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Chapter 1

Introduction

Compilation Issues on Modern Architectures

The task of compiling a program refers to the process of translating an input source code, which is usually
written in a human-readable form, into a target language, which is usually a machine-specific form. The
most standard application of compilation is to translate a source code into a binary code, that is a program
that can be executed by the machine. Compiling a program has become an increasingly difficult challenge
with the evolution of computers and computing needs as well. In particular, the programmer expects the
compiler to produceeffectivecodes on a wide variety of machines, making the most of their theoretical
performance.

For decades it was thought that Moore’s law on transistor density would also translate into increasing
the processor operating speed. Hence more transistors was often associated with a faster execution time
for the same program, with little or no additional effort to be done in the compiler for the upgraded chip.
This era has come to an end, mostly because of dramatic thermal dissipation issues. As a consequence,
the increase in the number of transistors now translates into more and more functional units operating at
the same speed as five years ago.

With the emergence of specific and duplicated functional units started the trend of parallelism in
modern machine. Instruction-Level Parallelism is exploited in most processors and increasingly com-
plex mechanisms to manage it on the hardware has been a source for additional performance. On the
software side, the compiler is asked to automatically adapt, ortransformthe input program to best fit
the target architecture features, in particular for Single-Instruction-Multiple-Data programs. Moreover,
nowadays a full processor core is replicated on the same chip, and the widespread adoption of multi-
core processors and massively parallel hardware accelerators (GPUs) now urge production compilers to
provide (automatic) coarse-grain parallelization capabilities as well.

Considering that most of the computational power is spent in loops over the same set of instructions,
it is of high priority to efficiently map such loops on the target machines. High-level loop optimiza-
tions are necessary to achieve good performance over a wide variety ofprocessors. Their performance
impact can be significant because they involve in-depth program transformations that aim to sustain a
balanced workload over the computational, storage, and communication resources of the target architec-
ture. Therefore, it is mandatory that the compiler accurately models the target architecture as well as the
effects of complex code restructuring.
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However, most modern optimizing compilers use simplistic performance models thatabstract away
many of the complexities of modern architectures. They also rely on inaccurate dependence analysis, and
lack a framework to model complex interactions of transformation sequences. Therefore they typically
uncover only a fraction of the peak performance available on many applications. An ideal compiler is
asked to achieveperformance portableover an increasingly larger and heterogeneous set of architectures.
For a given (multi-)processor architecture, the compiler attempts to map the proper grain of independent
computation and the proper data locality to a complex hierarchy of memory, computing and intercon-
nection resources. Despite five decades of intense research and development, it remains a challenging
task for compiler designers and a frustrating experience for the programmers of high-performance ap-
plications. The performance gap between expert-written code and automaticoptimization (including
parallelization) of simple numerical kernels iswideningwith every hardware generation.

Iterative Compilation

In recent years, feedback-directed iterative optimization has become a promising direction to harness the
full potential of future and emerging processors with modern compilers. Iterative compilation consists
in testing different optimization possibilities for a given input program, usuallyby performing the trans-
formation and evaluating its impact by executing the optimized program on the target machine. Building
on operation research, statistical analysis and artificial intelligence, iterative optimization generalizes
profile-directed approach to integrate precise feedback from the runtimebehavior of the program into
optimization algorithms. Through the many encouraging results that have beenpublished in this area, it
has become apparent that achieving better performance with iterative techniques depends on two major
challenges.

1. Search space expressiveness.To achieve good performance with iterative techniques that are
portable over a variety of architectures, it is essential for the transformation search space to be
expressive enough to let the optimizations target a good usage of all important architecture com-
ponents and address all dominant performance anomalies.

2. Search space traversal.It is also important to construct search algorithms (analytical, statistical,
empirical) and acceleration heuristics (performance models, machine learning) that effectively
traverse the search space by exploiting its static and dynamic characteristics.

Complex compositions of loop transformations are needed to make an effective use of modern hard-
ware. Using the polyhedral compilation framework, it is possible to expressthose complex transforma-
tions into an algebraic formalism, exposing a rich structure and leveraging strong results in linear algebra.
Unlike most other transformation frameworks, the polyhedral model allows focusing on the properties
of theresultof an arbitrarily complex sequence of transformations, without the burdenof composing the
properties of individual loop transformations to build the sequence. Moreover, with polyhedral compi-
lation it is possible to design the loop nest optimization flow as a series ofoptimization-space pruning
steps, rather than as a series of incremental optimization steps. Building on thisidea, our work is the first
to simultaneously address the two aforementioned challenges.

Part of the reason for the failure of optimizing compilers to match the performance of hand-written
implementations can be found in the way loop nest optimizers attempt to break the global optimization
problem down to simpler sub-problems. Classical optimizers walk a single program transformation path,
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each step resulting from the resolution of a complex decision problem. We propose to modelsets of
candidate program transformations as convex polyhedra, incrementally pruning those polyhedra and de-
ferring irrevocable decisions until it is guaranteed that we will not miss an important exploration branch
leading to a much more profitable program transformation. Candidate program transformations repre-
sent arbitrarily complex sequences of loop transformations in afixed lengthfashion — that is, as a point
in a polyhedron. Polyhedron pruning involves the insertion of additional affine inequalities, embedding
semantics-preservation, transformation uniqueness, target-specific performance modeling and heuristic
simplifications. The symbolic pruning approach may at some point become intractable, for algorithmic
complexity or non-linearity reasons. Only at such a point, an irrevocable decision has to be taken: it typ-
ically takes the form of the instantiation of several coefficients of the matricesdefining the composition
of program transformations being constructed.

We present in this thesis all required blocks to achieve the design and evaluation of a scalable, au-
tomatic and portable process for program optimization, based on the polyhedral program representation.
We now summarize our main contributions.

Contributions

Convex characterization of semantics-preserving transformations

A program transformation must preserve the semantics of the program. Thepolyhedral program repre-
sentation defines it with the finest granularity: each executed instance of asyntactic statement is con-
sidered apart. One of the most powerful feature of this representation isthe ability to express a unique
convex set of all semantics-preserving transformations, as shown by Vasilache. As a starting point for
the optimization space construction, we present in Chapter 3 aconvex, polyhedral characterization of
all legal multidimensional affine schedules for a programwith bounded scheduling coefficients. Build-
ing on Feautrier and Vasilache results, we provide the optimization frameworkwith the most tractable
expression of this set known to date.

Focusing on a subset of transformations such as loop fusion and loop distribution is of critical interest
for the purpose of parallelization and memory behavior improvement. Yet extracting the convex subset
of all legal compositions of these two transformations cannot be done in a straightforward fashion from
the set of legal multidimensional schedules. We propose, for the first time, an affine encoding of all
legal multidimensional statement interleavingsfor a program in Chapter 3. To achieve the modeling
of this space, we first show the equivalence of the one-dimensional problem with the modeling of total
preorders. We then present the first affine characterization of the set of all, distinct total preorders before
generalizing to multi-dimensional interleavings. We finally present an algorithmto efficiently prune this
set of all the interleavings that do not preserve the semantics.

Iterative compilation in the space of affine schedules

Feedback-directed and iterative optimizations have become essential defenses in the fight of optimizing
compilers to stay competitive with hand-optimized code: they freshen the static information flow with
dynamic properties, adapt to complex architecture behaviors, and compensate for the inaccurate single-
shot of model-based heuristics. Whether a single application (for client-side iterative optimization) or a
reference benchmark suite (for in-house compiler tuning) is considered, the two main trends are:
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• tuning or specializing an individual heuristic, adapting the profitability or decision model of a
given transformation;

• tuning or specializing the selection and parameterization of existing (black-box) compiler phases.

