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Abstract. As processors gain in complexity and heterogeneity, compilers are
asked to perform program transformations of ever-increasing complexity to ef-
fectively map an input program to the target hardware. It is critical to develop
methods and tools to automatically assert the correctness of programs generated
by such modern optimizing compilers.

We present a framework to verify if two programs (one possibly being a transformed
variant of the other) are semantically equivalent. We focus on scientific kernels and
a state-of-the-art polyhedral compiler implemented in ROSE. We check the cor-
rectness of a set of polyhedral transformations by combining the computation of
a state transition graph with a rewrite system to transform floating point com-
putations and array update operations of one program such that we can match
them as terms with those of the other program. We demonstrate our approach on
a collection of benchmarks from the PolyBench/C suite.

1 Introduction

The hardware trend for the foreseeable future is clear: symmetric parallelism such as
in SIMD units is ubiquitous; heterogeneous hardware exemplified by System-on-Chips
becomes the solution of choice for low-power computing; and processors’ instruction
sets keep growing with specialized instructions to leverage additional acceleration/DSP
hardware introduced by manufacturers. This ever-increasing complexity of the com-
puting devices is exacerbating the challenge of programming them: to properly harness
the potential of a given processor, one has to significantly transform/rewrite an input
program to match the features of the target hardware. Advanced program transforma-
tions such as coarse-grain parallelization, vector/SIMD parallelization, data locality
optimizations, etc. are required to achieve good performance on a particular hardware.
Aggressive optimizing compilers, as exemplified by polyhedral compilation [1], aim at
automating these transformation stages to deliver a high-performance program that
is transformed for a particular hardware. From a single input source, these compilers
perform highly complex loop transformations to expose the proper grain of parallelism
and data locality needed for a given processor. Such transformations include complex
loop tiling and coarse-grain parallelization.

Polyhedral compilers have shown great promises in delivering high-performance
for a variety of targets from a single input source (for example to map affine stencil
computations for CPUs [2, 3], GPUs [4] and FPGAs [5]), where each target requires
its dedicated set of program transformations. However, asserting the correctness of the
generated code has become a daunting task. For example, on a 2D Finite-Difference



Time-Domain kernel, after transformation the loop bound expressions of the only
parallel OpenMP for loop generated are about 15 lines long, making manual inspection
out of reach. We also remark that verifying the polyhedral compiler engine itself, PoCC
[6], which is the result of 8 years of multi-institution development is also out of reach:
the compiler is actually around 0.5 million lines of codes, making the effort of producing
a certification of these compiler optimizations in a manner similar to Leroy’s Compcert
work [7] extremely high.

In addition to high-level program transformations that are performed by the com-
piler, a series of low-level implementation choices can significantly challenge the design
of a verification system. A compelling example relates to the floating point number
implementation chosen by the back-end compiler. If one program is implemented us-
ing double precision (e.g., 64 bits) and the other program is implemented using for
instance specialized 80 bits instructions, even if they are two totally equivalent pro-
grams in terms of semantics the output produced by these programs is likely to differ
slightly: successive rounding and truncation effects will affect the output result, this
even if the program is fully IEEE compliant.

We are in need for an automated system that asserts the correctness of the gener-
ated code by such optimizing compilers, in a manner that is robust to the back-end
implementation decisions made by the compiler. Previous work such as Verdoolaege’s
[8] has focused on determining if two programs, in particular two affine programs
[9], are semantically equivalent. Such tools require the input program (control flow
and data flow) to be precisely modeled using combinations of affine forms of the sur-
rounding loop iterators and program parameters. In contrast, our work uses a more
practical approach with strong potential to be generalized to larger classes of pro-
grams. In the present work we focus on equivalence of affine programs where the value
of all program parameters (e.g., problem size) is known at compile-time, with only
simple data-dependent conditionals.

In this work, we propose an automated system to assert the equivalence of two
affine programs, one of them being generated by the PolyOpt/C[1] compiler. At a
high level, we combine the computation of a state transition graph with a rewrite
system to transform the floating point operations and array update operations of one
program such that we can match them (as terms) with those of the other program.
We make the following contributions.

— We develop a new approach for determining the equivalence of two affine programs
with simple data-dependent control-flow, leveraging properties of polyhedral opti-
mizations to design a simple but effective rewriting system and equivalence checker.

— We provide extensive analysis of our method in terms of problem sizes and equiv-
alence checking time.

— We evaluate our method on a relevant subset of polyhedral optimizations, asserting
the correctness of PolyOpt/C on a collection of numerical kernels. Our work led to
finding two bugs in PolyOpt/C, which were not caught with its current correctness
checking test suite.

The rest of the paper is organized as follows. Sec. 2 describes polyhedral trans-
formations and the class of programs analyzed in this paper. Sec. 3 describes our
equivalence checking method. Sec. 4 provides extensive evaluation of our approach,
asserting the correctness of PolyOpt/C for the tested benchmarks. Sec. 5 discusses
related work, before concluding.



