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Abstract

The freedom to reorder computations involving associative operators

has been widely recognized and exploited in designing parallel algo-

rithms and to a more limited extent in optimizing compilers.

In this paper, we develop a novel framework utilizing the associa-

tivity and commutativity of operations in regular loop computations

to enhance register reuse. Stencils represent a particular class of im-

portant computations where the optimization framework can be ap-

plied to enhance performance. We show how stencil operations can be

implemented to better exploit register reuse and reduce load/stores.

We develop a multi-dimensional retiming formalism to characterize

the space of valid implementations in conjunction with other program

transformations. Experimental results demonstrate the effectiveness of

the framework on a collection of high-order stencils.

1. Introduction

It is well known that the associativity of operations like addition
and multiplication offer opportunities for reordering of operations
to enable better parallelization. It forms the fundamental basis of
many parallel algorithms, e.g., efficient implementation of scan
operations on GPUs [13, 39]. Associativity is also exploited by
optimizing compilers for parallelization, e.g., work-shared loops
with the reduction clause in OpenMP, and for vectorization, e.g.,
to utilize vector-SIMD instruction sets like SSE, AVX, Altivec, etc.
with reduction operations. In this paper, we show how excessive
data traffic caused by poor register reuse in executing repetitive
stencil operations on a multi-dimensional array can be dramatically
reduced through reordering of associative/commutative operations.

The transformation framework we develop is of particular sig-
nificance for high-order stencil computations. Stencils are a key
computational pattern arising in numerous application domains
where weighted sums of values at a set of neighboring points are
computed over a regular multi-dimensional grid. High-order sten-
cils involve weighted averages over multiple neighboring points
along each dimension. They are at the core of several large-scale
scientific codes, such as those using Lattice Boltzmann methods
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(e.g., fluid flow simulation) [43], Finite-Difference Time Domain
methods (e.g., seismic wave propagations, electromagnetic radia-
tions) [24], image processing (e.g., edge detection) [35], and others.
Overture [26] is a toolkit for solving partial differential equations
over complex geometry, and uses high-order approximations for in-
creased accuracy, leading to high-order stencil computations. Sim-
ilarly, the Chombo library [8] uses high-order stencil operations in
discretizing high-order derivatives. Additionally, low-order stencils
can be “unrolled” along a time dimension to create high-order sten-
cils. As seen in Sec. 5, when using our techniques the rate of stencil
applications is sustained as the order increases, which can enable
efficient time tiling.

Previous work has shown that pattern-specific compilation
strategies for stencils are needed to address a variety of stencil
specific performance bottlenecks, including parallelization, com-
munication, data reuse, etc. [11, 18–20, 35, 38]. However no pre-
vious work on compiler optimization has addressed higher-order
stencils and the unique opportunity for data locality optimization
from associativity and commutativity in a systematic way.

Unlike simple low-order stencils, high-order stencils feature a
very high arithmetic intensity, i.e., the ratio of arithmetic operations
to the number of distinct data elements accessed. It is generally
the case that computations with a very low arithmetic intensity are
memory bandwidth bound and achieve low compute performance,
while codes with high arithmetic intensity and potential for parallel
execution achieve high performance. Although high-order stencils
satisfy this property, performance surprisingly decreases as the or-
der of the stencil, and correspondingly the arithmetic intensity, in-
crease. This apparently counter-intuitive behavior is a consequence
of increasing register pressure that leads to excessive spilling. The
paper makes the following contributions:
• It identifies a performance issue with the register reuse for

an important class of stencil computations and develops an
effective and general solution to this problem.
• It develops the first compiler framework, to our knowledge,

to exploit associativity/commutativity of operations to enhance
data locality in a class of iterative loop computations.
• It develops a compile-time approach to prune the space of

possible associative/commutative reordering of operations.
• It demonstrates the benefits of our proposed framework, show-

ing substantial performance improvement over a range of sten-
cil benchmarks.

The paper is organized as follows: Sec. 2 uses an illustrative
example to show the impact of associative reordering on register
pressure and I/O operations for high-order stencils. Sec. 3 formal-
izes the program transformation framework and Sec. 4 presents the
register optimization approach. Experimental results are presented
in Sec. 5, before discussing related work.
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for (i=k; i<N-k; i++)

for (j=k; j<N-k; j++) {

OUT[i][j] = 0;

// Compact representation shown below.

// Loops (ii,jj) are fully unrolled for

// each value of k generated in Fig. 1(b)

for (ii=-k; ii<=k; ii++)

for (jj=-k; jj<=k; jj++)

OUT[i][j] +=

IN[i+ii][j+jj]*W[k+ii][k+jj]; }

(a) 2D stencil prototype

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

1 2 3 4 5 6

G
F
L
O

P
/s

k

base

(b) Performance of the base implementations
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(c) Hardware counted loads and stores

Figure 1: Implementation and performance of the base codes

for (i=k; i<N-k; i++)

for (j=0; j<2*k; j++)

{ OUT[i][j+k] = 0; STMT(-k, -k+j) }

for (j=2*k; j<N-2*k; j++)

{ OUT[i][j+k] = 0; STMT(-k, k) }

for (j=N-2*k; j<N; j++)

STMT(j-N+k+1, k)

where STMT(lb,ub) is:

for (ii=-k; ii<=k; ii++)

for (jj=lb; jj<=ub; jj++)

OUT[i][j-jj] += IN[i+ii][j]*W[k+ii][k+jj];

(a) Reordered 2D stencil prototype
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(b) Base vs. reordered (opt) implementations
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(c) Hardware counted loads and stores

Figure 2: Implementation and performance of the base and optimized codes

2. Motivating Example

We use the example in Fig. 1 to illustrate the fundamental issues
addressed in this paper. The code in Fig. 1(a) is a generic con-
volution stencil that sweeps over a 2D array OUT, where at each
point (i, j), a weighted sum of a n× n (n = 2× k + 1) neighbor-
hood around (i, j) in array IN is computed using a weight matrix
W of size n× n. Stencil computations are generally considered to
be memory-bandwidth bound since their arithmetic intensity is not
usually sufficiently greater than the machine balance parameter,
i.e., the ratio of peak main memory bandwidth to peak compu-
tational performance [44]. However, the arithmetic intensity of a
stencil is directly related to its order k.

A 3× 3 2D stencil, that is k = 1 in Fig. 1(a), involves nine
multiplications and eight additions at each data point OUT[i][ j]
assuming all weight coefficients are distinct, i.e., 17 floating-point
operations. Each data element IN[i][ j] is used in computing nine
neighboring points of OUT (excluding the boundary). Thus if full
reuse of data elements is achieved in the last level cache, i.e.,
the cache capacity is greater than approximately 2× k×N words,
the total bandwidth requirement per floating-point computation
would correspond to an average of one word loaded from main
memory and one word stored to memory per 17 floating-point
operations, i.e., 16 bytes of data transfer across the memory bus
per 17 operations, giving a bytes/flop requirement below 1. The
machine balance parameter for most multicore systems today is
much lower, e.g., around 20 GB/s bandwidth and upwards of 100
GFLOPs peak performance giving a bytes/flop ratio below 0.25.