This thesis takes a more offensive position in this fight. To avoid diminishing returns in tuning
individual phases or combinations of those, we collapse multiple optimization phases into a single, un-
conventional, iterative search algorithm. By construction, the search spaces we explore encompassesall
legal program transformationsin a particular class. Technically, we consider (1) the whole class of loop
nest transformations that can be modeled asone-dimensional schedules; (2) a relevant subset of the class
of transformations that can be modeled asmultidimensional schedules; and (3) the subset of allmultidi-
mensional statement interleavings, the broadest class of loop fusion and distribution combinations.

This results in a significant leap in model and search space complexity compared to state-of-the-art
applications of iterative optimization. Our approach is experimentally validated ina software platform
we have built especially for this purpose.LetSee, the Legal Transformation Space Explorator, is the first
complete platform for iterative compilation in the polyhedral model. It is integrated into the full-flavored
iterative and model-driven compiler we have built during this thesisPoCC, the Polyhedral Compiler
Collection. We present in Part II of this thesis the optimization search space construction and traversal
algorithms, as well as the associated experimental results.

Scalable techniques for polytope projection and dynamic scanning

One cornerstone of iterative program optimization in the polyhedral model isthe ability to efficiently
build and traverse search spaces represented as polyhedra. In order to reach scalability on large program
parts, it is required to move forward in two directions: provide scalable optimization algorithms, and
provide scalable techniques to traverse polyhedral sets. The Fourier-Motzkin elimination algorithm is
often thought of as not suitable for large problem solving, as its major drawback is to generate a high
number of redundant constraints during the projection steps. This problem has particularly been observed
for the task of generating a code scanning a polyhedron. We contradictthis misconception by proposing
in Chapter 4 a slightly modified version of this algorithm, which scales up to the hundreds of dimensions
of the problems considered in this thesis. We leverage Le Fur’s results to present a redundancy-less
implementation, allowing to reshape the largest convex sets in a form suitable for dynamic scanning.
Eventually we present a linear-time scanning technique which operates on the resulting polyhedron. All
these results are implemented in the free softwareFM, a library for polyhedral operations based on the
Fourier-Motzkin projection algorithm.

Performance Distribution of Affine Schedules

Although numerous previous work used the polyhedral framework to compute a program optimization,
none provided quantitative experiments about the performance distributionof the different possibilities
to transform a program. In Chapter 6 we propose to study and characterize the performance distribution
of a search space of affine schedules by means of statistical analysis ofthe results, over an extensive set
of program versions

We report the static and dynamic characteristics of a vast quantity of program versions, attempting
to capture the largest amount of information about the performance distribution of affine schedules. As
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a consequence of this study we experimentally validate asubspace partitioningbased on the relative
impact on performance of classes of coefficients. To the best of our knowledge, this is the first time such
a characterization is performed and experimentally validated.

Heuristic Traversal

We build upon the results of Chapter 6 to motivate the design of several heuristic mechanisms to traverse
the search spaces, these are presented in Chapter 7. First we present a decoupling heuristic tailored to
the exploration of one-dimensional schedules. This heuristic is able to discover the wall-clock optimal
schedule in our experiments, and is able to systematically outperform the native compiler. For instance
on MatrixMultiply the process outperforms ICC by 6× on anAMD Athlon 3700+ in less than 20 runs.
We then extend this result to the case of multidimensional schedules, and validate our approach on three
architectures, including the VLIW STMicroelectronicsST231 processor and theAMD Au1500 processor.
In average, our iterative process is able to outperform the native compiler by 13% for theST231 processor,
over the highly optimized ST200cc compiler. Performance improvements of up to37% in average are
obtained for the other evaluated single-core processors. To further improve the speed of the traversal
and reduce the number of candidates to test for, we propose a Genetic Algorithm approach. We design
the first generic operators tailored to preserve the semantics of the program while exploring a rich set of
loop transformations. To the best of our knowledge, this is the first time that genetic operators closed
under affine constraints are developed. We experimentally observed that for larger benchmarks, the GA
performs 2.46× better in average than the decoupling heuristic and up to 16× better.

Iterative selection of multidimensional statement interleavings

The selection of a profitable combination of loop transformations is a hard combinatorial problem. We
propose in Chapter 8 to explore an iterative approach that is based on theselection of multidimensional
statement interleaving, modeling generalized forms of loop fusion and distribution up to enabling affine
transformations. This subspace focuses the search on the most difficultpart of the problem: it mod-
els transformations that have a significant impact on the overall performance, isolated from enabling
transformations for which effective heuristics exist. We propose a practical optimization algorithm to ex-
plore the pruned search space polyhedron, while heuristically building a profitable, semantics-preserving
enabling transformation.

Compared to the state-of-the-art in loop fusion, we consider arbitrarily complex sequences of en-
abling transformations, in a multidimensional setting. This generalization of loop fusion is calledfus-
ability and results in a dramatic broadening of the expressiveness of the optimizer. We model candidate
statement interleavings for fusability as total preorders, and we reduce the problem of deciding the fus-
ability of statements to the existence of compatible pairwise loop permutations. Our algorithms are
applied to relevant benchmarks, demonstrating good scalability and strong performance improvements
over state-of-the-art multi-core architectures and compilers. We experimented on three high-end ma-
chines ranging from 4 to 24 cores. Our approach systematically outperforms the best auto-parallelizing
compilers Intel ICC and IBM XL, by a factor up to 15× in our experiments. Compared to the other itera-
tive search techniques presented in this thesis, this approach does not focus on single-threaded programs:
automatic and aggressive coarse-grain parallelization is achieved, thanks to a generalized and improved
version of Bondhugula’s algorithm for tiling hyperplane computation.
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Openings on machine learning assisted compilation

For the past decade, compiler designers have looked for automated techniques to improve the quality
and portability of the optimization heuristics implemented in compilers. They naturally looked towards
machine learningprocesses, mainly to improve the search speed for iterative compilation processes,
and to improve the performance of a dedicated optimization heuristic. For suchcases, the main idea
is to build automated processes to help computing a good optimization based on the result of previous
compilations. We present in Chapter 9 some critical remarks about how polyhedral compilation can be
harnessed by a machine learning oriented compiler. We describe the most critical steps and give key
observations on how to reshape the process according to the polyhedral constraints.
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Part I

Optimization Framework
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Chapter 2

Polyhedral Program Optimization

"All parts should go together without forcing. You must re-
member that the parts you are reassembling were disassem-
bled by you. Therefore, if you can’t get them together again,
there must be a reason. By all means, do not use a hammer."

– IBM Manual, 1925

2.1 Thinking in Polyhedra

Most compiler internal representations match the inductive semantics of imperative programs (syntax
tree, call tree, control-flow graph, SSA). In such reduced representations of the dynamic execution trace,
a statement of a high-level program occurs only once, even if it is executed many times (e.g., when
enclosed within a loop). Representing a program this way is not convenient for aggressive optimizations
which often need to consider a representation granularity at the level of dynamicstatement instances.
For example, complex transformations like loop interchange, fusion or tiling operate on the execution
order of statement instances [126]. Due to compilation-time constraints and to the lack of an adequate
algebraic representation of the semantics of loop nests, traditional (non-iterative) compilers are unable
to adapt the schedule of statement instances of a program to best exploit the architecture resources. For
example, compilers can typically not apply any transformation if data dependences are non-uniform
(unimodular transformations, tiling), if the loop trip counts differ (fusion) orsimply because profitability
is too unpredictable. As a simple illustration, consider theRing-Roberts edge detection filter shown in
Figure 2.1. While it is straightforward to detect a high level of data reuse between the two loop nests,
none of the compilers we considered — Open64 4.0, ICC 10.0, PathScale 3.0, GCC 4.2.0 — were
able to apply loop fusion for a potentially 50% cache miss reduction when arrays do not fit in the data
cache (plus additional scalar promotion and instruction-level-parallelism improvements). Indeed, this
apparently simple transformation actually requires a non-trivial composition of (two-dimensional) loop
shifting, fusion and peeling.

