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Abstract—In this paper we show how to analytically model
two widely used distributed matrix-multiply algorithms, Can-
non’s 2D and Johnson’s 3D, implemented within the Intel Con-
current Collections framework for shared/distributed memory
execution. Our precise analytical model proceeds by estimat-
ing the computation time and communication times, taking
into account factors such as the block size, communication
bandwidth, processor’s peak performance, etc. It then applies
a roofline-based approach to determine the running time based
on communication/computation bottleneck estimation.

Our models are validated by comparing the estimations to
the measured run times varying the problem size and work
distribution, showing only marginal differences. We conclude
by using our model to perform a predictive analysis on the
impact of improving the computation speed by a factor of 4⇥.

Keywords-Performance modeling, distributed computing, In-
tel Concurrent Collections

I. INTRODUCTION

Programs executing in clusters of shared-memory nodes
are the de facto standard in parallel processing for scientific
computing. Such clusters can be thought of in a simplified
way as a 2-level parallel architecture, combining features
of both distributed (top level) and shared memory machines
(bottom level).

Numerous previous work addressed the problem of mini-
mizing and approximating the modeling of communications
in distributed environments [1], [2], [3], [4], [5]. Others
focused on analyzing and comparing pure MPI and hybrid
MPI-OpenMP execution models, e.g. [6], [7], [8], [9], [10].
However, little attention has been given to developing ana-
lytical models that put into play intra-node communication
and inter-node communication on top of a run-time with
the capability of executing in pure MPI fashion, but which
automatically avoids communication using shared memory
when the data is local to a node such as the Intel Concurrent
Collections runtime [11]. Furthermore there is a compelling
need for a model with good predictive capability, that is
which enables the analytical exploration of different block
sizes or processor frequencies without executing power
consuming runs on a large-scale cluster.

In this work we focus on two widely used matrix-multiply
algorithms, that we have efficiently implemented on top of

the Intel Concurrent Collections (CnC) framework. We de-
velop an analytical model that predicts their computation and
communication times, considering both intra-node and inter-
node communication. Using the roofline approach [1] we
construct performance bounds taking into account machine-
specific parameters (e.g., bandwidth, frequency, etc.) and
application-specific ones (e.g., block size, communication
expressions, etc.).

The rest of this paper is organized as follows. Section II
introduces the related concepts and work relating to the
implemented distributed algorithms and CnC; Section III
briefly discusses how the algorithms are mapped to a CnC
implementation; Section IV introduces the analytical model
used to estimate the computation and communication time;
Section V compares our analytical model to actual measure-
ments; and Section VI uses the derived model to predict new
performance bounds before concluding.

II. BACKGROUND

In this section we briefly recap the matrix-multiply algo-
rithms implemented for this work. Also, we briefly summa-
rize the main CnC entities and concepts. We assume that all
matrices are of size N ⇥N , and that there are p processors
available.

A. Cannon’s 2D algorithm

Cannon’s algorithm [2], [3], [4], [5] assumes a p1/2⇥p1/2
grid of processors and is shown in Algorithm 1.

Algorithm 1 Cannon’s Algorithm
procedure CANNON(A,B,C,p)

for t 2 {1 . . . p1/2} do
for all i,j 2 {1 . . . p1/2} do

C
ij

 C
ij

+ A
ij

· B
ij

end for
Transfer A

ij

left-wise with wrap-around
Transfer B

ij

up-wise with wrap-around
end for

end procedure



The algorithm decomposes input matrices A and B into
(N/p1/2)2 blocks, distributing the blocks of matrix A such
that processor P

i0

owns block A
ii

, with the blocks wrapping
around, i.e., P

ij

gets A
ij�i mod p

1/2 . A similar distribution
is done for matrix B, but aligning blocks B

jj

to processor
P
0j

, i.e., P
ij

gets B
i�j mod p

1/2
j

. Once the layout is set,
Algorithm 1 performs p1/2 block-matrix multiplications,
followed by the appropriate block-shifts, left-wise for the
blocks of matrix A, and up-wise for the blocks of matrix B.