2 Polyhedral Program Transformations

Unlike the internal representation that uses abstract syntax trees (AST) found in con-
ventional compilers, polyhedral compiler frameworks use an internal representation
of imperfectly nested affine loop computations and their data dependence informa-
tion as a collection of parametric polyhedra, this enables a powerful and expressive
mathematical framework to be applied in performing various data flow analysis and
code transformations. Significant benefits over conventional AST representations of
computations include the effective handling of symbolic loop bounds and array index
function, the uniform treatment of perfectly nested versus imperfectly nested loops,
the ability to view the selection of an arbitrarily complex sequence of loop transfor-
mations as a single optimization problem, the automatic generation of tiled code for
non-rectangular imperfectly nested loops [10, 2, 11], the ability to perform instancewise
dataflow analysis and determine the legality of a program transformation using exclu-
sively algebraic operations (e.g., polyhedron emptiness test) [9, 12], and more [13]. The
polyhedral model is a flexible and expressive representation for loop nests with stat-
ically predictable control flow. Loop nests amenable to this algebraic representation
are called static control parts (SCoP) [9,13], roughly defined as a set of consecutive
statements such that loop bounds and conditionals involved are affine functions of the
enclosing loop iterators and variables that are constant during the SCoP execution
(whose values are unknown at compile-time, a.k.a. program parameters). Numerous
scientific kernels exhibit those properties; they can be found in image processing filters,
linear algebra computations, etc.as exemplified by the PolyBench/C test suite [14].

In a polyhedral compiler, program transformations are expressed as a reordering
of each dynamic instance of each syntactic statement in the program. The validity of
this reordering is determined in PolyOpt/C by ensuring that the order in which each
operations accessing the same array cell is preserved in the transformed code, this
follows the usual definition of data dependence preserving transformations [15]. No
transformation on the actual mathematical operations used during the computation is
ever performed: each statement body has its structure and arithmetic operations fully
preserved after loop transformations. Strength reduction, partial redundancy elimina-
tion, and other optimizations that can alter the statement body are not considered in
the traditional parallelization/tiling polyhedral transformations [2] that we evaluate in
PolyOpt/C. These properties allow the design of an analysis and a simple but effective
rewriting rule system to proof equivalence, as shown in later Sec. 3.

In this work, we focus exclusively on polyhedral program variants that are gen-
erated by a polyhedral compiler, PolyOpt/C. Details on the variants considered are
found in later Sec. 4. That is, the codes we consider for equivalence checking are affine
programs that can be handled by PolyOpt/C. Technically, we consider a useful subset
of affine programs where the loop bounds are fully computable at compile-time. That
is, once the program has been transformed by PolyOpt/C (possibly containing pro-
gram parameters, such as the problem/array sizes), the resulting program must have
all parameters replaced by a numerical value, to ensure that loop bound expressions
can be properly computed and analyzed by our framework. Looking at PolyBench/C
benchmarks, a sample dataset is always provided, which implies that we know, at
compile time, the value of all program parameters.



3 Approach

In our approach we verify that the sequence of update operations involving floating
point operations on each array element in the original program is exactly the same
as in an optimized version of the program. Our verification is a combination of static
analysis, program rewrite operations, and a comparison based on an SSA form [16]
where each array element is represented as a different variable (with its own SSA
number).

Algorithm 1: DetermineFloatingPoint AssignmentSequenceInSSA

Data: P : Program

Result: S,,: sequence of floating point operations in SSA Form
STG=compute-STG(P);
A=extract-floating-point-assignment-sequence(STG);

foreach a € A do

| rewrite(a) [apply rewrite rules 1-11]

Sssa=determineSSA (A);

Algorithm 2: Verify
Data: P, P, : Programs to verify
Result: result: true when Programs can be determined to be equivalent,
otherwise false
S1=DetermineFloatingPoint AssignmentSequencelnSSA (P );
Sa=DetermineFloatingPoint AssignmentSequenceInSSA (P);
1=sort(S1); — sort by unique lhs SSA variable of assignment
Sh=sort(S2); — sort by unique lhs SSA variable of assignment
if match(S1,5%) then
‘ return true;
else
L return false;

In Algorithm 2 we use Algorithm 1 to determine the sequence of update opera-
tions for each program. Algorithm 1 first computes (statically) a state transition graph
(STG). In the STG each node represents the state before an assignment or a condi-
tion. Edges represent state transitions. In our benchmark programs the loops have
constant numeric bounds. We can therefore compute in each state a concrete value of
each iteration variable. Floating point operations and updates on arrays are not eval-
uated. Next the (non-evaluated) operations on floating point variables are collected as
a sequence of terms (function extract-array-element-assignment-sequence). We then
apply 11 rewrite rules to normalize all extracted array updates. We remark that the
foreach loop in Algorithm 1 is actually a parallel loop: each term rewriting can be
computed independently of the others. On the normalized sequence of assignments we
then determine an SSA Form.

Algorithm 2 matches the determined (normalized) floating point update sequences.
Because these sequences are in SSA form, we can reorder them for the purpose of
comparison. We sort each sequence and match the two sorted sequences of terms
representing the assignments. If both sequences are equal, then the programs have
been verified to perform an identical sequence of updates on floating point values. In
the following sections we discuss each operation in detail.



3.1 Example

#pragma scop
for (t = 0; t < 2; t++) {
for (i = 1; i < 16 — 1; i++)

B[i] = 0.33333 * (A[i-1] + A[i] + A[i + 1]);
for (j = 1; j < 16 = 1; j++)
A[3] = B[j];

}
#pragma endscop

Fig. 1. Original Jacobi-1d-Imper benchmark (only the loop is shown). The variable t is used
for computing the number of steps and is set to 2 in the experiments. Array size is 16.