To build complex loop transformations, an alternative is to represent programs in thepolyhedral
model. It is a flexible and expressive representation for loop nests with staticallypredictable control
flow. The polyhedral model captures control-flow and data-flow with three linear algebraic structures,
described in the following sections. Such loop nests amenable to algebraic representation are called
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static control parts(SCoP) [39, 51].

Polyhedral program optimization is a three stage process. First, the program is analyzed to extract
its polyhedral representation, including dependence information and access pattern. This is the subject
of Section 2.2. Following Section 2.3 and Section 2.4 present the second stepof polyhedral program op-
timization, which is to pick a transformation for the program. Such a transformation captures in a single
step what may typically correspond to a sequence of several tens of textbook loop transformations [51].
It takes the form of a carefully crafted affine schedule, together with (optional) iteration domain or array
subscript transformations. Finally, syntactic code is generated back from the polyhedral representation
on which the optimization has been applied, as discussed in Section 2.5.

/* Ring blur filter */
for (i=1;i<lg-1;i++)

for (j=1;j<wt-1;j++)
R Ring[i][j]=(Img[i-1][j-1]+Img[i-1][j]+Img[i-1][j+1]+

Img[i][j+1] + Img[i][j-1] +
Img[i+1][j-1]+Img[i+1][j]+Img[i+1][j+1])/8;

/* Roberts edge detection filter */
for (i=1;i<lg-2;i++)

for (j=2;j<wt-1;j++)
P Img[i][j]=abs(Ring[i][j]-Ring[i+1][j-1])+

abs(Ring[i+1][j]-Ring[i][j-1]);

Figure 2.1:Ring-Roberts edge detection for noisy images

2.2 Polyhedral Program Representation

The polyhedral model takes its origin in the work of Karp, Miller and Winograd for the automatic map-
ping of systems of uniform recurrence equations [62]. Later work motivated by systolic arrays general-
ized to systems of linear and affine recurrence equations [97, 129], along with the connection to standard
imperative programs [39, 41]. Although more recent work tries to unleashthe power of polyhedral
optimization by broadening the applicability of the techniques [56, 17], we stickin this section to the
presentation of a more “standard” polyhedral framework operating on static control parts. In the follow-
ing we first recall some of the key concepts of polyhedral theory, before defining the elements used to
represent a program into the polyhedral framework.

2.2.1 Mathematical Background Snapshot

Polyhedral optimization is a vast research topic, and providing an extensive background on the subject is
clearly out of the scope of this thesis. Instead, we will recall on a need-to-know basis the key definitions
and results of polyhedral theory, and refer the reader to a more extensive description from other works.

As a starting point of polyhedral optimization, we define the concept of affine functions and polyhe-
dron, the two fundamental bricks of program representation in the polyhedral model.

Definition 2.1 (Affine function) A function f : Km→ Kn is affine if there exists a vector~b∈ Kn and a
matrix A∈Km×n such that:

∀~x∈Km, f (~x) = A~x+~b
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Definition 2.2 (Affine hyperplane) An affine hyperplane is an m−1 dimensional affine sub-space of an
m dimensional space.

Definition 2.3 (Polyhedron) A setP ∈Km is a polyhedron if there exists a system of a finite number of
inequalities A~x≤~b such that:

P = {~x∈Km | A~x≤~b}

Definition 2.4 (Parametric polyhedron) Given~n the vector of symbolic parameters,P is a parametric
polyhedron if it is defined by:

P = {~x∈Km | A~x≤ B~n+~b}

Definition 2.5 (Polytope) A polytope is a bounded polyhedron.

The reader may refer to Schrijver’s work [101] for an extensive description of polyhedral theory, and
is encouraged to navigate through Feautrier’s pioneering work about efficient solutions for automatic
parallelization of static-control programs [41, 42].

2.2.2 Static Control Parts

The polyhedral representation models a widely used subclass of programs calledStatic Control Parts
(SCoP). A SCoP is a maximal set of consecutive instructions such that:

• the only allowed control structures are thefor loops and theif conditionals,

• loop bounds and conditionals are affine functions of the surrounding loop iterators and the global
parameters.

It is worth noting that many scientific codes respect the SCoP and static reference conditions, at least
on hot spots of the code. A survey of Girbal et al. highlights the high proportion of SCoP in these codes
[51]. An empirical well-known observation is that 80% of the processor timeis spent on less than 20%
of the code, yielding the need to aggressively optimize these code segments.These segments are most of
the time in loop nests, and we refer to them askernels. The polyhedral model was first aimed at modeling
these kernels (under the SCoP and static reference conditions), and to be able to perform transformations
(meaning changing the execution order but keep the output order) on these kernels.

At first glance the definition of a SCoP may seem restrictive, but many programs which does not
respect those conditions directly can thus be expressed as SCoPs. A pre-processing stage (typically
inside a compiler architecture) can ease the automatic raising of SCoPs.

Pre-processing for SCoPs Constant propagationis the process of substituting a symbolic constant by
its value. As the affine condition forbids to multiply a parameter with for instance an iterator, one can
resort to substituting the constant parameter by its value as shown in Figure 2.2. We assume that con-
stant folding (the process of statically compute the value of a constant fromits arithmetic expression) is
systematically performed. Let us mention that constant propagation should not be performed in a sys-
tematic fashion, only when it enables SCoP formation. This observation takesplace in the mathematical
complexity of the algorithms used in polyhedral compilation: scalar loop bounds may translate into very



22 2. POLYHEDRAL PROGRAM OPTIMIZATION

large coefficients during system resolution, significantly exceeding the standard Integer representation.
One has then to resort to large number arithmetic libraries such as GMP, that may significantly increase
the compilation time.

n = 10 * 2;
for (i = 1; i < M; ++i)

for (j = n * i; j < n * M; ++j)
A[i][j] = n * x;

for (i = 1; i < M; ++i)
for (j = 20 * i; j < 20 * M; ++j)
A[i][j] = 20 * x;

Original Program Polyhedral-friendly Equivalent Program

Figure 2.2: Constant Propagation

Loop normalizationis also very useful when considering non-unit loop stride. Although other frame-
works such as theZ -polyhedral model directly supports such loop strides [57] by relying onInteger
Lattices to represent programs, a simple loop normalization step can enable therepresentation of such
programs as shown in Figure 2.3. We also perform another loop normalization step, to make loops
0-normalizedas non-negative iteration spaces simplify the design of optimization algorithms.

for (i = 1; i < M; ++i)
for (j = i; j < N; j += 2)
A[i][j] = i * j;

for (i = 0; i < M - 1; ++i)
for (j = i; j < (N+1) / 2; ++j)
A[i+1][2*j] = (i+1) * 2*j;

Original Program Polyhedral-friendly Equivalent Program

Figure 2.3: Loop Normalization

Another pre-processing stage isWHILE-loop DO-loop conversion, which can be associated with
induction variable detection [4]. Figure 2.4 gives an example of such a conversion, which is implemented
in the GRAPHITE framework.

i = 1;
while (i < M) {

A[i] = 0;
i = i + 1;

}

for (i = 1; i < M; ++i)
A[i] = 0;

Original Program Polyhedral-friendly Equivalent Program

Figure 2.4: WHILE-loop DO-loop conversion

Finally, let us mentioninduction variable substitution[4] which has proved to be very useful to
normalize access patterns in an affine form. An example is shown in Figure 2.5.