B. Johnson’s 3D algorithm
Algorithm 2, Johnson’s distributed matrix-multiply algo-

rithm [12], [13], [14], [4], performs a 3D-parallel (along the
i,j and k dimensions) multiplication, followed by a reduction
along the k-dimension. Assuming that the distribution of
matrix blocks is performed before the multiplication stage,
this algorithm achieves the communication lower bound
O(N2/p2/3), where the only communication required takes
place during the reduction phase.

Algorithm 2 Johnson’s Algorithm
procedure JOHNSON(A,B,C,p)

for all i,j,k 2 {1 . . . p1/3} do
P
ij0

broadcasts A
ij

to all P
ijk

P
0jk

broadcasts B
jk

to all P
ijk

C
ijk

 A
ij

· B
jk

P
ijk

contributes C
ijk

to a sum-reduction to P
i0k

end for
end procedure

C. Concurrent Collections
We implement Cannon’s and Johnson’s algorithm using

the Intel CnC framework [15], [16]. Here we briefly describe
the basics of a CnC program. A CnC program in Intel’s
framework is a C++ program using specific data structures
to describe a program as (1) a set of computation steps; (2)
the set of data items flowing between steps instances; and (3)
tuning primitive to specify data and computation placement
on physical entities [17].

Tag Collections: allow to identify individual instances
of an object in a CnC program. For instance (C : i)
denotes the ith dynamic instance of the object C. For the
matrix multiplication case, tag collections typically takes the
form of a triple {i,j,k}.

Item Collections: represent the sets of data elements
manipulated by a CnC program. A CnC program can pro-
duce and consume several item collections. For instance,
Cannon’s implementation uses three item collections, one
for each matrix, whereas Johnson’s implementation relies
on four, as shown later. In pure CnC, programs implement
the dynamic single assignment rule for item collections, that
is each tag value in a collection (e.g., [A : i ]) can be
written only once, and read multiple times.

Step Collections: are the compute instances. They can
consume and produce both items and tags. If a program has
static control flow (e.g., matrix multiply), then all tags can
be produced offline before starting the CnC graph execution.
Dependence between step instances can be modeled using
items and tags.

CnC graph: describes the relation between all the 3
types of entities above in a CnC program. A graph specifies
the data that a computation consumes or produces, as well
as the relations identifying related instances in the different
collections.

Data transfers: CnC provides the very convenient
accessors methods, Get and Put, which allow to receive
and send data blocks (items). Each invocation of any of
these methods should be accompanied by a tag instance that
identifies the item. The DSA form is enforced by invoking
a Put method with distinct tag values.

Shared and distributed memory: CnC implements a
separation of concern between the description of the appli-
cation as sets of tasks, data items, and producer/consumer
relations between them; and tuning annotations that are spe-
cific to the execution context to enable higher performance
for instance via explicit placement of tasks/data [17]. That
is, from a high-level programmer’s point of view, only Gets
and Puts are used, irrespective of the executing environment:
the same program can execute on a single processor, on a
single node or on multiple nodes.

CnC performance: Previous work showed the effective-
ness of CnC in delivering high performance on distributed
environments on various applications including Cholesky
decomposition and unbalanced tree search [17], on dense
linear algebra kernels (e.g., Asynchronous Parallel Cholesky
Factorization and Generalized Symmetric Eigensolver) out-
performing ScaLAPACK+MPICH2/nemesis, multi-threaded
MKL and equaling PLASMA+MKL [18], [19], while in-
curring in a low overhead w.r.t. Intel’s TBB in single node
execution [20]. This, in tandem with the CnC program
semantics and its separation of concerns provide the ideal
setup for high-performance tuning and space exploration.

D. The Roofline Model
The Roofline Model [1] is a visual analytical model used

to pinpoint performance bottlenecks. Figure 1 shows an
example of the Roofline model plotting a machine with 16
GFLOPS of peak performance for an arbitrary program. The
performance is bounded by (1) the communication speed,
that is the time needed to bring in/out the data needed for the
program; and by (2) the computation bound, that is the peak
GF/s of the processor(s). When the operational intensity (i.e.,
the ratio of flops executed per byte read) increases beyond
a certain value, the program performance becomes bounded
by the computation peak.