#pragma scop

int cO;
int c2;
for (cO = 1; c0 <= 17; cO++) {
if (c0 >= 15) {
if ((cO + 1) % 2==0) {
A[14] = B[14];
}
}
for (c2 = (0 > (((cO + -14) * 2 < 07-(-(cO + -14) / 2) : ((2 < 07
(-(cO + -14) + -2 -1) / =2 : (cO+ -14 +2-1) / 27
0 : (((cO + -14) * 2 < 07-(-(cO + -14) / 2) :
((2<0?7(-(cO+-14) + -2 -1) / -2 : (cO+ -14 +2-1) / 2)))));
c2 <= ((1 < (((c0 + -2) * 2 < 07
((2<07-((-(cO + -2) + 2+ 1) /2) : =((-(cO + -2) +2-1) / 2))) :
(cO +-2) / 2))71 ¢ (((cO + -2) * 2 < 07
((2 <0?7-((=(cO0 + -2) +2+ 1)/ 2) : =((-(cO + -2) +2 -1) / 2))) : (cO + -2) / 2))));
c2++) {
BlcO + -2 * c2] = 0.33333 * (A[cO + -2 * ¢c2 - 1] + A[cO + -2 * c2] + A[cO + -2 * c2 + 1]);
AfcO + -2 * ¢c2 + -1] = B[cO + -2 * c2 + -1];
¥
if (c0 <= 3) {
if ((c0 + 1) % 2==0) {
B[1] = 0.33333 * (A[1 - 1] + A[1] + A[1 + 11);
}
¥
}
}
#pragma endscop

Fig. 2. Optimized Jacobi-1d-Imper benchmark (“tile-8-1_1” variant)

As running example we use the (smallest) benchmark Jacobi-1d-Imper. The orig-
inal loop body is shown in Fig. 1 and an optimized variant (“tile_.8_1_1” variant) is
shown in Fig. 2. In the following sections we describe how to analyze and transform
both programs to automatically verify that both programs are equivalent and the
optimization performed by polyOpt/C is indeed semantics preserving and correct.

3.2 State Transition Graph Analysis

The state transition graph represents all possible states of a program. We use a sym-
bolic representation of states where values and relations between variables are repre-
sented as predicates. If the concrete value of a variable is known, then all arithmetic
operations are performed on this variable (without approximation). If no value is
known (for example an input variable) then constraints are extracted from conditions
and assignments, and a path-sensitive analysis if performed. The computation of the



state transition graph (STG) has also been used in the RERS Challenge [17] 2012
and 2013 where the STG was then used for the verification of linear temporal logic
formulas. For the verification of the polyhedra optimizations we use the STG to reason
on the states of the program and extract the sequence of all array update operations
that can be performed by the program. The implementation is integrated in our ROSE
tool CodeThorn. Visualizations of the STG for our running example Jacobi-1d and one
optimization variant are shown in Fig 3.2. The nodes in the graph represent program
states, the edges represent state transitions. Currently we support the input language
as represented by the C subset of the PolyBench/C programs for program equivalence
checking.

Jacobi-1d-Imper (Variant tile_-8_1_1) - State Transition Graph

3.3 Floating Point Operation and Array Access Extraction

The floating point operation and array access extraction follows the reachability in
the state transition graph (STG) from a selected node. In our case the selected node
is the entry node of the function that contains the PolyOpt/C generated loop nest.
These are marked in the PolyBench/C programs with pragmas (see Fig. 1 and 2).
Since we consider only the limited form of loops with constant numeric bounds,
the entire state space of the loop can be computed in a form that is equivalent to loop
unrolling. Our analyzer can also extract predicates from conditions for variables with
unknown values. For the benchmarks this is not relevant though, because variables in
those conditions have no data dependence on input values. The benchmarks contain
conditions inside the loop body, guarding array updates, but those conditions only
contain loop iteration variables. Since the values for the loop iteration variables are
determined by the analysis (when computing the state transition graph), those con-
ditions can be evaluated as well. Therefore, for the polyhedral benchmarks, our path



sensitive analyzer can establish exactly one execution path for each given benchmark.
From this determined state transition sequence we extract the terms of the floating
point variable updates (including arrays). Only those terms representing variable up-
dates and its corresponding state (containing a property state with a mapping of each
iteration variable to a value) are relevant for the remaining phases.

3.4 Rewrite Rules

We establish a small set of rewrite rules which are sufficient to verify the given bench-
marks. The rewrite rules operate on the terms of the program representing floating
point operations and array updates (as described in Section 3.3).

1. Minus(IntVal.wal) = IntVal.wal = —IntVal.val

2. AddAssign($L,$R) = Assign($L, Add($L,$R))

3. SubAssign($L,$R) = Assign($L, Sub($L,$R))

4. MulAssign($L,$R) = Assign($L, Mul($L,$R))

5. DivAssign($L,$R) = Assign($L, Div($L, $R))

6. Add(Add($Remains, $Other), IntVal) = Add(Add($Remains, IntVal), $Other)
where $Other # IntVal A $Other # FloatVal A $Other # DoubleV al

7. Add(IntValy, IntValy) = IntVal.val = IntValy.val + IntVals.val

8. Sub(IntValy, IntValy) = IntVal.val = IntValy.val — IntVals.val

9. Mul(IntValy, IntVals) = IntVal.val = IntValy.val * IntVals.val

10. Div(IntValy, IntValy) = IntVal.wal = IntValy.wal | IntVals.val

11. If a variable v in term ¢ has a constant value ¢ in the associated state S in the

STG, then replace the variable v with the constant ¢ in the term ¢.

The rewrite rules are applied to each extracted assignment separately (i.e. each
array assignment and floating point variable assignment). Rule 1 eliminates the unary
minus operator. Rules 2-5 eliminate compound assignment operators that modify the
same variable and replace it with the assignment operator. This step is a normalization
step for the next phase were an SSA Form is established. Rule 6 requires some careful
considerations. It performs a reordering of integer constants and is the only rule were
we reorder expressions. Keeping in mind that we want to verify the property of the
polyhedra generated code that ensures the lexicographic order is preserved, we do not
want to reorder array updates. More specifically, we do not want to reorder any floating
point operations. The above rule only reorders constant integer values such that we
can establish new terms with one operator and two constants, suitable for constant
folding by the rules 7-10. In Rule 11 the variables are replaced with the constant value
that has been established in the state transition graph for that variable.