Next let us consider a higher order stencil. Higher order stencils
arise when higher order differences are used to discretize high order
derivatives in PDE solvers, for example Overture from LLNL [26].
For a convolution with a 5×5 stencil (corresponding to k = 2), the
arithmetic intensity increases, giving a machine balance require-
ment of 16/50, probably still memory-bandwidth bound on current
multi-core systems. However, a 7×7 stencil’s machine balance re-
quirement will be roughly half of that for the 5× 5 stencil. So we
can expect that as the order of the stencil increases, the computa-
tion becomes less memory-bandwidth bound. We might therefore

expect that the achieved performance of the stencil code should
monotonically increase with the order of the stencil. However the
measured performance shown in Fig. 1(b) shows a different trend.
While performance does indeed increase from a 3×3 (k = 1) sten-
cil to a 5× 5 (k = 2) stencil, there is a drop in performance as we
further increase the order of the stencil. Performance was tested on
an Intel i7-4770k processor using code compiled with ICC -O3, us-
ing N = 12000. For each value of k, a distinct C code is generated
and compiled. This C code is obtained by fully unrolling the ii and
j j loops so as to have the standard implementation with all neigh-
bor points accumulated in a single statement. The same approach
is used to generate Fig. 2(b) from the template in Fig. 2(a).

The problem is that while the burden on the memory subsystem
is reduced for higher order stencils, register pressure worsens. For
a 3× 3 stencil, as explained in greater detail later in the paper,
six registers are needed to achieve three-way register reuse in the
direction of stencil movement (the j loop). For a 5×5 stencil, there
is an opportunity to achieve a 5-way register reuse, but 20 registers
are required to implement this reuse. Greater reuse is achieved
at the cost of some register spilling and the overall performance
improves. Hardware counters in Fig. 1(c) show the total number of
load instructions executed per FLOP decreases when we go from
k = 1 (3×3 stencil) to k = 2 (5×5 stencil).

A 7× 7 stencil offers the potential for 7-way register reuse,
but the register pressure is over 42. The net result is that the code
generated by the Intel ICC compiler for this case is less effective
in exploiting register reuse, as shown by the hardware counter
measurements in Fig. 1(c). Performance continues to drop as we
further increase the stencil order, while greater arithmetic intensity
implies performance should be improving.

In this paper, we develop a solution to the increased register
pressure for higher order stencils, by exploiting the freedom to re-
order the associative/commutative operations of the stencil com-
putations. The weighted contributions from the neighboring points
can be accumulated in any order. However, changing just the order
of operations among the set of accumulations to a single element of
OUT is not useful. Instead, we need to judiciously interleave sten-
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Variant Gather-Gather Gather-Scatter Scatter-Gather Scatter-Scatter Compact

Diagram
INloads n 1 n 1 ⌈n/2⌉

OUTloads 0 n−1 0 n−1 ⌊n/2⌋
OUTstores 1 n 1 n ⌈n/2⌉

REGS n2−n+2 n+2 n+2 n2−n+2 2 · (⌈n/2⌉)2 +2

Table 1: Expected IO and register pressure of different retiming variants for the 2D (n×n) stencil of Fig. 1 (n = 2k+1)

cil accumulations to multiple target elements. A transformed code
template, representative of the kind of operation reordering gener-
ated by our framework, is shown in Fig. 2(a).

In contrast to the original code in Fig. 1(a), which may be seen
as an all-gather stencil (all contributions to a target element are
gathered together in a single set of operations), the code in Fig. 2(a)
may be viewed as a scatter-gather stencil. The code shown in
Fig. 2(a) performs exactly the same set of operations as the code in
Fig. 1(a), but in a different order of interleaving initialization and
accumulation to elements of OUT. Within the loop over rows (i),
the code contains a prologue loop that performs updates to some
of the left columns of OUT, the main middle loop that performs
the bulk of updates, and a final epilogue loop that performs updates
to some of the right columns of OUT. Considering a 3× 3 sten-
cil, for a given point (i, j) of the outer two loops, here we have a
3× 1 “read-set” of three elements from IN each making contribu-
tions to each element of a 1× 3 “write-set” of OUT. For a n× n
stencil, the transformed version involves a n× 1 read-set updating
a 1× n write-set in an all-to-all fashion. The main benefit is that
now the register pressure is approximately n registers instead of
n2. The performance of the modified stencil is shown in Fig. 2(b),
and is compared with the base code over which it shows substantial
performance improvement. Fig. 2(c) shows hardware counters for
the modified code. It can be seen that the loads/flop ratio is con-
siderably lower than the original code, while the ratio of stores/flop
is slightly higher. In essence, a highly asymmetric all-gather sten-
cil with minimal stores but many more loads has been transformed
into a more balanced stencil that performs more stores, but is able
to achieve a substantial reduction in the number of loads.

Consider again the stencil code in Fig. 1(a). A rectangular iter-
ation space over the range [k : N− k−1][k : N− k−1] is traversed,
applying a stencil operation at each point in that space. The stencil
can be characterized by a read-set and a write-set. For the version of
code in Fig. 1(a), the read-set has an offset range of [−k : k][−k : k]
around [i][ j], while the write-set is a single point, with offset range
[0 : 0][0 : 0]. In general, the stencil can be viewed as a many-to-
many set of edges from points in the read-set to points in the write
set. The stencil in Fig. 1(a) is an all-gather or gather-gather (gather
in both dimensions) stencil, i.e., at iteration point [i, j], we read
from IN[i− k : i+ k][ j− k : j + k] and write to OUT[i][ j]. For the
all-scatter or scatter-scatter stencil, at iteration [i, j], we read from
IN[i][ j] and write to all points in OUT[i− k : i+ k][ j− k : j+ k].

For the gather-gather stencil, the total computation may be
viewed as a set of edges in a bipartite graph from IN[0 : N− 1][0 :
N−1] to OUT[k : N−k−1][k : N−k−1]. Any order of execution of
the set of computation edges in this bipartite graph is valid. This can
be done by creating an arbitrary modified stencil that has exactly
the same set of edges as the original stencil, but is moved around
in the Cartesian space. Consider a bipartite graph with the read-set

vertices on one side and the write-set vertices on the other. Initially,
for an all-gather stencil, we have n× n points of IN[−k : k][k : k]
and a single output point OUT[0][0] with an edge from each input
point to the single output point. The edges can be moved around
as long as the orientation is not changed, i.e., the shift between the
source point on OUT and the sink point on IN is preserved. For
example, the edge from IN[−1][−1] to OUT[0][0] can be shifted to
go from IN[0][−1] to OUT[1][0] or from IN[0][0] to OUT[1][1] or
from IN[1][0] to OUT[2][1], etc.

A gather-scatter stencil is formed by shifting the edges so that
the footprint on IN is only [0][−k : k] but this changes the footprint
in OUT to [−k : k][0]. Many other configurations are possible;
the only constraint is that all stencil edges are retained with their
original orientations. Table 1 shows different stencils equivalent to
the 9-point gather-gather stencil. The read-set vertices are as the
solid purple circles and the write-set elements are the beige annuli.