The roofline idea has been extended for instance for
specific applications and platforms [21], [22]; to model
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Figure 1. Roofline example

energy [23]; and to consider the implications of the cache
hierarchy [24]. Few attempts have been made to adapt
this model to consider intra-socket/node communication vs.
inter-socket/node, as we do in the present work.

III. MATRIX MULTIPLY DISTRIBUTED-CNC
IMPLEMENTATIONS

In this section we briefly describe Cannon’s and Johnson’s
CnC implementations. We assume that all the data is initially
at the node with rank-0, and that the matrix decomposition
into data blocks is performed before the algorithm starts
its execution. Furthermore: i) we do not assume that p (the
number of processors/ranks) is square or cube; ii) we add an
additional program parameter, block size, which defines the
length of the block into which the matrices are decomposed;
iii) for simplicity, we assume that block size divides N , the
matrix size. The values of block size and N determine the
number of blocks into which each matrix is decomposed.
We therefore can have more matrix blocks to compute than
minimally required to use all available processors, giving us
a degree of freedom in terms of parallelism implementation.

A. Cannon’s Implementation

Cannon’s CnC implementation uses 3 item collections,
one for each set of data blocks, one step collection and one
tag collection. Each step instance is uniquely identified by
a triple {i,j,k}. Furthermore, since CnC programs should
be written in DSA form the items consumed and produced
are identified by the step tag. Before initiating the actual
computation, blocks of matrices A, B and C should be made
available to the CnC environment via calls to the Put method
with the proper tag value. Thus, the environment breaks
matrices A, B and C into data blocks of size block size, and
puts blocks into the appropriate item collection (including
blocks for C). Figure 2 shows the code that executes
each Cannon step: retrieves a data-block from each matrix,
performs the block matrix-multiply, and performs the data
movement (left-wise for A, up-wise for B, and depth-wise
for C).

i = tag.i;
j = tag.j;
k = tag.k;

ctx.mat_A_blocks.get(Triple(i,j,k), block_ik_A);
ctx.mat_B_blocks.get(Triple(i,j,k), block_kj_B);
ctx.mat_C_blocks.get(Triple(i,j,k), block_ij_C);

float * A = (*block_ik_A).addr();
float * B = (*block_kj_B).addr();
float * C = (*block_ij_C).addr();

mm_kernel (block_size, A, B, C);

int next_k = k + 1;
int next_i = i - 1;
int next_j = j - 1;

Triple nextA = SHIFTA(i,j,next_k,num_blocks);
Triple nextB = SHIFTB(i,j,next_k,num_blocks);
Triple nextC = SHIFTC(i,j,next_k,num_blocks);

ctx.mat_A_blocks.put(nextA, block_ik_A);
ctx.mat_B_blocks.put(nextB, block_kj_B);
ctx.mat_C_blocks.put(nextC, block_ij_C);

Figure 2. Cannon’s CnC step

B. Johnson’s implementation

Johnson’s implementation utilizes two step collections.
The first one (see Figure 3) performs a 3D-parallel block
matrix-multiply, while the second performs a reduction
along dimension K. As in Cannon’s case, each step instance
of each collection is uniquely identified by a triple {i,j,k}.
The environment produces all the data blocks of matrices
A and B, together with the C-data block used during the
reduction step (triples {i,j,0}). Notice that, unlike Cannon’s
step, Johnson performs only two Get operations since it will
produce its own C-block product. Each {i,j,k} reduction
step is 2D-parallel (see Figure 4), and consumes two C-
blocks, the C-block produced by the block-multiply step
identified by the triple {i,j,k} and the C-block reduced by
the previous step of its own collection (reduction step {i,j,k-
1}). The final blocks of matrix C, blocks {i,j,num blocks}
are then consumed by the environment and reassembled to
produce matrix C. We note here that, depending on the MPI
settings, the data blocks of matrices A and B can be assumed
to have been distributed before the actual matrix-multiply
steps initiate execution. For guaranteeing this, we set the
I MPI INTRANODE EAGER THRESHOLD variable to a
size bigger than the largest message. For the purpose of our
experiments we set this value to 20MB.