The rewrite rules are applied on each assignment representing an array update
until no rule can be applied anymore. The rules guarantee termination (by design).

3.5 Verification

The verification steps consist of representing all indexed array elements as unique
variables (each array element is considered as one unique variable), generating Static
Single Assignment Form [16] for the sequence of array updates and floating point
operations, and the final equality test (matching) of the SSA forms.



Represent each variable and array element as one variable and generate
SSA Form. In Fig. 3 the final result for our running example Jacobi-1d is shown.
The expressions of all assignments to arrays have been rewritten applying rules 1-11
(see Section 3.4). Each array element is treated as one separate variable. For example,
al0] is treated as a different variable to a[1]. The sequence of array operations (of
the entire program extracted from the STG) is shown. For this sequence we establish
SSA Form. The SSA numbers are post-fixed to each element. For example B[1]=. . .;
A[1]1=B[1] becomes B[1] _1=...; A[1]_1=B[1]_1. Note that the array notation is only
for readability. At this stage it is only relevant to have a unique name for each memory
cell (i.e. we could also rename the array element to B_1_1)

This step is similar with the compiler optimization of scalar replacement of ag-
gregates (SRoA) and variables as also performed by LLVM after loop unrolling. In
particular, LLVM also generates an SSA Form after this replacement. Thus, our ap-
proach is in this respect similar to existing analyses and transformations in existing
compilers and may be suitable for a verifying compiler that also checks whether the
transformed program preserves the program semantics w.r.t. the sequence of floating
point operations. Note that SRoA is usually only applied up to a certain size of an
aggregate as well.

The SSA numbering allows to define a set of assignments while preserving all data
dependencies. If the sets are equal for two given programs, they are guaranteed to have
the same sequence of updates and operations on all floating point variables independent
from their values. Note that the benchmarks do contain conditionals inside the loop.
But those can be completely resolved in the computation of the state transition graph
when applied to integers for which constant values can be inferred. In cases where
the value is unknown (e.g. a test on floating point values) the term remains in the
expression; i.e. the analyzer performs a partial evaluation of the program and the non-
evaluated part is represented as term. For the given benchmarks the SSA Form for the
extracted sequence of updates does not require phi-assignments. The reason is that the
benchmarks only contain conditionals on index variables which become constant after
unrolling. Also see Fig. 2 for an example of a benchmark code with such properties. The
ternary operator inside expressions is used inside floating point computations though.
But since we represent in our analysis all floating point values to be an unknown value,
the different states that are established by the analyzer during the expression analysis
are determined to be equal, and thus, only a single state transition is established in
the STG for such an assignment (see Fig. 4) and the extracted computation remains a
sequence of assignments for the given programs. For each PolyBench/C 3.2 benchmark
exactly one sequence of computations can be extracted.

Equality Test of SSA Forms. The final step in the verification is to determine
the equivalence of the SSA Forms of two program variants. Our approach considers
a verification to be successful if the term representations of the set of assignments in
SSA Form is equal.

The interleaving of the assignments may differ as is demonstrated also in the ex-
ample in Fig. 3, but the sequence of updates for each array element must be exactly
the same. In particular, also the operations on the rhs of each assignment must match
exactly (term equivalence). For the example in Fig. 3 this is indeed the case. For exam-
ple the sequence of updates on the elements of B[1] _1, B[2]_1 B[3] _1 etc. is exactly
the same in both columns. This holds for all SSA enumerated variables.



Jacobi-1D-Imper (original) ‘ Jacobi-1D-Imper (Variant tile_-8_1_1)

BI1]_1 = 0.33333 *(A[0]_0 + A[1]_0 + A[2]_0) BI[1]_1 = 0.33333 *(A[0]_0 + A[1]_0 + A[2]_0)
B[2]_1 = 0.33333 *(A[1]_0 + A[2]_0 + A[3]_0) B[2]_1 = 0.33333 *(A[1]_0 + A[2]_0 + A[3]1_0)
B[3]_1 = 0.33333 *(A[2]_0 + A[3]_0 + A[4]1_0) A[1]_1 = B[1]1_1

B[4]1_1 = 0.33333 *(A[3]1_0 + A[41_0 + A[51_0) B[3]_1 = 0.33333 *(A[2]_0 + A[3]_0 + A[4]1_0)
B[5]_1 = 0.33333 *(A[4]_0 + A[5]_0 + A[6]_0) A[2]_1 = B[2]_1

B[6]_1 = 0.33333 *(A[5]_0 + A[6]_0 + A[7]_0) B[1]_2 = 0.33333 *(A[0]_0 + A[1]_1 + A[2]_1)
B[71_1 = 0.33333 *(A[6]_0 + A[71_0 + A[8]_0) B[4]_1 = 0.33333 *(A[3]_0 + A[4]_0 + A[5]_0)
B[8]_1 = 0.33333 *(A[7]_0 + A[8]_0 + A[9]_0) A[3]_1 = B[3]_1

B[9]_1 = 0.33333 *(A[8]_0 + A[9]_0 + A[10]_0) B[2]_2 = 0.33333 *(A[1]_1 + A[2]_1 + A[3]_1)
B[10]_1 = 0.33333 *(A[9]1_0 + A[10]_0 + A[11]_0) Af1]_2 = B[1]_2