Several other pre-processing stages can enable the formation of SCoPs. Let us mentioninlin-
ing, goto/break removal, pointer substitutionamong many others. The reader may refer to Allen and
Kennedy’s work for details on them [4].

Static representation of non-static control flow Recent work led by Mohamed-Walid Benabderrah-
mane have shown that the limitation to static control-flow is mainly artificial [17]. Onecan resort to
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ind = 0;
for (i = 1; i< 100; ++i) {

for (j = 1; j < 100; ++j) {
ind = ind + 2;
a[ind] = A[ind] + b[j];

}
c[i] = a[ind];

}

for (i = 1; i< 100; ++i) {
for (j = 1; j < 100; ++j)
a[200*i+2*j-200] = a[200*i+2*j-200] + b[j];

c[i] = a[200 * i];
}

Original Program Polyhedral-friendly Equivalent Program

Figure 2.5: Induction Variable Substitution

converting control-flow dependences into data dependences, togetherwith conservative affine approxi-
mations of the iteration spaces to model almost any program with a polyhedral representation. While
we do not explicitly leverage this extended representation in this thesis,all techniques described in this
manuscript are fully compatible with it. In other words, a polyhedral representation can be extracted
from arbitrary programs and the optimization techniques presented in this thesis applied seamlessly on
those programs.

A complete description of static control parts was given by Xue [128] and their applicability to
compute intensive, scientific or embedded applications have been extensively discussed by Girbal et al.
and Palkovǐc [51, 89]. Frameworks to highlight SCoPs in general programs and to extract both iteration
domains and subscript functions already exist or are in active development in compiler platforms like
WRAP-IT/URUK for Open64 [51], Graphite for GCC [90], IBM XL/C compiler, the ROSE Compiler,
R-Stream from Reservoir Labs, and in the prototype compilers PoCC and Loopo.

2.2.3 Statements

A polyhedral statementis the atomic block for polyhedral representation. To each statement is associ-
ated an iteration domain, a set of access functions and a schedule, as detailed in the following. Note that
a disconnection may exist between a statement in the input source code and astatement in the polyhe-
dral representation. Several passes of the compiler that occur before polyhedral extraction, such as for
instance inlining and SSA conversion, may change the internal program representation.

We formally define a polyhedral statement as follows.

Definition 2.6 (Polyhedral statement)A polyhedral statement is a program instruction that is:

• not anif conditional statement with an affine condition

• not afor loop statement with affine loop bounds

• having only affine subscript expressions for array accesses

• not generating control-flow side effects

As a concrete example, consider the program of Figure 2.6. StatementT contains a data-dependent
conditional, but can still be modeled in the representation by considering it asa single statement: no
side-effect do exist with other statements. Similarly for statementU : the function callsqrt does not
have any side-effect on data and control flows.
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for (i = 0; i < N; i++)
for (j = 0; j < N; j++) {

R A[i][j] = A[i][j] + u1[i]*v1[j]
if (N - i > 2)

S A[i][j] -= 2;
}

T res = A[0][0] == 0 ? u1[i] : v1[j];
U dres = sqrt(res);

Figure 2.6: A Complex Program Example

Several techniques can be used to increase or decrease the number ofpolyhedral statements in the
representation. Single assignment and three-address code conversion typically increase the freedom to
schedule each instruction, by assigning to each of them a different schedule. Nevertheless, due to the
complexity of the mathematical operations, one typically wishes to reduce the number of polyhedral
statements. Macro-block formation is a simple process increasing the scalabilityof the optimization
algorithms, in particular when starting from a three-address code. Yet thedesign of an efficient and
systematic block formation heuristic, that correctly balances the schedule freedom (e.g., parallelism
opportunities) versus the reduction of the number of statements, has still to bedevised and is left as a
future work of this thesis.

2.2.4 Iteration Domains

Iteration domains capture the dynamic instances of all statements — all possible values of surrounding
loop iterators — through a set of affine inequalities. For example, statementR in Figure 2.1 is executed
for every value of the pair of surrounding loop counters, called theiteration vector: the iteration vector
of statementR is ~xR = (i, j). Hence, the iteration domain ofR is defined by its enclosing loop bounds:

DR = {i, j | 1≤ i ≤ lg−1∧1≤ j ≤ wt−1}

which forms a polyhedron (a space bounded by inequalities, a.k.a.hyperplanesor faces). To model
iteration domains whose size are known only symbolically at compile-time, we resort to parametric
polyhedra. Program constants which are unknown at compile-time are named global parametersand the
parameters vector is noted~n. For instance for theRing-Roberts examplelg andwt are global parameters
andDR is a parametric form of~n=

(

lg wt
)

.

Each integral point inside this polyhedron corresponds to exactly one execution of statementR, and
its coordinates inDR matches the values of the loop iterators at the execution of this instance. This model
let the compiler manipulate statement execution and iteration ordering at the most precise level.

In the remainder of this thesis, we use matrix form in homogeneous coordinates to express polyhedra.
For instance, for the iteration domain ofR is written:
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2.2.5 Access Functions

Access functionscapture the data locations on which a statement operates. In static control parts, memory
accesses are performed through array references (a variable being a particular case of an array). We
restrict ourselves to subscripts of the form of affine expressions which may depend on surrounding loop
counters (e.g.,i and j for statementR) and global parameters (e.g., lg and wt in Figure 2.1). Each
subscript function is linked to an array that represents a read or a write access. For instance, the subscript
function for the read referenceImg[i-1][j] of statementR is simplyImg[ f (~xR)] with:

f (i, j) =

(

1 0 −1
0 1 0

)

.





i
j
1



= (i−1, j)

Other kinds of array references (that is, non-affine ones) have to be modeled conservatively by their
affine hull. Pointer arithmetic is forbidden — except when translated by a former restructuring pass to
array-based references [45] — and function calls have to be either inlined or checked for the lack of
side-effect.

2.2.6 Schedules

Iteration domains define exactly the set of dynamic instances for each statement. However, this algebraic
structure does not describe the order in which each instance has to be executed with respect to other
instances. Of course, we do not want to rely on the inductive semantics ofthe sequence and loop iteration
for this purpose, as it would break the algebraic reasoning about loop nests.

A convenient way to express the execution order is to give each instancean execution date. It is
obviously impractical to define all of them one by one since the number of instances may be either very
large or unknown at compile time. An appropriate solution is to define, for each statement, ascheduling
function that specifies the execution date for each instance of a corresponding statement. For tractability
reasons, we restrict these functions to be affine (relaxation of this constraint may exist [8], but challenges
the code generation step [10]).

A schedule is a function which associates a logical execution date (a timestamp)to each execution of
a given statement. In the target program, statement instances will be executed according to the increasing
order of these execution dates. Two instances (possibly associated with distinct statements) with the same
timestamp can be run in parallel. This date can be either a scalar (we will talk about one-dimensional
schedules), or a vector (multidimensional schedules).