Johnson’s reduction steps in Figure 4 can be executed
as soon as both the previously reduced C-block and a new
C

ijk

block from Figure 3 becomes available, i.e., a data-
dependence. Regarding the DSA form, we observe that each
step instance of Figure 3 produces a fresh C

ijk

block,
uniquely identified by its {i,j,k} tag value. Similarly, in the



i = tag.i;
j = tag.j;
k = tag.k;

ctx.mat_A_blocks.get(Triple(i,k,j), block_ik_A);
ctx.mat_B_blocks.get(Triple(k,j,i), block_kj_B);

float * A = (*block_ik_A).addr();
float * B = (*block_kj_B).addr();
float * C = (*block_ijk_C).addr();

mm_kernel (block_size, A, B, C);

ctx.mat_C_blocks.put(Triple(i,j,k), block_ijk_C);

Figure 3. Johnson’s CnC block-multiply step

reduction step, these blocks are uniquely identified by the
same tag and are kept in sync. Each newly reduced C-block
is associated to the next value along the k-dimension, which
functions as a time-dimension.

i = tag.i;
j = tag.j;
k = tag.k;

ctx.mat_C_blocks.get(tag, block_ijk_C_in);
ctx.mat_C_red_block.get(tag, block_ij_C_out);

float * Cin = (*block_ijk_C_in).addr();
float * Cout = (*block_ij_C_out).addr();

mm_reduction (block_size, Cin, Cout);

int next_k = k + 1;
ctx.mat_C_red_block.put
(Triple(i,j,next_k), block_ij_C_out);

Figure 4. Johnson’s CnC reduce-step

C. Step kernel

The matrix multiplication between blocks used both im-
plementations is performed by a single kernel function we
implemented, which is tiled for L3 (12 MB per socket) and
L1 cache (32 KB per core), unrolled by 4⇥ along the k-
dimension of the L1 tile, and decorated with SIMD and
vector pragmas. The L3 tile sizes used throughout the whole
set of experiments were {240 ⇥ 256 ⇥ 128}, while for the
L1 tiles {80⇥ 128⇥ 16} were used.

IV. ANALYTICAL MODEL

In this section we introduce an analytical model to esti-
mate the execution time of distributed-CnC implementations.
The model predicts the computation and communication
time for the previously introduced CnC matrix-multiply
implementations. We first describe the general model which
is algorithmic independent, and then proceed to tailor it to
each individual case.

A. Base Model

Table I shows the input parameters to our general model.
For simplicity, we assume that both algorithms handle square
matrices, use single precision (4 bytes per value), that there
is no over-subscription of ranks to cores, and that each MPI
process uses a single core. Despite these assumptions, the
model can be easily extended to other scenarios. We separate
the parameters into two sets, the problem dependent ones
(top) and the platform/network specific ones (bottom).

Parameter Name Description
N Problem size (along one dimension)
B Block size (along one dimension)
M Number of nodes
P Number of MPI processes/ranks

BW
intra

Intra-node bandwidth (MB/s)
BW

inter

Inter-node bandwidth (MB/s)
c
node

Cores per node

Table I
MODEL INPUT PARAMETERS

Table II shows the derived variables used in the general
model. The top set of metrics relate to the problem decom-
position, the middle set are performance metrics, and the
bottom ones communication variables. These metrics are still
used in an algorithm independent fashion.

Metric Description
Name
b Number of data blocks per dimension (algorithm independent)

steps Number of steps (algorithm independent)
msgs Number of messages per step (algorithm dependent)
F
par

Parallel factor (algorithm dependent)
F
ser

Serial factor (algorithm dependent)
W

intra

Intra-socket work fraction (algorithm dependent)
W

inter

Inter-socket work fraction (algorithm dependent)
T Program time

T
comp

Compute time
T
comm

Communication time
T
step

Step compute time
T
intra

Intra-socket communication time
T
inter

Inter-socket communication time
L Message (data block) length in MB
V Total communication volume (MB)

V
intra

Intra-socket communication volume (MB)
V
inter

Inter-socket communication volume (MB)

Table II
GENERAL PERFORMANCE DERIVED METRICS

Equations (1) and (2) show how the problem decompo-
sition variables are derived. In general, these are problem
specific but algorithm independent. Each matrix is decom-
posed into b2 blocks of size B2. The number of compute
steps is a function of b. We note that although we have
steps to execute, the order in which these are computed
are defined by the algorithm properties as well as the CnC
implementation.



b = N/B (1)
steps = b3 (2)

Our model follows the common computation and commu-
nication split, while also taking into account if communica-
tion can be restricted to within a socket/node, or if it requires
a remote access. The total compute time is estimated by the
product of the number of steps executed by a task and the
projected kernel time of the step T

step

. The formulas used
for estimating each of the performance variables are listed
in Equations (3)-(8), using terms defined later on.