B[11]_1 = 0.33333 *(A[10]_0 + A[11]_0 + A[12]_0) B[5]_1 = 0.33333 *(A[4]_0 + A[5]_0 + A[6]_0)
B[12]_1 = 0.33333 *(A[11]_0 + A[12]_0 + A[13]_0) A[4]1_1 = B[4]_1

B[13]_1 = 0.33333 *(A[12]_0 + A[13]_0 + A[14]_0) B[3]_2 = 0.33333 *(A[2]_1 + A[3]_1 + A[4]_1)
B[14]_1 = 0.33333 *(A[13]_0 + A[14]_0 + A[15]_0) A[2]_2 = B[2]_2

A[1]_1 = B[1]_1 B[6]_1 = 0.33333 *(A[5]_0 + A[6]_0 + A[7]_0)
A[2]_1 = B[2]_1 A[5]_1 = B[5]_1

A[3]1_1 = B[3]_1 B[4]_2 = 0.33333 *(A[3]_1 + A[4]_1 + A[5]_1)
A[4]_1 = B[4]_1 A[3]_2 = B[3]_2

A[5]_1 = B[5]_1 B[7]_1 = 0.33333 *(A[6]_0 + A[7]_0 + A[8]_0)
Al6]_1 = B[6]_1 Al6]_1 = B[6]_1

A[71_1 = B[7]_1 B[51_2 = 0.33333 *(A[4]_1 + A[5]_1 + A[6]_1)
A[8]_1 = B[8]_1 A[4]1_2 = B[4]_2

A[9]1_1 = B[9]_1 B[8]_1 = 0.33333 *(A[7]_0 + A[8]_0 + A[9]_0)
A[10]_1 = B[10]_1 A[71_1 = B[7]_1

A[11]_1 = B[11]_1 B[6]_2 = 0.33333 *(A[5]_1 + A[6]_1 + A[7]_1)
A[12]_1 = B[12]_1 A[5]_2 = B[5]_2

A[13]_1 = B[13]_1 B[9]_1 = 0.33333 *(A[8]_0 + A[91_0 + A[10]_0)
A[14]_1 = B[14]_1 A[8]_1 = B[8]_1

B[1]1_2 = 0.33333 *(A[0]_0 + A[1]1_1 + A[2]_1) B[71_2 = 0.33333 *(A[6]_1 + A[7]_1 + A[8]_1)
B[2]_2 = 0.33333 *(A[1]_1 + A[2]_1 + A[3]_1) Al6]_2 = B[6]_2

B[3]_2 = 0.33333 *(A[2]_1 + A[3]_1 + A[4]_1) B[10]_1 = 0.33333 *(A[9]_0 + A[10]_0 + A[11]_0)
B[4]_2 = 0.33333 *(A[3]_1 + A[4]_1 + A[5]_1) Af9]_1 = B[9]_1

B[5]_2 = 0.33333 *(A[4]_1 + A[5]_1 + A[6]_1) B[8]_2 = 0.33333 *(A[7]_1 + A[8]_1 + A[9]_1)
B[6]_2 = 0.33333 *(A[5]_1 + A[6]_1 + A[7]_1) A[7]1_2 = B[7]_2

B[71_2 = 0.33333 *(A[6]_1 + A[71_1 + A[8]_1) B[11]_1 = 0.33333 *(A[10]_0 + A[11]_0 + A[12]_0)
B[8]_2 = 0.33333 *(A[7]_1 + A[8]_1 + A[9]_1) A[10]_1 = B[10]_1

B[9]_2 = 0.33333 *(A[8]_1 + A[9]_1 + A[10]_1) B[9]_2 = 0.33333 *(A[8]_1 + A[9]_1 + A[10]_1)
B[10]_2 = 0.33333 *(A[9]_1 + A[10]_1 + A[11]_1) A[8]_2 = B[8]_2

B[11]_2 = 0.33333 *(A[10]_1 + A[11]_1 + A[12]_1) B[12]_1 = 0.33333 *(A[11]_0 + A[12]_0 + A[13]_0)
B[12]_2 = 0.33333 *(A[11]_1 + A[12]_1 + A[13]_1) A[11]_1 = B[11]_1

B[13]_2 = 0.33333 *(A[12]_1 + A[13]_1 + A[14]_1) B[10]_2 = 0.33333 *(A[9]_1 + A[10]_1 + A[11]_1)
B[14]_2 = 0.33333 *(A[13]_1 + A[14]_1 + A[15]_0) A[9]_2 = B[9]_2

A[1]1_2 = B[1]_2 B[13]_1 = 0.33333 *(A[12]_0 + A[13]_0 + A[14]_0)
A[2]_2 = B[2]_2 A[12]_1 = B[12]_1

A[3]_2 = B[3]_2 B[11]_2 = 0.33333 *(A[10]_1 + A[11]_1 + A[12]_1)
A[4]_2 = B[4]_2 A[10]_2 = B[10]_2

A[5]_2 = B[5]_2 B[14]_1 = 0.33333 *(A[13]_0 + A[14]_0 + A[15]_0)
A[6]_2 = B[6]_2 A[13]_1 = B[13]_1

A[71_2 = B[7]_2 B[12]_2 = 0.33333 *(A[11]_1 + A[12]_1 + A[13]_1)
A[8]_2 = B[8]_2 Af11]_2 = B[11]_2

A[9]1_2 = B[9]_2 A[14]_1 = B[14]_1

A[10]_2 = B[10]_2 B[13]_2 = 0.33333 *(A[12]_1 + A[13]_1 + A[14]_1)
A[11]_2 = B[11]_2 A[12]_2 = B[12]_2

A[12]_2 = B[12]_2 B[14]_2 = 0.33333 *(A[13]_1 + A[14]_1 + A[15]_0)
A[13]_2 = B[13]_2 A[13]_2 = B[13]_2

A[14] 2 = B[14] 2 A[14] 2 = B[14] 2

Fig. 3. Example: Extracted assignments (updates) from the programs in Fig. 1 (left column)
and Fig. 2 (right column) after rewrite and renaming in SSA Form. The rewrite rules that are
applied are those listed in Section 3.4. Rewrite statistics for this example are shown in Table
2 (see rows for jacobi-ld-imper and jacobi-1d-imper-tile-8-1-1). The number of extracted
assignments is 56 and the number of applied rewrite operations differs significantly, but the
final results are two sequences of assignments that are equivalent - they do differ in the
interleaving of the assignments, but the order of updates on all SSA variables is identical.
This is checked by Algorithm 2 after sorting both sequences by the updated SSA variable.