Definition 2.7 (Affine schedule)Given a statement S, a p-dimensional affine scheduleΘR is an affine
form on the outer loop iterators~xS and the global parameters~n. It is written:

ΘS(~xS) = TS





~xS

~n
1



 , TS∈Kp×dim(~xS)+dim(~n)+1

Early work often required the affine schedule to be unimodular or at leastinvertible [6, 78, 98],
mainly due to code generation limitations [10]. Other work such as Feautrier’shave used non-negative
scheduling coefficients in order to design minimization functions on the schedule latency [41]. Others
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let the schedule be rational, for instance to model resource constraints. In this thesis we do not impose
any constraint on the form of the schedule, as we use the CLooG code generator which does not require
special properties on the schedule [10]. In general, we use in this thesisK=Z unless explicitly specified
otherwise.

Multidimensional dates can be seen as clocks: the first dimension corresponds to days (most signifi-
cant), next one is hours (less significant), the third to minutes, and so on. As said, a schedule associates
a timestamp to each executed instance. As an illustration, let us consider the following schedules for the
Ring-Roberts example:

ΘR(~xR) =

(

1 0 0 0 0
0 1 0 0 0

)

.
(

i j lg wt 1
)T

= (i, j)

ΘS(~xS) =

(

1 0 1 0 0
0 1 0 0 0

)

.
(

i j lg wt 1
)T

= (i+ lg, j)

As Θ functions are 2-dimensional, timestamps are vectors of dimension 2. One can now compute the
timestamp associated with each point of the iteration domain as specified byΘR : DR→ Z2

(1,1)R → (1,1)

(1,2)R → (1,2)
...

...

(lg−2,wt−2)R → (lg−2,wt−2)

Similarly for SandΘS : DS→ Z2

(1,1)S → (1+ lg,1)

(1,2)S → (1+ lg,2)
...

...

(lg−3,wt−2)S → (2× lg−3,wt−2)

The schedule of statementR orders its instances according toi first and thenj. This matches the
structure of the loops of Figure 2.1. This is similar for statementP, except for the offset on the first
time-dimension which states that the first nest runs before the second one:while the largest value of the
first time-dimension forR is lg−2, the smallest value of the first dimension ofP is lg−1. Hence the
loop surroundingP “starts” after the loop surroundingR.

More formally, in the target program the execution order of the instances isthe given by thelexico-
graphic orderingon the set of associated timestamps. That is, for a given pair of instances〈~xR,~xS〉,~xR is
executed before~xS if and only if:

ΘR(~xR)≺ΘS(~xS)

where≺ denotes the lexicographic ordering. We recall that(a1, . . . ,an)≺ (b1, . . . ,bm) iff there exists an
integer 1≤ i ≤min(n,m) s.t.(a1, . . . ,ai−1) = (b1, . . . ,bi−1) andai < bi .

Returning to the example, as we have:

∀~xR∈ DR, ∀~xS∈ DS, ΘR(~xR)≺ΘR(~xR)

then all instances ofRare executed before any instance ofS, as in the original code.
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2.3 Polyhedral Program Transformations

A transformation in the polyhedral model is represented as a set of affineschedules, one for each polyhe-
dral statements, together with optional modification of the polyhedral representation. We can distinguish
two families of transformations. (1)Schedule-onlytransformations operates only on the schedule of
instructions, without changing the iteration domains and the number of statementsin the polyhedral rep-
resentation. These are described in this section, and the operation research algorithms presented in this
thesis operates explicitly only on such transformations. (2)Schedule and representationtransformations
require to alter the polyhedral representation to be performed. Two of most well-known transformations
falling into that category are loop tiling and loop unrolling [51]. For such transformations, we rely on
enablingtheir application by computing a schedule with some dedicated properties (e.g., permutability),
while delegating to an external process their actual application, typically right before code generation.

2.3.1 One-Dimensional Schedules

A one-dimensionalschedule expresses the program as a singlesequentialloop, possibly enclosing one
or moreparallel loops. Affine schedules have been extensively used to design systolic arrays [97] and in
automatic parallelization programs [41, 35, 54], then have seen many other applications.

Given a statementS, a one-dimensional affine schedule is an affine form on the outer loop iterators
~xS and the global parameters~n whereTS is a constantrow matrix. Such a representation is much more
expressive than sequences of primitive transformations, since a single one-dimensional schedule may
represent a potentially intricate and long sequence of any of the transformations shown in Figure 2.7. All
these transformations can be represented as a partial order in the spaceof all instances for all statements,
and such orderings may be expressed with one-dimensional scheduling functions [123].

Transformation Description
reversal Changes the direction in which a loop traverses its iteration range
skewing Makes the bounds of a given loop depend on an outer loop counter

interchange Exchanges two loops in a perfectly nested loop, a.k.a.permutation
peeling Extracts one iteration of a given loop
shifting Reorder loops
fusion Fuses two loops, a.k.a.jamming

distribution Splits a single loop nest into many, a.k.a.fission or splitting

Figure 2.7: Possible Transformations Embedded in a One-Dimensional Schedule

For a concrete intuition of one-dimensional schedule, consider thematMult example in Figure 2.8.
The schedulesΘR(~xR) = (i) andΘS(~xS) = (k+N) consist in a composition of (1) distribution of the
two statements, and (2) interchange of loopsk and i for the second statements. Note that as we use
one-dimensional schedules, only the execution order of the outer-most timedimension is specified: the
remaining dimensions that are required to scan the original domain can be executed in any order, includ-
ing in parallel. As many programs do not contain such an amount of parallelism,for those programs a
one-dimensional schedule cannot describe a correct execution order.
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Original Code:

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j) {

R C[i][j] = 0;
for (k = 0; k < N; ++k)

S C[i][j] += A[i][k] * B[k][j];
}

Transformation:

ΘR(~xR) =
(

1 0 0 0 0
)

.
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Output Code:

for (i = 0; i < N; ++i)
parfor (j = 0; j < N; ++j)

R C[i][j] = 0;
for (k = N; k < 2 * N; ++i)

parfor (i = 0; i < N; ++i)
parfor (j = 0; j < N; ++j)

S C[i][j] += A[i][k - N] * B[k - N][j];

Figure 2.8:matMult kernel

2.3.2 Multidimensional Schedules

A multidimensional schedule expresses the program as one or more nested sequential loops, possibly
enclosing one or more parallel loops. Given a statementS, a multidimensional schedule is also an affine
form on the outer loop iterators~xS and the global parameters~n with the notable difference thatTS is a
matrix of constants.

Existence and decidability results on multidimensional schedules have been proved mostly by Feautrier
[41, 42]. We recall that, unlike with one-dimensional affine schedules,every static control program has
a multidimensional affine schedule[42]. Hence the application domain extends toall static control parts
in general programs.

Multidimensional affine schedules support arbitrary complex compositions of a wide range of pro-
gram transformations. Moreover, the expressiveness is significantly increased compared to one-dimensional
schedule. Considering the transformations reported in Figure 2.7, multidimensional schedules represent
any composition of those. As an example, one can specify loop interchange on the whole loop depth,
enabling the representation of the order(i,k, j) for the loops of theMatMult program, as shown in Fig-
ure 2.9.

This increased expressiveness translates into the fact thatany loop transformation can be represented
in the polyhedral representation[126].