T = T
comp

+ T
comm

(3)
T
comp

= F
ser

⇥ T
step

(4)
T
step

= measured on the test machine (5)
T
comm

= T
intra

+ T
inter

(6)
T
intra

= V
intra

/BW
intra

(7)
T
inter

= V
inter

/BW
inter

(8)

As T
step

is the time to execute one single step on a single
core, it is very practical to measure this time on the target
machine. For simplicity purpose we assume T

step

does not
vary with the execution context (block size, etc.) which, as
we show later on, is a valid approach in our experimental
setup. The general problem of predicting DGEMM kernel
performance analytically (e.g., [25]) is a difficult task, and
out of the scope of this paper which focuses on proper
modeling of communication times.

The communication volume is broken down into local
(intra-node) and remote (inter-node) communication. Both
volumes are obtained from the total communication volume
(V ), by applying the respective work factor (W

intra

or
W

inter

). These factors are highly dependent of the algorithm
and of the node and core distribution (e.g., block, cyclic,
etc). In particular, we assume that the mapping of ranks
to nodes and cores follows a block distribution. The total
communication volume is the product of the number of
steps executed by a rank (F

ser

), the message size (L) and
the number of messages per step (msgs). The reason to
include this factor is to model accesses of different ranks
sharing a network device. Equations (9)-(12) show how
we derive the communication related variables, using terms
defined later on in an algorithmic dependent way. We remark
that for utmost precision one can refine this model by
considering different bandwidth for local communications
between processes mapped to cores on the same socket
versus on different sockets, however for simplicity purpose
we assume a single intra-node bandwidth here.

V
intra

= V ⇥W
intra

(9)
V
inter

= V ⇥W
inter

(10)
V = F

ser

⇥ L⇥msgs⇥ F
overhead

(11)
L = 4B2/220 (12)

B. Cannon Model Specifics

We now define the model variables specific to Cannon’s
algorithm. This algorithm has O(b2) parallelism and exe-
cutes b stages. Each step performs three Get operations.
Hence msgs = 3. The factor W

intra

can be interpreted as
follows: if only one node is used, then the communication
volume is affected by a factor equal to P ⇥ C, where C is a
contention factor representing the number of cores accessing
the shared memory. Otherwise, the contention will be for the
network device, and the factor becomes the number of cores
per node. The additional 1/3 factor comes from only having
to access the blocks of matrix B from another node. C-
blocks will always be local, and C

node

�1 cores will access
an A-block from the same node (due to the left-wise shift).
For not over complicating the formula, we leave it as 1 for
the A-blocks. Equations (13)-(18) define these metrics. This
assumption is only valid when the distribution of processes
to cores is done in a block fashion.

msgs = 3 (13)
F
overhead

= 1.5 (14)
F
par

= min(P, b2) (15)
F
ser

= dsteps/F
par

e (16)
W

intra

= min(P, c
node

)⇥ (min(P, c
node

)� 1) (17)

W
inter

= if(P > c
node

) then
c
node

3
else 0 (18)

C. Johnson Model Specifics

We now proceed to define the specific variables of
the Johnson CnC implementation. It consists of two step
collections: the O(b3)-parallel block matrix multiply, and
the O(b2)-parallel block reduction step, performed along
dimension k. We note that for simplicity purposes, the
compute time of the reduction step is ignored due to its lower
complexity w.r.t. the block matrix-multiply step (O(B2)
vs. O(B3) computations). Thus, the compute time of both
models will be identical for the same set of parameters.
Both step collections consist of steps instances. The min
function models the possibility of having fewer blocks than
processes along a particular dimension. We only model
the communication happening in the reduction stage, since
we assumed that the block matrix-multiply step already
had received all the required input blocks before they start
execution. The communication distributing factors, W

intra

and W
inter

, essentially say that if the communication is
happening in a single node, then the W

intra

of the Cannon



CnC implementation applies, otherwise the original com-
munication volume is halved, since the previously reduced
C-block will always remain in the same step. Equations (19)-
(24) define the formulae used to derive these metrics.