The different stencil shapes differ in their register requirements
as well as the number of loads and stores from memory required
assuming REGS registers are available. For the gather-gather sten-
cil, the write-set is a single element, all of whose updates happen
in a single step. Thus a single register is needed for the write-set,
and the IO cost is one store per iteration space point. The read-set
has n2 elements of which n2−n will be reused at the next iteration
point [i][ j+1]. In order to achieve this reuse, n2−n registers will be
needed. At each iteration space point, a new set of n input values of
IN will be loaded. The register requirement and the number of loads
and stores are summarized in Table 1 for various equivalent sten-
cils, including scatter-scatter, gather-scatter, scatter-gather, and a
non-symmetric compact stencil with a read-set and write-set of four
elements in a 2×2 configuration.

Overview of the approach Our end-to-end optimization process
involves the following steps:

1. Extract an internal representation of the input code using poly-
hedral compilation concepts; see Sec. 3.1.

2. Create a space of abstract scatter/gather alternatives along with
different unrolling factors for the program; see Sec. 3.

3. For each point in the space, analytically compute the expected
I/O per loop iteration and the expected register count needed to
exploit full reuse along the loop; see Sec. 4.

4. Prune the space of candidate variants based on their arith-
metic intensity relative to the original code using our analytical
model; see Sec. 4.

5. For each point remaining, scatter/gather the appropriate dimen-
sion, unroll, generate C code, and perform complementary op-
timizations for vectorization; see Sec. 4.

6. Perform auto-tuning to find the best performing variant on the
target machine; see Sec. 5.
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3. Framework for Program Optimization

We use the Jacobi 1D stencil in Fig. 4 as the illustrating example
throughout this section. It is equivalent to the code in Fig. 3 when
assuming left associativity of + to evaluate the full expression, and
shows a typical program input to our transformation framework.

1 for (i = 1; i < N - 1; ++i)

2 S1: OUT[i] = W[0]*IN[i-1] +

3 W[1]*IN[i] + W[2]*IN[i+1];

Figure 3: Jacobi 1D using a weight array W

1 for (i = 1; i < N - 1; ++i) {

2 S1: OUT[i] = W[0] * IN[i-1];

3 S2: OUT[i] += W[1] * IN[i];

4 S3: OUT[i] += W[2] * IN[i+1];

5 }

Figure 4: Jacobi 1D after statement splitting

1 S1: OUT[1] = W[0] * IN[0];

2 S1: OUT[2] = W[0] * IN[1];

3 S2: OUT[1] += W[1] * IN[1];

4 for (i = 2; i < N - 2; ++i) {

5 S1: OUT[i+1] = W[0] * IN[i];

6 S2: OUT[i] += W[1] * IN[i];

7 S3: OUT[i-1] += W[2] * IN[i];

8 }

9 S2: OUT[N-1] += W[1] * IN[N-1];

10 S3: OUT[N-2] += W[2] * IN[N-1];

11 S3: OUT[N-1] += W[2] * IN[N];

Figure 5: Jacobi 1D after retiming (all-scatter)

Fig. 5 shows a transformed version of the code, where multidi-
mensional retiming has been applied to “realign” the accesses to IN
so that inside an iteration of loop i, the same element of IN is be-
ing accessed. This corresponds to the all-scatter version of the code.
Retiming is the key concept we use to model the generalized scat-
ter/gather transformation, and we show below some key properties
to assess the legality of retiming by leveraging the associativity of
the + operation.

3.1 Program Representation

In this work we focus on loop-based programs whose control-flow
can be statically determined and represented using only affine in-
equalities. This class of programs is a superset of affine programs
[15] as we do not require array index expressions to be limited to
affine functions of the surrounding loop iterators. The main moti-
vation for requiring that the control-flow can be captured using a
polyhedral representation is the ease of expression and implemen-
tation of multidimensional retiming of statements, so as to achieve
different locality and register pressure trade-offs.

The very first step of our framework is to convert an input pro-
gram into an internal representation that is amenable to effective
retiming. For maximal flexibility it is best to split a single state-
ment as in Fig. 3 that contains multiple associative accumulation
operations + into distinct statements so that we have only one accu-
mulation operation per statement, as in Fig. 4. This enables differ-
ent retiming for the operands of each accumulation. We remark that
some = operation may need to be changed to +=, and vice-versa, to
ensure that the first statement that updates an array element in the
retimed program uses = and not +=, this is discussed in later Sec. 4.
We use the following concepts to represent the program.

Statement iteration set Each statement in the program, e.g., S1,
S2 and S3 in Fig. 4, is associated with a set of integer points such
that (1) there is one point in this set for each run-time instance
of the statement; and (2) the coordinates of each point correspond
exactly to the value taken by the surrounding loop iterators when

that statement instance is executed. To ensure the ability to leverage
polyhedral code generators such as CLooG [5] to implement the
program transformation, we restrict this to a subset of Zp, if S is
surrounded by p loops, and this subset is bounded only using affine
inequalities. For example the iteration set of S1 in Fig. 4 is:

IS : {i ∈ Z | 1≤ i < N−1}.

If in the original code the loop bound expressions are constants but
not affine expressions, e.g., i < sqrt(42) + pow(x, 42), they
can safely be replaced by a unique parametric constant Cst ∈ Z and
the equivalent loop bound in the iteration set would be i < Cst,
which is an affine expression.

Data accessed by a statement The data accessed by a particular
statement instance is represented by a collection of access func-
tions, one for each array access in the statement. Scalars are viewed
as 0-dimensional arrays, and pointers are forbidden. Given a n-
dimensional array reference, the associated access function is rep-

resented with a vector ~f with n components. For example, the ac-
cess IN[i-1] of statement S1 is represented as: f IN

S1 : (i− 1) and

for an access A[i][j-2] it is f A
S : (i, j−2). There is no restriction

imposed on the components of this vector, but the precision of data
dependence analysis and the computation of the data space touched
by a loop iteration is impacted by the form of expressions used in
f : if only affine expressions of the surrounding loop iterators and
parametric constants are used, then exact polyhedral dataflow anal-
ysis [15] can be achieved. On the other hand, arbitrary expressions
may lead to over-approximating the data dependences of the pro-
gram, limiting the freedom to retime the code and the accuracy of
our analytical model to compute the register pressure.

Program execution order The order in which the dynamic in-
stances of the statements are executed is specified by a scheduling
function that is applied to each iteration set to obtain the timestamp
at which every instance is executed. The instances will be executed
according to the lexicographic ordering of the timestamps. Given a
statement S surrounded by p iterators, the schedule TS is a vector
with 2p+1 components, such that: (1) odd components are scalars
modeling the interleaving of loops and statements; and (2) even
components are affine expressions of the surrounding loop itera-
tors. In this work, we further restrict the even components to be of
the form i+α where i is the loop iterator at that particular nest-
ing depth and α ∈ Z. For example, the schedule of statement S1
in Fig. 4 is TS1 : (0, i,0); the schedule of S2 is TS2 : (0, i,1); and
for S3 it is TS3 : (0, i,2). The original schedule can be constructed
from a simple AST representation of only loops and statements as
nodes, where alternating components of the schedule represent the
surrounding loop iterators and the relative position of the statement
within those loops.