For all the evaluated benchmarks the extracted SSA Forms match exactly as un-
ordered sets. The small set of rewrite rules presented in Section 3.4 is sufficient to
proof equivalence for the Polybech/C 3.2 benchmarks.

Supported Language Subset. In Fig. 4 a fragment of the update sequence for the
correlation benchmark is shown. It includes the use of a floating point variable which is
assigned a value outside the polyhedral optimized program section and therefore has
SSA number 0, the ternary operator, an external function call (sqrt), and a compu-
tation involving different arrays and their elements. This code does not have a static
control-flow, because of the ternary operator leading to a data-dependent assignement
of the value. Previous work on affine program equivalence [8] cannot handle such case,
in contrast our approach supports such construct.

stddev[0]_18 = stddev[0]_17 / float_n_0

stddev[0]_19 = sqrt(stddev[0]_18)

stddev[0] _20 =(stddev[0]_19 <= eps_071.0 : stddev[0]_19)

stddev[1]_1 = 0.0

stddev[1]_2 = stddev[1]_1 +(datal[0]1[1]1_0 - mean[1]_18) *(data[0][1]1_0 - mean[1]_18)

Fig. 4. Fragment of verified update sequence for datamining/correlation benchmark.

For a defined set of external function calls we assume that the functions are side
effect free (e.g. sqrt). For each PolyBench/C benchmark and PolyOpt/C generated
variant with constant array bounds, our analysis can determine an STG with exactly
one floating point computation sequence. We consider cases where more than one
execution path is represented in the STG in our future work.

Error Detection. When the equality test fails, then the semantic equivalence of
two programs cannot be established. This can have two reasons i) the programs are
different, ii) our rewrite system is not powerful enough to establish a normalized rep-
resentation such that the two programs’ sequence of floating-point operations can
be matched. For two benchmarks we determined differences in the update sequence
(cholesky and reg_detect), as shown in Sec. 4.3. The difference is reported as the set
of non-matching assignments.

4 Results

Our implementation is based on ROSE [18]. The computation of the state transition
graph (STG) has also been used in the RERS Challenge [17] 2012 and 2013.

The rewrite system is based on the AstMatching mechanism in ROSE and imple-
ments the small number of rules that turned out to be sufficient to verify benchmarks
of the PolyBench/C suite.

Benchmarks in PolyBench/C 3.2 contain SCoPs and represent computation in lin-
ear algebra, datamining, and stencil computing. PolyOpt/C performs data dependence
analysis, loop transformation and code generation based on the polyhedral model. Be-
cause of the transformation capability and its integration in the ROSE compiler, Poly-
Opt/C is chosen as the optimization driver in the experiments. Optimization variants
in this study are mainly generated from the following two transformations:



— Tiling-driven transformations: the ”—polyopt-fixed-tiling” option in PolyOpt/C im-
plements arbitrarily complex sequences of loop transformations to maximize the
tilability of the program, applies tiling, and expose coarse-grain or wavefront par-
allelism between tiles [2]. It allows to specify the tile size to be used in each tiled
dimension.

— Data locality-driven transformations: we use the Pluto algorithm [2] for maxi-
mal data locality, and test the three different statement fusion schemes (minfuse,
maxfuse and smartfuse) implemented in PolyOpt/C.

source code
loop fusion

loop tiling

tile size (x,y z) =
({158.1632}3{158,1632}{138})

Fig. 5. Transformation variants: 53 variants are generated for each benchmark ( 3 for fusion
and 5 x 5 x 2 = 50 for tiling).

Figure 5 illustrates the transformation flow. Each benchmark code with a constant
array size (size in each dimension) is given to PolyOpt/C. The following variants are
generated for the study:

1. Loop fusion: Polyhedral transformation performs multiple transformations in a
single phase. In this variant, we apply the three fusion schemes: maxfuse, smartfuse
and nofuse to drive the loop transformation. A combination of loop permutation,
skewing, shifting, fusion and distribution is implemented for each of the three
statement fusion schemes.

2. Loop tiling: PolyOpt/C takes 3 parameters to form a tile size for single and multi-
dimensional tiling. Tile sizes with number of power of two are commonly seen
in real applications. Other special tile sizes, such as size in prime numbers, or
non-tilable sizes (size larger than problem/array size), are also included to prove a
broader span for verification: the polyhedral code generator CLooG [11] integrated
in PolyOpt/C generates a possibly different code for each of these cases. Some tile
sizes might not be applicable to all benchmarks (e.g., those which cannot be tiled
along multiple dimensions), but PolyOpt/C still generates a valid output with 0D
or 1D tiling for the verification. Note that we also want to verify certain corner
cases in the code generation.