msgs = 2 (19)
F
overhead

= 1 (20)
F
par

= min(P, b3) (21)
F
ser

= dsteps/F
par

e (22)
W

intra

= min(P, c
node

)⇥ (min(P, c
node

)� 1) (23)

W
inter

= if(P > c
node

) then
c
node

2
else 0 (24)

V. MODEL VALIDATION

In this section we validate our analytical model by
comparing the estimated compute time and communication
time to the measured values the Cannon and Johnson CnC
implementations.

Parameters Value
Nodes 4

Processor Intel Xeon E5630 @ 2.5 GHz
Sockets per node 2
Cores per socket 4

Intra-node bandwidth 25000 MB/s
Inter-node bandwidth 1250 MB/s

L1 Cache 32 KB per core
L2 Cache 256 KB per core
L3 Cache 12 MB per socket

CnC 1.01
MPI run-time Intel MPI 5.0

Compiler ICPC 13

Table III
EXPERIMENTAL SETUP

Software Enabled options
ICPC -xhost -O3 –fno-alias -std=c99
CNC DIST CNC=MPI CNC NUM THREADS=1

CNC MPI SPAWN=T
I MPI I MPI EAGER THRESHOLD=20MB

I MPI SHM BYPASS=1
I MPI INTRANODE EAGER THRESHOLD=20MB

I MPI DAPL TRANSLATION CACHE=0
Slurm –nodes=M –ntasks=T –ntasks-per-socket=min(T, 4)

–threads-per-core=1 –distribution=block –contiguous

Table IV
SOFTWARE STACK FLAGS

Configuration M P Sockets
map1 1 1 1
map4 1 4 1
map8 1 8 2
map16 2 16 4
map32 4 32 8

Table V
EVALUATED TASK MAPPINGS

A. Experimental setup
Table III summarizes the hardware setup and the software

stack used to evaluate the two CnC implementations and to
validate our analytical model.
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Table IV summarizes the non-default flags and options
used for each layer of the software stack. Of special im-
portance are the I MPI flags that affect the choice of eager
vs. rendezvous transfer protocol, and the disabling of the
DAPL translation cache. The former enables the run-time
to send messages as soon as they become available rather
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than waiting for the time at which a process requires them,
i.e., these flags enable the run-time to favor a push model
over a pull model. The relevance of these options is that
they help in making more precise time estimations, e.g., for
the Johnson implementation, where the input matrices have
to be replicated and distributed, a program stage which we
do not account in our experiments and modeling. Finally,
the DAPL cache is disabled to avoid potential correctness
errors.

For each CnC implementation we evaluate two problem
sizes (N={2000,8000}), 2 block sizes (B={N/10,N/5}) and
five task mappings. The task mappings are listed in Table V.
Lastly, throughout this section all x-labels follow the format
”B[block-size]P[num-cores]”.

B. Model fitting
We validate the accuracy of our model by comparing the

estimated compute and communication time to the measured
compute-only and communication-only execution times. The
compute-only time is obtained by timing the kernel of each
step instance, adding and then averaging by the number of
steps executed by each process. The communication-only
time is measured when executing the original CnC program
without invoking the kernel code.

Figures 5, 6, 7, and 8 show the fitting of the compute
estimation time for both CnC programs. We observe that
the estimated curve better matches the big problem size
for both algorithms. In addition, the estimated time when
using a single core is over-estimated since we do not take
into account temporal data locality effects (e.g., reuse of
data tiles between step instances) when the L3 does not
need to be shared between processors. The curves on both
implementations are identical for the same problem size
because we decided to ignore the compute time of Johnson’s
reduction step (it performs O(n2) operations).