Applying loop transformations As we have restricted the control-
flow to be static and exactly captured through the iteration sets, and
have restricted the execution order to be exactly captured through
multidimensional affine functions, loop transformations can be ap-
plied by using polyhedral code generation. In essence, polyhedral
code generation emits a C code that implements the order speci-
fied by the schedule functions when applied on each point of the
iteration sets. By carefully managing the overlap between “trans-
formed” iteration sets for different statements through polyhedral
separation [5, 34], polyhedral code generation seamlessly produces
the code in Fig. 5 simply by using the schedules TS1 : (0, i− 1,0);
TS2 : (0, i,1); TS3 : (0, i+1,2), i.e., the original schedule with only
the second component updated from i to either i−1, i or i+1, and
the iteration sets IS1 = IS2 = IS3 : {i | 1≤ i < N−1}.
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3.2 Multidimensional Retiming

Multidimensional retiming has been previously studied in the liter-
ature, mostly for the purpose of parallelism exposure [6, 16, 36, 45]
or to fix transformations for legality [30, 41]. We take a different
approach, seeking a characterization of different data reuse patterns
and register pressure when applying arbitrary multidimensional re-
timing. In particular, we show in Sec. 4 how the formalism below
can be used to analyze and optimize the register pressure for a class
of stencil computations. Multidimensional retiming is in essence a
shift of an iteration set by a constant quantity along one or more
of its dimensions. Def. 1 captures these factors in a vector, one for
each statement in the program, which together uniquely represent a
generalized scatter/gather combination across all dimensions.

DEFINITION 1 (Retiming vector). Given a statement S surrounded
by p loops, and its associated schedule TS. A retiming vector
~rS ∈ Z

p defines the offset quantity, for each surrounding loop,
to be applied on S. The new schedule of operations for S is

T ′S = TS + even(~rS) where even(~rS) = (0,rS
1 ,0,r

S
2 ,0, ...,r

S
p,0).

By applying ~rS1 = (−1), ~rS2 = (0) and ~rS3 = (1) to the example
code in Fig. 4, one obtains the code in Fig. 5. A candidate program
transformation is represented by the retiming vectors associated
with each statement. If unrolling is to be applied, we replicate
the statements to be unrolled, properly updating their schedule to
capture the expected final order of statements. In our framework
all replications of the same statement will use the same retiming
vector, this is only a convenience, not a requirement.

One key observation about multidimensional retiming is that
one can compute seamlessly the updated access functions for each
memory reference in the code after retiming without having to gen-
erate the code. This is because we have constrained the retiming
vectors to constant offsets. This feature is key for designing effi-
cient analytical solutions to capture data reuse patterns after trans-
formation, without having to explicitly generate any transformed
code. The updated access functions are defined as follows.

DEFINITION 2 (Access function after retiming). Given an access

function f S
A , and a retiming vector ~rS of dimension p. After retiming,

each loop iterator i1, i2, ..., ip in f S
A will be replaced by i1− rS

1 , i2−

rS
2 , ..., ip− rS

p, respectively, in the updated access function.

For example, for IN[i-1] with access function f IN
S1 : (i− 1), after

retiming with ~rS1 = (−1) the updated access function will become
f IN
S1 = ((i− (−1))−1) = (i).

3.3 Unleashing the Power of Retiming

So far in our framework we have not discussed the legality of
retiming, i.e., the constraints on the retiming vectors to ensure the
semantics of the program are preserved. In the general case data
dependence analysis is required to ensure a retiming preserves the
semantics, however, we show that by leveraging associativity of
certain operations, and/or focusing on specific classes of programs,
we can prove that any retiming preserves the program semantics
without resorting to dependence analysis.

Legality of retiming for affine programs If the entire program
region to optimize fits the polyhedral compilation model, i.e., all
loops and access functions are affine, determining the legality of
a particular retiming can be done using polyhedral dependence
analysis, which captures exactly the set of all pairs of dynamic
instances which are in dependence. This dependence information
can be used to test if a particular set of retiming vectors preserves
the relative order of all dependent instances.

To illustrate this point, consider the example of Fig. 4. Array
dataflow analysis would tell that there are only two flow depen-
dences, one from S1(i) to S2(i) and one from S2(i) to S3(i). As

a consequence, any retiming vectors ~rS1, ~rS2 and ~rS3 such that
rS1 ≤ rS2 ≤ rS3 lead to a legal retiming. Interestingly, for purely
affine programs, one can build the convex space of all semantics-
preserving affine multidimensional schedules [22, 31], fix some
particular coefficients to capture the schedule shape constraints
(odd dimensions are scalars, even dimensions are of the form i+α),
and project out most dimensions keeping only those correspond-
ing to the schedule coefficients associated with the implementation
of shifting. The resulting set contains all legal retiming factors for
each statement and each loop.

Non-affine programs In the present work we consider a superset
of affine programs, i.e., we allow for the array access functions to
be non-affine. This may prevent accurate dataflow analysis from
being performed using classical polyhedral analysis techniques, but
it does not prevent a naı̈ve or conservative dependence analysis,
and then using the polyhedral framework to represent the computed
dependences. Indeed, because retiming is an affine transformation,
legality can still be checked using existing polyhedral model based
techniques. To illustrate this point, consider again the example of
Fig. 4. Suppose the most conservative analysis has been used to
find dependences, by looking only at array names being read and
written. In that case, in addition to the actual ones, a loop-carried
dependence would appear. As a consequence, any retiming vectors
~rS1, ~rS2, and ~rS3 such that rS1 = rS2 = rS3 lead to a legal retiming.

Associative reordering for reductions Reductions amount to “ac-
cumulating” the result of a set of operations to a single memory
location. An example is shown in Fig. 6.

1 for (i = 0; i < N; ++i)

2 for (j = 0; j < N; ++j)

3 R: A[i] += C[i][j];

Figure 6: Reduction code

In this code, classical dependence analysis captures a strict se-
quential order between each instance of statement R; every iteration
depends on all the previous ones because the same value is being
read and written at each iteration of the j loop. However, in prac-
tice, reduction operators are typically associative and commutative
operations. While compilers are often limited in their ability to ex-
ploit this associativity, typically because of the inherent limitations
of the IEEE 754 Floating Point standard, numerous previous works
have established the benefit of exploiting associative reordering of
reduction operators for parallelism [6, 16, 36, 45]. For instance,
OpenMP supports parallelization of reduction via user-provided in-
formation about the reduction operator and accumulator location.

Interestingly, if we remove the “artificial” dependence on the re-
duction loop in Fig. 6 by allowing operations to be reordered based
on the associative and commutative properties of the + operator,
then any sequential order for the loop iterations becomes valid. That
is, we can execute the dynamic instances of the statement in the or-
der we want, provided they are executed one at a time. This leads
to defining a class of dependences that can be safely ignored in the
context of multidimensional retiming of reduction operations.

DEFINITION 3 (Commutative dependences). Let Q and R be two
statements of the form BQ = BQ ⊙ f (AQ) and BR = BR ⊙ g(AR)
where: ⊙ is an associative and commutative operator; A∗ do not
alias with B∗; BR and BQ cannot overlap partially, i.e., either
they represent the same variable or they do not alias. Then any
dependence between Q and R is said to be commutative.
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Clearly, if other dependences allow it, the order of execution of
R and Q can be permuted. Going back to the example in Fig. 4, all
dependences turn out to be commutative. In other words, exploiting
associativity and commutativity of the addition implies that any set
of retiming vectors leads to a valid retiming, assuming that A and B
do not alias, therefore any scatter/gather combination is also valid
for this code.