Several frameworks have been designed to facilitate the expression of such transformations [42, 63],
or to enable their composition and semi-automatic construction [51, 114, 77]. As illustration, a trivial
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for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)

R C[i][j] = 0;
for (i = 0; i < N; ++i)

for (k = 0; k < N; ++k)
for (j = 0; j < N; ++j)

S C[i][j] += A[i][k] * B[k][j];

Figure 2.9:MatMult kernel withΘR = (0, i, j) andΘS= (1, i,k, j)

loop fusion is not possible to improve data locality on theRing-Roberts kernel in Figure 2.1. Because
of both data dependences and non-matching loop bounds, only a partial loop fusion is possible, which
translates into a sequence of, e.g.,fusion, shifting and index-set splitting[126]. Using multidimen-
sional schedules, a correct transformation (found usingchunking[13]) is simply: θR(i, j) = (i, j) and
θP(i, j) = (i +2, j). The corresponding target code is the result of a quite complex compositionof syn-
tactic transformations, as shown in Figure 2.10.

if (wt == 2) {
for (i=1; i < lg-1; i++) {

R Ring[i][1]=(Img[i-1][0]+Img[i-1][1]+Img[i-1][2]+
Img[i][2] + Img[i][0] +
Img[i+1][0]+Img[i+1][1]+Img[i+1][2])/8;

}
}
if (wt >= 3) {

for (i=1; i < min(lg-1,2); i++) {
for (j=1; j < wt-1; j++) {

R Ring[i][j]=(Img[i-1][j-1]+Img[i-1][j]+Img[i-1][j+1]+
Img[i][j+1] + Img[i][j-1] +
Img[i+1][j-1]+Img[i+1][j]+Img[i+1][j+1])/8;

}
}
for (i=1; i < lg-1; i++) {

R Ring[i][1]=(Img[i-1][0]+Img[i-1][1]+Img[i-1][2]+
Img[i][2] + Img[i][0] +
Img[i+1][0]+Img[i+1][1]+Img[i+1][2])/8;

for (j=1; j < wt-1; j++) {
P Img[i-2][j]=abs(Ring[i-2][j]-Ring[i-1][j-1])+

abs(Ring[i-1][j]-Ring[i-2][j-1]);
R Ring[i][j]=(Img[i-1][j-1]+Img[i-1][j]+Img[i-1][j+1]+

Img[i][j+1] + Img[i][j-1] +
Img[i+1][j-1]+Img[i+1][j]+Img[i+1][j+1])/8;

}
}

if ((wt >= 3) && (lg >= 3)) {
for (j=1; j < wt-1; j++) {

P Img[lg-2][j]=abs(Ring[lg-2][j]-Ring[lg-1][j-1])+
abs(Ring[lg-1][j]-Ring[lg-2][j-1]);

}
}

Figure 2.10: Optimized Version ofRing-Roberts

2.4 Program Semantics Extraction

A central concept of program optimization is to preserve the semantics of theoriginal program through
the optimization steps. Obviously not all transformations, and hence not all affine schedules, do system-
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atically preserve the semantics, for all programs. To compute alegal transformation we resort to first
extracting thedata dependencesshaped in a polyhedral representation before constraining the schedules
to respect the computed dependences.

2.4.1 Data Dependence Representation

Two statements instances are independence relationif they access the same memory cell and at least
one of these accesses is a write operation. For a program transformationto be correct, it is necessary to
preserve the original execution order of such statement instances and thus to know precisely the instance
pairs in dependence relation. In the algebraic program representation depicted earlier, it is possible to
characterize exactly the set of instances in dependence relation in a verysynthetic way.

Three conditions have to be satisfied to state that a statement instance~xR depends on a statement
instance~xS. (1) They must refer the same memory cell, which can be expressed by equating the subscript
functions of a pair of references to the same array. (2) They must be actually executed, i.e.~xS and~xR have
to belong to their corresponding iteration domains. (3)~xS is executed before~xR in the original program.

Each of these three conditions may be expressed using affine inequalities.The consequence is that
exact sets of instances in dependence relation can be represented using affine inequality systems. The
exact matrix construction of the affine constraints of the dependence polyhedron used in this thesis was
formalized by Feautrier [39], and more specifically we use its description asgiven by Bastoul [11, 14].

for (i = 0; i <= n; i++) {
R s[i] = 0;

for (j = 0; j <= n; j++)
S s[i] = s[i] + a[i][j] * x[j];

}

Figure 2.11:MatVect kernel

For instance, if we consider thematvect kernel in Figure 2.11, dependence analysis gives two de-
pendence relations: instances of statementS depending on instances of statementR (e.g.,R produces
values used byS), R→ S, and similarly,S→ S.

Dependence relationR→ S does not mean that all instances ofR andS are in dependence (for all
values of~xR and~xS); in fact, there is only a dependence ifiR = iS. We can then define adependence
polyhedron, being a subset of the Cartesian product of the iteration domains, containing all the values of
iR, iS and jS for which the dependence exists. We can write this polyhedron in matrix representation (the
first line represents the equalityiR = iS, the two next ones the constraint that(iR) have to belong to the
iteration domain ofR and similarly, the four last lines states that(iS, jS) belongs to the iteration domain
of S):
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To capture all program dependences we build a set of dependence polyhedra, one for each pair of
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array references accessing the same array cell (scalars being a particular case of array), thus possibly
building several dependence polyhedra per pair of statements. Thepolyhedral dependence graphis a
multi-graph with one node per statement, and an edgeeR→S is labeled with a dependence polyhedron
DR,S, for all dependence polyhedra.

2.4.2 Building Legal Transformations

For a program transformation to respect the program semantics, it has to ensure that the execution order
of instances will respect the precedence condition, for each pairs of instances in dependence. So for a
program schedule to be legal, the following must hold.

Definition 2.8 (Precedence condition)Given two statements R and S, and dependence polyhedraDR,S.
ΘR andΘS preserve the program semantics if:

∀DR,S,∀〈~xR,~xS〉 ∈ DR,S,

ΘR(~xR)≺ΘS(~xS)

Checking if a transformation is legal can be done very efficiently. One simplyhas to check that
the precedence condition is respected, for all dependences [11]. InChapter 3 we discuss a technique to
linearize the constraints imposed by the dependence polyhedra into a convex form. Using this technique,
one can check for each dimension of the schedule (that is, for each rowof Θ) if the precedence condition
is enforced or not, thus determining the legality of the schedule.

Building legal schedules only While it is easy to checka posteriori if a transformation preserve the
program semantics, we aim at providing techniques and tools to encompass directly into the space of
candidate solutions the legality criterion. Chapter 3 presents a convex characterization of all (bounded)
affine schedules preserving the program semantics. Chapter 5 and following go further and propose
tractable solutions to efficiently build search spaces of affine schedules that preserve the semantics.

A posteriori schedule corrections Another approach to build legal schedules, beyond encompassing
the legality criterion directly into the space, is to fix a posteriori a schedule to make it legal. Vasilache
proposed an efficient framework for automatic correction of schedulesby shifting and index-set splitting
[114], by means of the analysis of violated dependences [113]. We alsopropose such mechanisms
in Chapter 7 and significantly improve the correction applicability, by offeringa schedule completion
heuristicthat can fix any schedule to lie in the constructed search space.

2.5 Code Generation

Code generation is the last step of polyhedral program optimization. It consists of regenerating a syntactic
code from the polyhedral representation.