With our approach we can verify all PolyOpt/C generated optimization variants
for PolyBench/C 3.2. As shown in Table 1) PolyOpt/C generated 53 variants for all
but two benchmarks. Unfortunately, for 'doitgen’ only the 3 fusion variants could be
generated, and for dynprog the fusion and tiling variants could not be generated (due
to an error in PolyOpt/C 0.2). For all other benchmarks all variants were generated
(in total 53 x 28). We verified 53 x 28 + 3 = 1487 variants, and found errors in the



fusion (2 of 3) and the tiling variants of the cholesky benchmark and errors in the
tiling variants of 'reg_detect’ (in total 2 + 25 + 25 = 104). The array size is set to 16
for each dimension in the 1D 2D, and 3D cases and stepsize is set to 2 (stepsize is
the time dimension for stencil benchmarks). The total verification time for all 1487
variants is less than 2 hours, as shown in column 3 in Table 1.

We recall a critical aspect of affine programs is that they have a control flow that
only depends on loop iterators and program parameters. That is, while only one C
program is generated by PolyOpt/C, it is by construction expected to be valid for
any value the program parameters can take (e.g., the array size N). Checking the
correctness of this code for a small array size (e.g., N = 16) still stresses the entire
code for the benchmarks we considered.

[Benchmark [Verification (Size 16) [Total Run Time

2mm, 3mm, adi, atax, bicg, covariance, durbin,|for 26 benchmarks all 53 variants ver-| 1h:48m:41s
fdtd-2d, gemm, gemver, gesummv, jacobi-1d,|ified
jacobi-2d, lu, ludcmpm, mvt, seidel, symm, syr2k,
syrk, trisolv, trmm, correlation, gramschmidt,
fdtf-ampl, floyd-warshall

dotitgen all fusion variants verified

cholesky errors found in fusion and tiling opt

reg-detect errors found in tiling opt

[doitgcn [tiling variants not available [ - ]
[dynprog [variants not available [ - ]

Table 1. The benchmarks in the Polybench/C 3.2 suite with information whether we suc-
cessfully verified the PolyOpt/C generated variants. For two benchmarks our verification
procedure helped to find bugs in fusion and tiling optimizations in PolyOpt/C 0.2

4.1 State Space and Rewrite Operations Statistics

In Table 2 detailed statistics on some of the benchmarks are shown. The statistics
include the number of computed states in the state transition graph and how often
each of the rewrite rule has been applied for each benchmark variant. The original
program is listed by the name of the benchmark itself. Optimization variants are
denoted by the benchmark name prefixed with the variant name.

4.2 Run Times

The run times for each benchmark and each generated optimization variant is shown
in the last column in Table 2. This includes all phases (parsing, STG analysis, update
extraction, update normalization, and sorting of the update sequence). The total ver-
ification time of an original program and a variant is the sum of the total time (as
shown in Table 2 of both entries in the table plus the time for comparison. The final
comparison is linear in the number of assignments because Algorithm 1 also includes
sorting by the unique SSA assignment variable on lhs of each update operation.

For example, to verify that the benchmark jacobi-1d-imper and the polyhedral
optimization variant tile_8_1_1 are equivalent, the total verification time is the sum
of the run times for the original benchmark and the variant (each one shown in last
column in Table 2) and the time for matching the assignments of the two sorted lists
of assignments (not shown). Note that this is also valid for any pair of variants for the
same benchmark, hence the original benchmark only needs to be analyzed once. The
total run time for the verification of all 1487 generated benchmark variants, including
all operations, is shown in Table 1.



[Benchmark-Variant [[States[Updates] R1 [R2-5] R6 [R7-10] R11 [[Run Time]

3mm 40922 13056 0 [12288| O 0 75264 || 6.13 secs
3mm-fuse-smartfuse 40925| 13056 0 (12288 O 0 75264 || 6.17 secs
3mm-tile-8-1-1 50916 | 13056 0 [12288] O 0 75264 || 6.53 secs
covariance 9125 2992 0 2704 | 0O 0 15440 || 1.56 secs
covariance-fuse-smartfuse 9128 | 2992 0 2704 | 0O 0 15440 || 1.57 secs
covariance-tile-8-1-1 12652 | 2992 0 2704 | 0O 0 15440 || 1.71 secs
fdtd-2d 4731 1442 0 0 0 | 1860 | 13144 || 1.58 secs
fdtd-2d-fuse-smartfuse 4734 1442 0 0 0 | 1860 | 13144 || 1.59 secs
fdtd-2d-tile-8-1-1 5436 | 1442 (17700 0O [6090({28260| 21356 || 3.14 secs
fdtd-apml 52829 | 34816 0 0 0 |12544(353792(/25.16 secs
fdtd-apml-fuse-smartfuse 52832 | 34816 0 0 0 [12544(353792]|25.39 secs
fdtd-apml-tile-8-1-1 60171 | 34816 0 0 0 [12544|353792(|25.49 secs
floyd-warshall 13388 | 4096 0 0 0 0 57344 || 3.14 secs
floyd-warshall-fuse-smartfuse |[[13391| 4096 0 0 0 0 57344 || 3.20 secs
floyd-warshall-tile-8-1-1 15776| 4096 0 0 0 0 57344 || 3.30 secs
gramschmidt 14072| 4504 0 2176 | O 0 29712 || 2.26 secs
gramschmidt-fuse-smartfuse 14120| 4504 0 2176 | O 0 29712 || 2.29 secs
gramschmidt-tile-8-1-1 18924 | 4504 0 2176 | O 0 29712 || 2.43 secs
jacobi-1d-imper 194 56 0 0 0 56 168 |/369.76 ms
jacobi-1d-imper-fuse-smartfuse|| 196 56 0 0 0 56 168 ||364.77 ms
jacobi-1d-imper-tile-8-1-1 232 56 208 0 78 | 420 312 {{393.33 ms
jacobi-2d-imper 2602 784 0 0 0 | 1568 | 6272 [/692.29 ms
jacobi-2d-imper-fuse-smartfuse|| 2605 784 0 0 0 | 1568 | 6272 |[{696.55 ms
jacobi-2d-imper-tile-8-1-1 3923 784 7192 0 [1560{15032| 11680 || 1.50 secs
seidel-2d 1309 392 0 0 0 | 4704 | 7840 || 1.05 secs
seidel-2d-fuse-smartfuse 1312 392 0 0 0 | 4704 | 7840 1.08 secs
seidel-2d-tile-8-1-1 2144 392 11760 0 |2352(28224| 19600 || 2.51 secs
trmm 6794 1920 0 1920 | O 0 11520 || 1.29 secs
trmm-fuse-smartfuse 6797 1920 0 1920 | O 0 11520 || 1.31 secs
trmm-tile-8-1-1 9438 | 1920 [3840|1920| 0 | 7680 | 15360 || 2.52 secs