Stencil computations as reductions Convolution stencils are of
special interest regarding our technique because all dependences
are commutative. In other words, any arbitrary retiming is valid.
Stencil computations implementing convolutions typically use
two arrays at each time iteration. Such computation accumulates
weighted neighboring pixels to form the updated value of the cur-
rent pixel. This observation is key for the application of our frame-
work: by exploiting the associativity of the operation used to accu-
mulate the value from the different neighbor pixels, one can rewrite
certain stencil computations to fit the reduction pattern described
above, and therefore enable arbitrary retimings on such computa-
tions. Fig. 5 illustrates this concept by performing a retiming that
implements the all-scatter variant of the kernel. The order in which
updates are performed has changed from the original code; the new
order does not preserve the constraints imposed by the commuta-
tive dependences, but is valid if such dependences are ignored.

Scatter/Gather as retiming The code in Fig. 5 shows the all-
scatter version of a Jacobi 1D code which explicitly exploits asso-
ciative reordering. In general, the scatter/gather principle is seam-
lessly applied on convolution stencils provided they are written in
a form where each update operation is in a distinct syntactic state-
ment. This is required because in our framework the granularity at
which retiming operates is limited to syntactic statements. For ex-
ample, moving to a 2D Jacobi, one can implement a scatter/gather
combination by retiming the various statements along one of the
spatial loop, while not retiming along the other spatial loops, as
illustrated in Fig. 1.

4. Register Optimization Framework

The previous section provides a framework to implement any mul-
tidimensional scatter/gather as a retiming of the statements. We
now use these results to create an analytical estimate of the mem-
ory traffic for a transformed code, without actually generating that
code. We then describe our overall code generation framework.

4.1 Computing Data Reuse Across Retimed Iterations

One key objective of our framework is to exploit retiming to change
the data reuse pattern across loop iterations, and implicitly the reg-
ister pressure. Indeed, assuming we aim to exploit all the available
reuse between consecutive loop iterations in registers, one register
per data element to be reused is needed. In the following we define
a framework to compute analytically the data reused between sets
of loop iterations given an arbitrary retiming.

To enable a generic approach to compute the set of data ele-
ments touched by consecutive loop iterations, and therefore the set
of data elements to be reused between iterations, we first define the
notion of an iteration set slice. This is a generalized form of the
parametric domain slice defined by Pouchet et al. [32].

DEFINITION 4 (Iteration set slice). Given an iteration set Is mod-

eling a statement surrounded by d loops, the slice I
~p
S is:

I
~p
S = {IS | i1 = p1 +α1, ..., id = pd +αd }

where pi is a parametric constant unrestricted on Z, and αi ∈ Z.

For example, taking IS1 from Fig. 4 and ~p = (p1), I
~p
S1 = {(i) | 1≤

i < N − 1∧ i = p1 ∧ p1 ∈ Z}. This set contains only one point.

Two arbitrary but consecutive iterations of i are modeled using

~p1 = (p1) and ~p2 = (p1 +1) in the two slices I
~p2

S1 and I
~p2

S1 . Each set
obtained contains exactly one point, and they necessarily capture
two consecutive iterations (that is, i and i+1 for any i).

We can now define the data space of a reference for a particular
set of iterations as follows.

DEFINITION 5 (Data space of a reference for a set of iterations).
Given an access function f S

A of dimension n in a statement S, and

I′S ⊆ IS a subset of the iteration set of S. The data space touched by
this reference is:

D f S
A ,I
′
S
= {~x ∈ Z

n |~x = f S
A(~p), ∀~p ∈ I′S}

The definition of the data set that is being reused between two
consecutive iterations is therefore the intersection of the data spaces
at iteration i and i+1.

DEFINITION 6 (Data reused between consecutive loop iterations).
Given a collection of k references f k

A on array A inside the same
loop nest of depth d, Il the iteration set of the inner-most loop body,

~p1 = (p1, ..., pd), ~p
2 = (p1, ..., pd−1, pd +1) with pk ∈Z, we have:

DataSpace(A, I
~p1

l ) =
⋃

i D
f i
A,I

~p1

l

DataSpace(A, I
~p2

l ) =
⋃

i D
f i
A,I

~p2

l

Reuse(A) = DataSpace(A, I
~p1

l )
⋂

DataSpace(A, I
~p2

l )

And we have Access(A) = DataSpace(A, I
~p1

l ).

It follows that the number of distinct elements reused across con-
secutive inner-loop iterations is simply #Reuse(A) where # is the
cardinality of a set of integer points.

When the function f is affine, D f S
A ,IS

can be computed analyti-

cally as the image of f over the polyhedron IS, and as Reuse(A) is a
union of convex sets of integer points. #Reuse(A) can be computed
using tools such as the Integer Set Library [42]. However, more in-
terestingly, when f is limited to the form fk : ik +αk where ik is a
loop iterator, for all dimensions k of f as it is in typical stencil com-
putations, the data space of one loop iteration can be simply com-
puted from the values of αk. When focusing on affine stencil codes,
we never need to resort to costly polyhedral operations to build the
sets and count their number of points: the data space of the stencil
for i and i+1 and the resulting intersection can be computed via a
simple enumeration of the updated array access functions.

In the general case of programs with arbitrary access functions
the data space may not be computable analytically. This is not a
problem for our transformation framework, but only for the ana-
lytical model we use to prune the space of possible transforma-
tions and accelerate the search for a good transformed variant. We
remark that computing the data space only for some loops in the
program, instead of all loops, can be helpful to expose affine array
index expressions. Intuitively, when computing the data space of
one iteration of the inner-most loop, all surrounding loop iterators
become constants. Consequently, non-affine expressions involving
only those iterators can be replaced by a parameter, in a manner
similar to non-affine loop bounds as shown earlier.

Finally, we remark that to compute the data reused across itera-
tions in the presence of retiming, one simply needs to use updated
access functions according to Def. 2 in Def. 6 instead of the origi-
nal access functions. As the updated access functions can be com-
puted analytically for arbitrary retiming vectors, the computability
of Def. 6 is not affected by retiming.
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4.2 Estimating Register Pressure and Data Movements

To estimate the register pressure of a computation, we first add sev-
eral hypothesis: (1) we exploit all reuse only between consecutive
iterations of a loop; (2) we implement reuse between consecutive
iterations through rotating registers; and (3) we ignore the register
cost of computing the access functions.

With these properties in mind, we define the register pressure as
the count of all reused data elements, plus two registers to ensure
any 3-address operation can be performed.

DEFINITION 7 (Register count for a loop iteration). The number
of registers needed to execute a loop iteration while exploiting
reuse across consecutive iterations of this loop through rotating
registers is:

rc = ∑
A∈Arrays

#Reuse(A)+2

Technically, more than two registers may be needed in order to
also exploit intra-iteration reuse between data elements that are not
reused in the next iteration. Accounting for such cases can be done
by adding one register for each set s of access functions which
are identical but do not refer to a data element reused at the next
iteration when #s > 1.

The number of memory loads required is computed with a
similar reasoning in mind. The number of loads corresponds to the
number of data elements which are not reused between consecutive
iterations, considering only access functions related to reads.