The code generation stage generates ascanning codeof the iteration domains of each statement with
the lexicographic order imposed by the schedule. Statement instances that share the same timestamp
are typically executed under the same loop, resulting in loop fusion. Scanning code is typically an
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intermediate, AST-based representation that can be translated in an imperative language such as C or
FORTRAN. Logically, one can translate back this syntactic code to a polyhedral representation enabling
re-entrance[111]. In doing so, several advantages such as code generation optimizations based on the
generated output quality can be performed. One can for instance successively refine the schedule until
some criteria on the generated code quality are met, e.g. code size or controlcomplexity.

Modern code generation For many years this stage was considered as one of the major bottleneck
of polyhedral optimization, due to the lack of scalability of the code generationalgorithms. Eventually
the lock was removed, thanks to the work of Bastoul [10, 11] who proposed an extended version of
Quilleré’s algorithm [96] that significantly outperformed previously implemented techniques such as
Kelly’s et al. in the Omega framework [65] or Griebl’s in the Loopo framework [55]. Efficient algorithms
and tools now exist to generate target code from a polyhedral representation with multidimensional
affine schedules. Recent work by Vasilache et al. [112, 111] and byReservoir Labs [77] improved these
algorithms to scale up to thousands of statements. All along this thesis, we use thestate-of-the art code
generator CLOOG [10] to perform the code generation task.

The only constraints imposed by the code generator are (1) to representiteration domains with a
union of polyhedra, and (2) to represent scheduling functions as affine functions of the iteration domain
dimensions. This general setting removes previous limitations such as schedule invertibility [6]. Still,
more advanced code generation techniques are the subject of active research in particular in the context
of the iteration space slicing approach for automatic parallelization [93, 15, 16]. While these techniques
enable non-affine scheduling functions, we limit in this thesis to multidimensional affine scheduling
functions.

Relation between the schedule and the syntactic codeAn interesting property of code generation
is thatdifferent scheduling functions will generate different syntactic codes. This is counter-intuitive as
some schedules may express the same relative ordering of instances, hence the scanning code should be
the same. However, the genuine code generation algorithm of CLooG translates, without modification,
the schedule coefficients into controls in the syntactic code. Considering for instance a shifting of 1
on all loops, a+1 coefficient will appear in each loop bound computation, despite expressing the exact
same relative ordering of instance. Numerous previous works have triedto remove this property —
considered more as an unwanted side effect — mostly through schedule normalization techniques [112].
Their objective was to provide the code generator with an equivalent butsimpler schedule generating the
simplest controls. On the other hand, in the context of iterative search of agood scheduling function, we
want to keep having different syntactic codes for different schedules. The reason is twofold.

• As we will show in Chapter 6, each schedule coefficient may have an impacton performance.
We observed that current implementations of some compiler optimizations are fragile, and may be
triggered by almost unpredictable syntactic changes in the input code.

• As the uniqueness of a candidate is defined as generating a different syntactic code, it is equiv-
alently defined as generating scheduling functions with different coefficients. This simplifies the
encoding of uniqueness in the search space.

We discuss in Chapter 6 the tight coupling between the code produced by thecode generator, and the
back-end compiler in the context of our source-to-source framework.In several situations the generated
codes have a weird shape, and would seem inaccurate at first glance toa compiler specialist. Yet, solid
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performance improvement are achieved. This comes from the conjunction of the schedule, the code
generator and the back-end compiler. The code generator applies a first optimization phase (mainly
removing useless controls), which is embedded in the code generation algorithm [10, 112]. Then, the
back-end compiler applies its own optimization phases, yielding a complex and multiple transformation
process for the schedule. This led us to observe that potentially ineffective code (that is, with too much
complex controls) produced by the code generator are able to trigger optimizations in the compiler the
original code would not.

2.6 Summary

Program restructuring traditionally is broken into sequences of primitive transformations. In the case of
loops, typical primitives are for instance loopfusion, loop tiling, or loopinterchange. This approach has
severe drawbacks. First, it is difficult to decide the completeness of a setof directives and to understand
their interactions. Many different sequences lead to the same target codeand it is typically impossible to
build an exhaustive set of candidate transformed programs in this way. Next, each basic transformation
comes with its own application criteria such as legality check or pattern-matching rules. Finally, long se-
quences of transformations contribute to code size explosion, polluting instruction cache and potentially
forbidding further compiler optimizations.

Instead of reasoning on transformation sequences, we look for a representation where composition
laws have a simple structure, with at least the same expressiveness as classical transformations, but with-
out conversions to or from transformation descriptions based on sequences of primitives. To achieve
this goal, we use an algebraic representation of both programs and transformations. This is thepoly-
hedral representation. We use the least constrained framework for polyhedral optimization, with non-
unimodular, non-invertible scheduling functions to transform non-perfectly nested programs.

Reasoning about programs in such a polyhedral representation has many advantages, for both pro-
gram analysis and transformation:

1. instancewise dependence analysis is possible [40, 92];

2. there exists efficient algorithms and tools to regenerate imperative code [96, 10];

3. loop transformation sequences of arbitrary complexity can be constructed and transparently ap-
plied in one single step;

4. properties on the transformations, such as semantics preservation, can be modeled as constraints
on affine functions [42].
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Chapter 3

Semantics-Preserving Full Optimization
Spaces

"Mathematics is concerned only with the enumeration and
comparison of relations"

– Carl Friedrich Gauss

High-level loop transformations are the main instrument to map a computational kernel to efficiently
exploit resources of modern processor architectures. Nevertheless, selecting compositions of loop trans-
formations remains a challenging task. We propose in this thesis to address thisfundamental challenge
in its most general setting, relying on affine loop transformations in the polyhedral model.

As a first step we present the optimizer with a convex characterization of alldistinct, legal affine
transformations. We first introduce in Section 3.1 a convex characterization of all, distinct semantics-
preserving affine multidimensional schedules with bounded coefficients. All combination of transfor-
mations — which does not require to modify the polyhedral representation — iscontained in a single,
convex space. This is to date the most expressive modeling of composition oftransformations into one
convex space.

We then present in Section 3.2 an affine characterization of all, distinct andsemantics-preserving
statement interleavings, modeling arbitrary compositions of loop fusion and distribution.

3.1 Semantics-Preserving Affine Transformations

We consider in this thesis program transformations that alter the ordering ofstatement instances. A pro-
gram transformation must preserve the semantics of the program. As a starting point for optimization
space pruning, we build aconvex, polyhedral characterization of all legal multidimensional affine sched-
ulesfor a static control program, with bounded schedule coefficients. Such acharacterization is essential
to devise optimization problems in the form of (integer) linear programs, which can be efficiently solved.
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3.1.1 Program Dependences

We recall that two statements instances are independence relationif they access the same memory cell
and at least one of these accesses is a write. Given two statementsR andS, a dependence polyhedron
DR,S is a subset of the Cartesian product ofDR andDS: DR,S contains all pairs of instances〈~xR,~xS〉 such
that~xS depends on~xR, for a given array reference. Hence, for an optimization to preservethe program
semantics, it must ensure that

ΘR(~xR)≺ΘS(~xS),

where≺ denotes the lexicographic ordering.

Let us consider again thematvect kernel in Figure 3.1, with two dependencesR→ S1 andS→ S2.

for (i = 0; i <= n; i++) {
R s[i] = 0;

for (j = 0; j <= n; j++)
S s[i] = s[i] + a[i][j] * x[j];

}

Figure 3.1:MatVect kernel

For instance, dependence relationR→ S1 is written:
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This dependence polyhedron will serve as the running example for the next section.

