analyzed
the performance distribution of two popular Sparse toolk-
its from NVIDIA, cuSPARSE and CUSP, on three high-
end GPUs, GTX 580, K20c and K40c. We showed that
no representation performs best across this set, and that a
one-representation-fits-all approach, while providing encour-
aging performance, can actually result in numerous cases of
very poor performance. We proposed a machine learning ap-
proach to automatically predict the best sparse representa-
tion, using classification trees. Our experiments show that,
using only basic features, our approach shows no more than
6 out of 682 matrices to have poor performance using our
predictor. More complex features can lead to a 98% effi-
ciency, with only 1 matrix with poor performance using our
predictor.
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