DEFINITION 8 (Load count for a loop iteration). The number of
memory loads needed to execute a loop iteration while exploiting
reuse across consecutive iterations of this loop through rotating
registers is:

lc = ∑
A∈ReadArrays

(#Access(A)−#Reuse(A))

Finally, the number of memory stores required is computed
directly from the set of distinct memory locations written to at a
particular loop iteration that are not also written during the next
loop iteration.

DEFINITION 9 (Store count for a loop iteration). The number of
memory writes needed to execute a loop iteration while exploiting
reuse across consecutive iterations of this loop through rotating
registers is:

sc = ∑
A∈WriteArrays

(#Access(A)−#Reuse(A))

4.3 Optimization Search Space

The definitions of rc, lc and sc gives analytical estimates of the
memory behavior of a program, under the simplification hypothe-
sis mentioned above. To optimize an input program, we consider
numerous program transformations, compute the cost in terms of
memory movement and registers needed for each candidate, and
prune the set of candidate transformations using these metrics.

In this work we consider multidimensional retiming as a key
optimization to enable better register reuse, especially for high-
order stencil computations. But to effectively exploit the available
reuse, retiming must be complemented by a set of transformations
impacting data reuse patterns. A strength of our approach is that
for all transformations considered we can compute the value of rc,
lc and sc analytically without having to generate the transformed
code variants. These additional transformations are listed below.

Loop permutation Loop permutation is critical to change the
direction of reuse. In our implementation we only consider loop
permutations of perfectly nested loops, however more powerful
loop permutations can be achieved using CLooG. By limiting to

perfectly nested loops we can analytically compute the effect of
permuting loops i and j by simply replacing i by j and vice-versa
in all access functions.

Loop unrolling and code motion Unroll-and-jam is key to ex-
ploiting inter-iteration data reuse opportunities, but comes at the
cost of increased register pressure. We perform a customized loop-
unrolling-and-code-motion transformation, which produces the
same innermost loop body for the “steady state” loop as unroll-
and-jam. However, additional code motion is performed on the
prologue and epilogue loops created after unroll-and-jam to further
improve locality.

4.4 Building Program Variants and Pruning the Space

Algorithm 1 summarizes our analytical approach to compute an
estimate of the cost of various candidate transformations for a
program P, removing from the search space variants with excessive
register usage or excessive memory traffic.

Algorithm 1 Explore search space

function EXPLORESPACE(P)
U ←BuildAllUCMVectors(P)
R←BuildAllRetimingVectorSets(P)
P←BuildAllLoopPermutations(P)
variants←{}
for all~u ∈U do

for all~r ∈ R do
for all ~p ∈ P do

P′ ←BuildUpdatedRepresentation(P,~u,~r, ~p)
AI ←ComputeCost(P′)
if AboveThresold(AI)

continue
variants←{variants, (~u,~r,~p)}

end for
end for

end for
return variants

end function

Function buildAllUCMVectors builds a set of all possible un-
rolling factors to be evaluated, based on a user-defined range for
each dimension. Function buildAllRetimingVectorSets builds
the retiming vectors for all statements based on user-defined ranges
in each dimension. Function buildAllLoopPermutations builds
the set of all possible loop permutations. These three functions are
restricted by the program dependences in the general case: not all
combinations of possible unroll and code motion, permutations and
retiming are legal. However as shown in Sec. 3, for convolutions
when leveraging associative reordering, all such combinations are
necessarily valid and therefore no dependence analysis is required.

Function buildUpdatedRepresentation modifies the pro-
gram representation, i.e., the iteration sets and access functions,
as needed to emulate the effect of the program transformation.
Function computeCost applies Def. 7, Def. 8 and Def. 9 to the
updated program representation and analytically computes the de-
sired values. The arithmetic intensity is then computed from the
number of floating point operations executed in one iteration of the
inner-most loop using the updated representation, and dividing it
by lc+ sc. Function aboveThresold checks if the arithmetic in-
tensity is above a user-defined threshold, which in our framework
is a function of the arithmetic intensity of the original program, and
if so the variant is discarded, otherwise the variant is stored in the
list of candidates to evaluate using auto-tuning. We report in Sec. 5
extensive experimental results on a collection of high-order sten-
cils. Actual parameter values used for the search space evaluation
are detailed in Sec. 5.

71



Pruning the space of candidate variants Table 2 shows the
search space statistics for several 3D benchmarks for different
pruning factors. We keep only the candidates with arithmetic in-
tensity (AI) greater or equal to the original program (1×), with AI
greater than 1.5× the AI of the original program, and 2× greater.
Perf shows the fraction of the performance of the space-best with-
out pruning which is achieved by auto-tuning only on the pruned
space. A value of 1×means the candidate achieving the best overall
GF/s is still in the space after pruning. Column #Space reports the
search space size and #Le f t its size after pruning. The benchmark
names and experimental setup is detailed in later Sec. 5.

AI = 1× AI = 1.5× AI = 2×
Bench #Space #Left Perf #Left Perf #Left Perf
3-d-2 144 120 1x 68 0.96x 28 0.94x

3-d-2-dlt 144 120 1x 68 1x 28 0.97x
3-f-1 144 132 1x 80 1x 28 0.95x

3-f-1-dlt 144 132 1x 82 1x 28 0.99x
3-f-2 144 132 1x 116 1x 100 0.94x

3-f-2-dlt 144 132 1x 116 1x 100 1x

Table 2: Search space statistics for different pruning factors

Our approach for pruning is empirical. Our objective is to keep
the auto-tuning time tractable, by evaluating on the target machine
only a reasonably small number of variants. For instance, when
considering 2D stencils from our test suite, the number of vari-
ants without pruning is 24, making pruning unnecessary. On the
other hand, for 3D codes the number of variants quickly grows be-
cause of the additional possible unrolling and combinations of scat-
ter/gather along the third dimension. Keeping only variants which
achieve an estimated AI two times better than the original code
leads to a performance loss of 6% over the space-optimal point, but
reduces the number of variants to be evaluated during auto-tuning
by up to 5×. Finally we remark that arithmetic intensity alone is
not a good performance predictor: the quality of vectorization is
key for performance, and machine-specific metrics relating to the
SIMD execution engine must be taken into account to approximate
performance. To the best of our knowledge, accurate performance
predictors are extremely difficult to build, so we instead take a con-
servative pruning approach while still relying on auto-tuning to find
the best variant.

4.5 Putting it all together

Each program variant consists of a different set of values for loop
permutations, retiming vectors for each program statement, and un-
rolling factors. The transformation system has been implemented1

using PoCC [29]. Once the polyhedral structures are extracted from
the internal representation, the loop permutation and retiming of all
statements corresponding to a particular variant is embodied in the
scheduling functions of the polyhedral representation. CLooG is
used to generate the code structure, automatically handling all pos-
sible boundary cases induced by the retiming. A syntactic pass then
applies loop unrolling and code motion, followed by stripmining
the unit-stride dimension to enable vectorization. Finally, a post-
processing pass was written to explicitly vectorize the stripmined
loops using SIMD intrinsics, and apply a limited global value num-
bering pass to ensure rotating registers are implemented in the final
code. Algorithm 2 shows the step-by-step transformations applied
to a single program variant.