The following four figures (9 - 12) show how the es-
timated communication time matches the measured time.
Overall we see that the model estimations follow closer the
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Figure 9. Cannon communication time for N=2000
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Figure 10. Cannon communication time for N=8000
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Figure 11. Johnson communication time for N=2000

big problem size than the small one. The reason for this is
that the data block sizes (parameter B) used are for N=8000
produce bigger messages than for N=2000. This optimizes
the payload-to-overhead ratio.
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Figure 12. Johnson communication time for N=8000
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Figure 13. Cannon perfbound model for N=2000
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Figure 14. Cannon perfbound model for N=8000

C. Compute and Bandwidth Bounds
We now use the previously estimated compute and com-

munication times to observe whether we are compute or
bandwidth bound. We plot both the estimated compute
bandwidth bound for every work-decomposition and task-
mapping configuration (i.e., the N, B, M and P parameters),

1"

10"

100"

1000"

B2
00
P1
"

B2
00
P4
"

B2
00
P8
"

B2
00
P1
6"

B2
00
P3
2"

B4
00
P1
"

B4
00
P4
"

B4
00
P8
"

B4
00
P1
6"

B4
00
P3
2"

G
FL
O
PS
'

Johnson'Performance'Bounds'6'N'='2000'

Comp."Ceiling" Comm."Ceiling" Est."Perf" Meas."Perf"

Figure 15. Johnson perfbound model for N=2000

1"

10"

100"

1000"

10000"

B8
00
P1
"

B8
00
P4
"

B8
00
P8
"

B8
00
P1
6"

B8
00
P3
2"

B1
60
0P
1"

B1
60
0P
4"

B1
60
0P
8"

B1
60
0P
16
"

B1
60
0P
32
"

G
FL
O
PS
'

Johnson'Performance'Bounds'6'N'='8000'

Comp."Ceiling" Comm."Ceiling" Est."Perf" Meas."Perf"

Figure 16. Johnson perfbound model for N=8000

since these define the compute time and the bandwidth
requirements. We also plot the estimated final performance
(T = T

comp

+ T
comm

from our analytical model) and the
measured final performance. Figures 13 to 16 show how the
performance (GFLOPS) varies as one adds more compute
resources.

Figure 13 and Figure 15 show Cannon’s and Johnson’s
performance bounds for N=2000, while Figure 14 and Figure
16 show the model for N=8000. One can observe that
for {N,B,P}={2000,200,16-32} both algorithms are close
to be bandwidth bound. This happens because the ratio
of operation per inter-node communication for B=200 is
100 = 2003 ⇤ 2/(2002 ⇤ 4) as only one matrix block needs
to be communicated inter-node. In addition, the inter-node
bandwidth of 1250MB/s is shared between 8 cores. Thus
the effective bandwidth is 156.25MB/s, leading to a bound
of 16 GFLOPS per core. The theoretical machine peak
assuming a vector width of 4 is about 19.2 GF/s. The esti-
mated performance for these configurations is between 60-
70 GFLOPS on 16 cores and 130-140 on 32 cores, yielding
approximatively 4.5 GFLOPS per core. This performance
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Figure 17. Cannon performance bound model for N=2000 assuming a 4x
step kernel speedup

can be increased by improving the kernel computation time,
however our analysis shows it would not be useful (in
terms of execution time) to improve the kernel performance
beyond 16 GF/s single-core, unless incrementing the block
size.

A similar reasoning can be employed to understand the
performance bounds of both algorithms for N=8000 on
Figures 14 and 16.

VI. EXPLORATORY ANALYSIS

In this section we perform an analytical exploration to see
how the performance bound of both CnC implementations
vary when the kernel step would be optimized to achieve
a 4⇥ faster execution time compared to our actual imple-
mentation used V-C. In other words, we use our analytical
model to determine whether it would be worth spending
additional tuning time on the elementary block matrix-
multiply operation, and what could be the expected gains.

Figures 17-18 show that such improvement in the kernel
step time will cause the Cannon CnC implementation to be
mostly bandwidth bound for N=2000, with the exceptions of
P=1, and close to be bandwidth bound for N=8000 on P=16
and P=32. Regarding Johnson’s implementation, Figures 19-
20 show that improving the computation bound by a factor of
4 narrows the gap w.r.t. the bandwidth curve. This program
is still compute bound for N=8000, and partially bandwidth
bound for N=2000, as previously discussed.