Table 2. Shows from left to right for some selected benchmark results: the number of com-
puted states in the STG, number of extracted assignments (updates), how often the rewrite
rules 1-11 were applied, and the run time.

4.3 Bugs Found Thanks to Verification

While our verification asserted the correctness of 1383 different programs variants
generated by PolyOpt/C for the tested problem sizes, a significant outcome is the
finding of two previously unknown bugs, for cholesky and reg_detect. For cholesky we
determined that one assignment pair (for A[1] [0]_1) does not match. All other 951
assignments do match (see Fig. 6).

[Benchmark|Original Program [Variant tile_8_1_1 (Detected Errors)

cholesky |A[11[01_1 = x_2 * p[0]_1 A[11[01_1 = x_1 * p[0]_1

reg_detect |mean[0][0]_1 = sum_diff[0][0][15]_1|mean[0][0]_1 = sum_diff[0][0][15]_0
mean[0] [0]_2 = sum_diff[0] [0] [15]_2|mean[0] [0]_2 = sum_diff[0] [0][15]_1
mean[0][1]_1 = sum_diff[0] [1][15]_1|jmean[0][1]_1 = sum_diff[0][1]1[15]_0
mean[0] [1]_2 = sum_diff[0] [1] [15]_2|mean[0] [1]_2 = sum_diff[0] [1][15]_1
mean[1][1]_1 = sum_diff[1][1][15]_1|mean[1][1]_1 = sum_diff[1][1][15]_0
mean[1][1]_2 = sum_diff[1][1][15]_2|mean[1][1]_2 = sum_diff[1][1][15]_1

Fig. 6. Errors found in generated optimized programs. The equality check in Algorithm 2
reported semantic inequality because the right-hand-sides of some corresponding assignments
are different. Shown are those floating-point operations that do not match.

The current test suite of PolyOpt/C checks the correctness of the transformed
code by checking if the output of the computation is strictly identical for the refer-
ence and transformed codes. Under this scheme, errors that amount to changing the
order of two update operations (thereby violating the dependence between such op-



erations) may not be caught: in practice, IEEE floating point operations are often
commutative/associative and therefore changing the order of their computation may
not always lead to a different final result. The clear merit of our approach is demon-
strated by finding two bugs that could hardly be caught by classical testing means,
but was immediately found by our verification process. In addition, the ability to point
to the set of operations that do not match greatly helps the bug finding process.

5 Related Work

Existing research adopts various approaches to verify the transformation results. Fo-
cusing on affine programs, Verdoolaege et al. develop an automatic equivalence proof-
ing [8]. The equivalence checking is heavily requiring the fact that input programs
have an affine control-flow, as the method is based on mathematical reasoning about
integer sets and maps built from affine expressions, and the development of widen-
ing/narrowing operators to properly handle non-uniform recurrences. In contrast, our
work has a strong potential for generalization beyond affine programs. In fact, we al-
ready support some cases of data-dependent control-flow in the verification, something
not supported by previous work [8].

Karfa et al. also designed a method exclusively for a subset of affine programs,
using array data dependence graphs (ADDGs) to represent the input and transforming
behaviors. An operator-level equivalence checking provides the capability to normalize
the expression and establish matching relations under algebraic transformations [19].
Mansky and Gunter [20] use the TRANS language [21] to represent transformations.
The correctness proof is verified by Isabelle [22], a generic proof assistant, implemented
in the verification framework.

6 Conclusion

We have presented an approach for verifying that the implementation of PolyOpt/C
for polyhedral optimizations is semantics preserving. Our approach first performs a
static analysis and determines a list of terms representing the updates on floating point
variables and array elements. This sequence is then rewritten by a rewrite system and
eventually SSA Form is established were each array element is treated as a separate
variable. When the sets of array updates are equal and all terms match exactly then
we have determined that the programs are indeed semantically equivalent. Otherwise
we do not know whether the programs are equivalent or not. With our approach we
were able to verify all PolyOpt/C 0.2 generated variants for PolyBench/C 3.2, out of
which 1383 variants were shown to be correct, and we found errors in 104 generated
variants, corresponding to one bug occuring for two benchmarks. This bug was not
previously known and was not caught by the existing test suite of PolyOpt/C, which is
based only on checking that the output data produced by a transformation is identical
to the output produced by the reference code. We limited our evaluation to a size of 16
(for each array dimension) because our approach requires to analyze the entire state
space of the loop iterations and we wanted to keep the overall verification time for all
benchmarks and variants within a few hours, such that the verification procedure can
be used in the release process of PolyOpt/C in future.
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