ConvertToIR translates the input program to the representa-
tion described in Sec. 3.1. PermuteAndRetime applies permuta-
tion and retiming, and selects the statement with the lexicographic
largest retiming vector as initialize-and-accumulate in a single step,
i.e., using = instead of += wherever needed. PolyhedralCodegen

1 http://hpcrl.cse.ohio-state.edu/wiki/index.php/HOSTS

Algorithm 2 End-to-end algorithm

function OPTIMIZEPROGRAM(SOURCE, MACHINEINFO)
IR←ConvertToIR(SOURCE)
{bestVariant,bestTime} ←{SOURCE,∞}
for all (~u,~r,~p) ∈ ExploreSpace(IR) do

P←PermuteAndRetime(IR,~r,~p)
P←PolyhedralCodegen(IR,~r,~p)
P←Prevectorize(P,~u)
P←Vectorize(P, MACHINEINFO)
T ←Compile-and-Run(P)
if T < bestTime then
{bestVariant,bestTime} ←{P,T}

end if
end for
return bestVariant

end function

generates the transformed C code. Prevectorize applies loop un-
rolling, code motion and stripmining. Vectorize generates short-
vector SIMD intrinsics for each stripmined loop using the vector
ISA specified in MACHINEINFO, and applies global value num-
bering to enable register reuse across iterations. Finally, the trans-
formed source is compiled and executed, and the best performing
variant is kept.

5. Experimental Results

5.1 Experimental Protocol

Machine Experimental results presented in this paper, exclud-
ing hardware counters measurements, have been obtained using a
four-core Intel Core i7-4770K CPU (Haswell micro-architecture)
running at 3.5GHz. It features the AVX2 SIMD instruction set in-
cluding fused-multiply-add (FMA) instruction. Its theoretical peak
is 112 GF/s (224GF/s if using only FMA instructions). DDR3-
1600 RAM was used, the STREAM benchmark [25] has a peak
performance of 17.6 GB/s on our machine. Results based on hard-
ware counters were collected on an Intel Core i7-2600k using Intel
VTune. All benchmark variants, including the reference codes,
were compiled with ICC 13.1.3 using the -std=gnu99 -Wall

-O3 -fp-model fast=2 -fma -override-limits -wd13383

-xHost -openmp flags. The -fast flag did not improve perfor-
mance in our test suite.

Benchmarks We created a set of synthetic benchmarks with vary-
ing stencil size and number of neighbors with non-zero weight to
evaluate the effectiveness of our framework on a variety of cases.
We generated 2D, 3D and 4D stencils, with either a diamond-
shaped set of non-zero coefficients in the weight matrix (others
outside the diamond are necessarily zero), or the full weight ma-
trix being with all non-zero coefficients within a n-cube. Bench-
marks are named xD-{d,f}-yy where x is the dimension and yy size,
i.e., the furthest non-zero weights in any direction. Diamond sten-
cils are represented with d and full stencils with f. These synthetic
benchmarks are not independent of practical applications; Table 3
shows applications which some of them are commonly used in.

We also report on a subset of stencils from the Stencil Micro-
Benchmarks [12]; We only consider those which contain enough
non-zero points for our technique to be potentially profitable: Dr-

prj3 is a 19-point stencil from NAS MG Benchmark [3], and also
corresponds to the D3Q19 Lattice Boltzmann method used in CFD
applications such as [43]; Dresid is a 21-point stencil also from
[3]; Dbigbiharm is a 25-point stencil for biharmonic operator as de-
scribed in [1] and is used in areas of continuum mechanics; Inoise3

is a 49-point stencil for noise cleaning as described in [17] along
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with the next three, which can be used as part of image pipelines,
e.g. [35]; Ibiglaplace is a 97-point stencil for gradient edge detec-
tion; Izerocross is a 25-point stencil for edge detection; Inevatia is
a 20-point stencil for gradient edge detection.

Benchmark Application
3d-f-1 D3Q27 Lattice Boltzmann method [43]
2d-d-3 second-order-system Upwind Schemes [4]
2d-d-1 Jacobi 5 point
2d-f-1 Jacobi 9 point
Drprj3 NAS MG [3]
Dresid NAS MG [3]

Dbigbiharm Biharmonic operator [1]
Inoise3 Noise cleaning [17]

Ibiglaplace Gradient edge detection [17]
Izerocross Edge detection [17]

Inevatia Gradient edge detection [17]

Table 3: Practical applications of the benchmarks

Code Generation For all benchmarks we generate the following
implementations. Reference: A plain C implementation of the sten-
cil using the standard notation; no code tested was written with
points rolled together as in Fig. 1. An OpenMP pragma was added
to the outer-most parallel loop to enable multicore parallelism. DLT-

Reference: A plain C implementation of the DLT transformed code
(described below) without any explicit reuse or vectorization. Op-

timized: The best of all variants generated by the algorithm shown
in the previous section, operating on the original layout of the data,
selected with auto-tuning. DLT-Optimized: The best variant using
the DLT transformed data layout.

The rotating registers [21] transformation unrolls the inner loop
by the stencil size and explicitly allocates registers to avoid register
copies when transferring data to the next iteration of the inner
loop. In combination with the decreased register pressure from
the retimed code significant improvements to spilling are possible.
This optimization can be done by global value numbering [40]; the
LLVM compiler has been observed to automatically apply rotating
registers when the inner-loop is a gathered dimension.

An issue with the rotating registers transformation is that it un-
necessarily prevents auto-vectorization in ICC because of false de-
pendences found by the compiler. For these cases outer loop vec-
torization using intrinsics was implemented in the code generator
to ensure all the compute hardware was utilized. ICC’s inability
to vectorize the code also indicates that it may be avoiding other
transformations which could further improve performance of the
optimized kernels, but even with these limitations substantial im-
provements are possible as shown below. Outer-loop vectorization
comes at the cost of forcing the transposition of the innermost two
loops which results in a sweep of memory with a larger stride. This
can degrade performance due to TLB misses. The DLT codes are
able to utilize the original loop order with vectorization.

Tiling is implemented but not tuned to cache size, it currently
only exists to enable OpenMP parallelization in tandem with the
retiming. However, there is spatial locality which could be better
exploited in some cases through more careful tiling.

For the unroll and code motion transformation, each loop ex-
cept the inner most was unrolled by either 1×, 2×, or 4×, although
the product of all unrolling was limited to at most 8×. For the re-
timing vectors, we considered all combinations leading to either
scattering or gathering along a particular dimension, for every di-
mensions. We set the threshold in our cost model to eliminate all
candidate variants with a lower arithmetic intensity than the origi-
nal code. Finally, all problems are set to sizes such that each array
is approximately 1GB.

The Dimension-Lifted Transpose by Henretty et.al. is a trans-
formation that enables effective vectorization of stencil codes by
addressing the stream-alignment conflict problem [18]. It treats a
dimension of the array as a 2d array with vector-width rows
which is then transposed, ensuring that each vector operation in
the “steady state” is aligned. In the standard layout it is not pos-
sible to implement rotating registers if the inner-most loop is the
dimension of vectorization since neighboring points will be shifted
by their distance from the center of the stencil, and not by the vec-
tor length. However, the DLT lets us treat vectors as scalars within
the stencil, i.e., neighboring points in the stencil on the unit stride
dimension are neighboring aligned vectors in memory. This is de-
sirable since it enables rotating registers and vectorization along the
unit-stride dimension, which is optimal for both register and cache
reuse. The DLT is tested independently of the other optimization to
show results on both the standard layout and the DLT.