VII. CONCLUSION AND FUTURE WORK

In this paper we showed how to implement two widely
used algorithms for distributed matrix multiplication, Can-
non and Johnson, on top of the Intel Concurrent Collections
runtime. Based on CnC concepts we designed an analytical
model to estimate both the computation and communication
time, considering several machine-specifics and algorithm
properties and metrics. Emphasis was put on estimating
the communication time, since this is often the limiting
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Figure 18. Cannon performance bound model for N=8000 assuming a 4x
step kernel speedup
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Figure 19. Johnson performance-bound model for N=2000 assuming a 4x
step kernel speedup
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Figure 20. Johnson performance-bound model for N=8000 assuming a 4x
step kernel speedup

resource in distributed computing. We have experimentally
validated our model, and conducted a predictive study on the
performance of Johnson and Cannon algorithms reachable



on our distributed computing setup.
As future work we will consider refining the computa-

tion model, and extending this approach to other classical
distributed computing algorithms, including recent develop-
ments on 2.5D algorithms.

Acknowledgments: This work was supported in part
by the U.S. National Science Foundation through grants
0926127 and 1321147, and by the U.S. Department of
Energy through grant DE-SC0008844.

REFERENCES

[1] S. Williams, A. Waterman, and D. Patterson, “Roofline: an
insightful visual performance model for multicore architec-
tures,” Communications of the ACM, vol. 52, no. 4, pp. 65–76,
2009.

[2] E. Solomonik and J. Demmel, “Communication-optimal par-
allel 2.5 d matrix multiplication and lu factorization algo-
rithms,” in Euro-Par 2011 Parallel Processing. Springer,
2011, pp. 90–109.

[3] L. E. Cannon, “A cellular computer to implement the kalman
filter algorithm.” DTIC Document, Tech. Rep., 1969.

[4] G. H. Golub and C. F. Van Loan, Matrix computations. JHU
Press, 2012, vol. 3.

[5] H.-J. Lee, J. P. Robertson, and J. A. Fortes, “Generalized
cannon’s algorithm for parallel matrix multiplication,” in
Proceedings of the 11th international conference on Super-
computing. ACM, 1997, pp. 44–51.

[6] L. Adhianto and B. Chapman, “Performance modeling of
communication and computation in hybrid mpi and openmp
applications,” Simulation Modelling Practice and Theory,
vol. 15, no. 4, pp. 481–491, 2007.

[7] N. Drosinos and N. Koziris, “Performance comparison of pure
mpi vs hybrid mpi-openmp parallelization models on smp
clusters,” in Parallel and Distributed Processing Symposium,
2004. Proceedings. 18th International. IEEE, 2004, p. 15.

[8] R. Rabenseifner, G. Hager, and G. Jost, “Hybrid mpi/openmp
parallel programming on clusters of multi-core smp nodes,”
in Parallel, Distributed and Network-based Processing, 2009
17th Euromicro International Conference on. IEEE, 2009,
pp. 427–436.

[9] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and
A. Purkayastha, “A framework for performance modeling and
prediction,” in Supercomputing, ACM/IEEE 2002 Conference.
IEEE, 2002, pp. 21–21.

[10] D. S. Henty, “Performance of hybrid message-passing and
shared-memory parallelism for discrete element modeling,”
in Proceedings of the 2000 ACM/IEEE conference on Super-
computing. IEEE Computer Society, 2000, p. 10.

[11] Intel, “Intel concurrent collections for c++.” [Online].
Available: https://icnc.github.io

[12] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and
P. Palkar, “A three-dimensional approach to parallel matrix
multiplication,” IBM Journal of Research and Development,
vol. 39, no. 5, pp. 575–582, 1995.

[13] S. L. Johnsson, “Minimizing the communication time for ma-
trix multiplication on multiprocessors,” Parallel Computing,
vol. 19, no. 11, pp. 1235–1257, 1993.

[14] E. Dekel, D. Nassimi, and S. Sahni, “Parallel matrix and
graph algorithms,” SIAM Journal on computing, vol. 10, no. 4,
pp. 657–675, 1981.

[15] Z. Budimlic, A. Chandramowlishwaran, K. Knobe,
G. Lowney, V. Sarkar, and L. Treggiari, “Multi-core
implementations of the concurrent collections programming
model,” in CPC?09: 14th International Workshop on
Compilers for Parallel Computers, 2009.
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