The code generator produced each variant of a benchmark under
3 seconds. However some instances with multiple scattered dimen-
sions resulted in exceptionally long C code being generated, and
consequently, in ICC sometimes taking over 30 minutes to compile
a single function. LLVM is able to compile the largest functions
produced with -O3 -ffast-math in just over 5 minutes.

5.2 Performance Results

Fig. 7 compares the maximum performance obtained by both the
original stencil C code or the naı̈ve DLT implementation(REF),
with the best performing variant we have found after auto-tuning
(original layout – OPT, DLT – DLTOPT), for each benchmark.
The shorter segment of each bar shows the sequential performance
which illustrates the benefit of the approach in a best-case scenario
for the original code: the entire bandwidth available is allocated to
a single computation unit instead of being shared between all cores.
The bar stacked on top represents the absolute performance of the
same benchmark executing in parallel across all four cores.

Fig. 9 presents a similar performance comparison for the Sten-
cil Micro-Benchmarks. As many of these benchmarks are still
relatively small stencils or contain many zero weight points the
benefit of the retiming optimization is less significant. However,
Ibiglaplace is an excellent example of a real world computa-
tion which can substantially benefit from the retiming operation: in
combination with the DLT the retiming achieves a 3× improvement
over the reference code.

Db
igb
iha
rm

Dr
es
id

Dr
prj
3

Ibi
gla
pla
ce

Ine
va
tia

Ino
ise
3

Ize
roc
ros
s

Benchmark

0

10

20

30

40

50

60

70

GF
LO

P/
s

REF-PAR
REF-SEQ

OPT-PAR
OPT-SEQ

DLTOPT-PAR
DLTOPT-SEQ

Figure 9: Maximum performance of different implementations on
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Figure 7: Maximum performance of the different implementations on the synthetic benchmarks
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Figure 8: Performance as rate of stencil applications per second

On all problems we obtain comparable or better performance
than either reference code compiled with ICC. Benchmarks with
near identical performance are those with the highest proportion of
zero weights and the lowest order, which is where our technique is
least likely to be effective. A general trend is that the more complex
the stencil is, i.e., the fewer zero weights in larger stencils, the better
the performance of the OPT codes. ICC is able to very effectively
optimize the smaller reference stencils, but the performance does
not scale with the stencil order.

A direct comparison with the Array Subexpression Elimination
(ASE) technique presented in [12] is not easy because the imple-
mentation is unavailable. However, a comparison of improvements
over reference implementations for sequential codes can be made
with Fig. 13 of Deitz’s paper. Notable stencils to compare are Dbig-

biharm which is 40% faster with ASE, whereas (using different
hardware) we achieve over 3× improvement using retiming for
sequential execution; and both the Ibiglaplace and Inoise3 stencils
which are 1.8× faster with ASE, but over 4× faster with retiming.

Fig. 8 shows performance in stencils computed per second.
Based on results of the Stream benchmark, the practical peak rate
for any stencil is 1100 MStencil/s. If perfect reuse of all data in
the benchmarks was possible, we would expect the rate of stencil-
s/s to remain flat until the problem becomes compute bound, how-
ever we observe that the reference codes demonstrates a rapid de-

crease as the stencil size increases, and since the GFLOP/s of these
benchmarks is not near peak performance of the machine the codes
have become artificially bound. This artificial bound is explained
by Fig. 10 which shows the number of loads and stores retired for
each benchmark as reported by Intel VTune.
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Figure 10: Number of loads and stores from hardware counters
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In a perfect machine there would be about the same loads and
stores for all the different stencil sizes across the given problem
size, but as seen the reference codes show a steady increase of loads
as stencil sizes increase. This is due to the result of high register
pressure which forces each value to be reloaded many times.

As an alternative view of the hardware counters, Fig. 11 presents
the memory operations per floating point operation for each bench-
mark, i.e., the inverse arithmetic intensity. Because the available
reuse is increasing as the stencil size increases, a corresponding in-
crease in the arithmetic intensity would be expected, but as can be
seen the reference codes generally peak at about 2FLOPS/MOP,
whereas the retimed code reaches 6FLOPS/MOP.
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Figure 11: Loads and stores relative to total FLOPS executed

5.3 Impact of Transformations

Fig. 12 demonstrates the improvement gained by the various trans-
formations for the synthetic benchmarks 2d-f-4, 3d-f-1, and 3d-f-2

as speedup over the corresponding reference implementation.
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Figure 12: Speedup for different stages of optimization on synthetic
benchmarks

For instance, for 2d-f-4 sequential using the standard layout,
vectorization and application of rotating registers improves perfor-
mance by 2× over reference, choosing the optimal retiming further

improves performance to 3.5× better than reference, and allow-
ing unroll and code motion (that is, when using all optimizations)
brings the performance to 3.75× better. It is clear from this fig-
ure that high-order stencils can greatly benefit from the retiming
optimization and effective reuse of registers, however unroll and
code motion is less useful due to the already high register pres-
sure in higher-order stencils. Comparing between 3d-f-1 and 3d-f-2

demonstrates that while the retiming can improve both stencils, its
benefit increases as the order increases.

6. Related Work

A number of works have addressed the detection and automatic
parallelization of scans and reductions [6, 16, 36, 45]. Commuta-
tivity analysis has been recognized as an approach to parallelizing
computations [2, 23, 33, 37]. We are not aware of the use of com-
mutativity to improve data locality. Multi-dimensional retiming has
been been studied in the context of exploiting parallelism by a num-
ber of authors [7, 10, 27, 28].

In the context of stencil codes, Dursun et al. [14] describe hand-
coded optimizations that compute contributions of data in registers
instead of computing stencil elements one by one. We are not aware
of any automatic approaches to this problem. Sedaghati et al. [38]
propose hardware extensions to vector instructions to reduce the
IO of stencil computations. Deitz et al. [12] and Datta [11] present
techniques that exploit common subexpressions across different it-
erations in stencil codes. While this is orthogonal from the regis-
ter reuse issues addressed in this paper, techniques such as Array
Subexpression Elimination [12] are emulated by the combination
of our technique with the compiler’s common subexpression elimi-
nation. This is done automatically as a single plane’s contributions
to multiple points are considered in a single iteration; If the same
coefficients are used for multiple points CSE removes the redun-
dant work. Cruz et al. [9] present a technique for improving reg-
ister reuse for a specific class of stencils which accumulates from
neighbors along the axes. Their transformation is in fact a singu-
lar retiming, unique from the gather/scatter retiming, which can be
represented by our framework.

7. Conclusion

This paper has addressed the use of associativity and commutativ-
ity in reordering operations with the goal of enhancing data local-
ity and register reuse. This is of particular relevance in optimizing
high-order stencil computations. A multi-dimensional retiming for-
malism was used to characterize the space of valid transformations
and generate transformed code. Experimental results using a range
of high-order stencils demonstrated the effectiveness of our trans-
formation framework.
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