3.1.2 Convex Set of One-Dimensional Schedules

ConsideringΘR andΘS two one-dimensional scheduling functions, in order to respect the dependence
DR,S the schedules have to satisfy the precedence condition

θR(~xR)< θS(~xS)

for each point ofDR,S. So one can state that

∆R,S= θS(~xS)−θR(~xR)−1

must be non-negative everywhere inDR,S.

The schedule constraints imposed by the precedence constraint can be expressed as finding all non-
negative functions over the dependence polyhedra [41]. It is possible to express the set of affine, non-
negative functions overDR,S in an affine way using the affine form of the Farkas lemma [101].
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Lemma 3.1 (Affine form of Farkas Lemma) LetD be a nonempty polyhedron defined by the inequal-
ities A~x + ~b ≥ ~0. Then any affine function f(~x) is non-negative everywhere inD iff it is a positive
affine combination:

f (~x) = λ0+~λT(A~x+~b), with λ0≥ 0 and~λT ≥~0.

λ0 and~λT are called Farkas multipliers.

Since we can express the set of affine non-negative functions overDR,S, the set of legal schedules satis-
fying the dependenceR→ S is given by the relation

∆R,S= λ0+~λT
(

DR,S

(

~xR

~xS

)

+ ~dR,S

)

≥ 0

whereDR,S is the constraint matrix representing the polyhedronDR,S over~xR and~xS, and~dR,S is the scalar
part of these constraints.

Let us go back to thematvect example in Figure 3.1. The two prototype affine one-dimensional
schedules forR andSare:

θR(~xR) = t1R.iR+ t2R.n+ t3R.1

θS(~xS) = t1S.iS+ t2S. jS+ t3S.n+ t4S.1

Using the previously defined dependence representation, we can split the system into as many in-
equalities as there are independent variables, and equate the coefficients in both sides of the equation.
For the dependenceD 1

R,S we have























iR : −t1R = λ1+λ2−λ3

iS : t1S = −λ1+λ4−λ5

jS : t2S = λ6−λ7

n : t3S− t2R = λ3+λ5+λ7

1 : t4S− t3R−1 = λ0

whereλx is the Farkas multiplier attached to thexth line of DR,S.

This system expresses all the constraints a schedule has to respect according to the dependenceD 1
R,S.

In order to get a tractable set of constraints on the schedule coefficients, we need to eliminate the Farkas
multipliers and project their constraints on the schedule coefficients [41], with for example the Fourier-
Motzkin projection algorithm [43]. If there is no solution, then no affine one-dimensional schedule is
possible for this dependence, and we have to resort to multidimensional schedules to fully characterize
the program execution [42].

If we build and solve the system for the dependenceDR,S, we obtain a polyhedronTDR,S, by projecting
the λ dimensions on thet ones (the corresponding schedule variables ofR and S). This polyhedron
represents the set of legal values for the schedule coefficients, in order to satisfy the dependence. To
build the set of legal schedule coefficients for the whole program, we have to build the intersection of
each polyhedron obtained for each dependence. The result is a global polyhedronT — with as many
dimensions as there are schedule coefficients for the SCoP — which is the intersection of the constraints
obtained for each dependence. Transitively dependent statements arecorrectly handled in the global
solution: by intersecting the set of legal schedules obtained for each dependence, we end up with a set of
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schedules satisfying all dependences. The intersection operation implicitly extends the dimensionality
of polyhedra to the dimensionality ofT , and sets the missing dimensions as unconstrained. So we have
for all dependence polyhedra:

T =
⋂

∀DR,S

TDR,S

As all systems are built and solved one dependence at a time before being intersected, the computation
of the legal space can be done simultaneously with the dependence analysis.

Intuitively, to each (integral) point ofT corresponds a different schedule for the original program,
i.e., a different program version (or also a valid, distinct transformation sequence). Nevertheless, several
transformation sequences are in fact expressing the exact same relative ordering of instances, and would
be equal under a simple schedule normalization step as proposed by Vasilache [111]. For the purpose
of iteratively selecting an efficient schedule, diversity serves the interest of iterative optimization. We
rely on the fact that with our code generator implementation, distinct transformation sequences lead to
different syntactic programs to increase this diversity.

3.1.3 Generalization to Multidimensional Schedules

Addressing the generalization to the case of multi-dimensional schedules, respecting the precedence
constraint is a necessary and sufficient characterization. First let usdistinguish between strong and
weak precedence satisfaction. A dependenceDR,S is strongly satisfiedwhen for all pairs of instances in
dependence relation the strict precedence condition is met.

Definition 3.1 (Strong dependence satisfaction)GivenDR,S, the dependence is strongly satisfied at
schedule level k if

∀〈~xR,~xS〉 ∈ DR,S, ΘS
k(~xS)−ΘR

k (~xR)≥ 1

But a weaker situation may occur. A dependenceDR,S can beweakly satisfiedwhen the precedence
condition is not enforced on all instances, and for some permittingΘS

1(~xS) = ΘR
1(~xR).

Definition 3.2 (Weak dependence satisfaction)GivenDR,S, the dependence is weakly satisfied at di-
mension k if

∀〈~xR,~xS〉 ∈ DR,S, ΘS
k(~xS)−ΘR

k (~xR)≥ 0

∃〈~xR,~xS〉 ∈ DR,S, ΘS
k(~xS) = ΘR

k (~xR)

For instance when no one-dimensional schedule exists at a given dimension and for a given dependence,
it means that at this dimension the dependence can only be weakly satisfied.

We introduce variableδDR,S

1 to model the dependence satisfaction. Considering the first time dimen-
sion (the first row of the scheduling matrices), to preserve the precedence relation we have:

∀DR,S, ∀〈~xR,~xS〉 ∈ DR,S, ΘS
1(~xS)−ΘR

1(~xR)≥ δDR,S

1 (3.1)

δDR,S

1 ∈ {0,1}
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The Farkas Lemma offers a loss-less linearization of the constraints from the dependence polyhedron
into direct constraints on the schedule coefficients. This model extends to multidimensional schedules,
observing that once a dependence has been strongly satisfied, it doesnot contribute to the semantics
preservation constraints for the subsequent time dimensions. This comes from the lexicopositivity on
the execution order of instances. Once the dependence is strongly satisfied at a given level, instances
in dependence are guaranteed to be executed such that the precedence condition is strictly enforced.
Furthermore, for a schedule to preserve semantics, it is sufficient for every dependence to be strongly
satisfied at least once. Following these observations, one may state a sufficient condition for semantics
preservation (adapted from Feautrier’s formalization [42]).

Lemma 3.2 (Semantics-preserving affine schedules)Given a set of affine schedulesΘR,ΘS. . . of di-
mension m, the program semantics is preserved if:

∀DR,S, ∃p∈ {1, . . . ,m}, δDR,S
p = 1

∧ ∀ j < p, δDR,S
j = 0

∧ ∀ j ≤ p,∀〈~xR,~xS〉 ∈ DR,S, ΘS
p(~xS)−ΘR

p(~xR)≥ δDR,S
j

The proof directly derives from the lexicopositivity of dependence satisfaction [42].

Regarding the schedule dimensionalitym, it is sufficient to pickm= d to guarantee the existence
of a legal schedule (the maximum program loop depth isd). Feautrier proved it was always possible to
build a schedule corresponding to the original program execution order, demonstrating the existence of
a solution to Lemma 3.2 for any static control program part [42].

This formalization involves an “oracle” to select, for each dependence, the dimensionp at which it
should be strongly satisfied. To avoid the combinatorial selection of this dimension, we conditionally
nullify constraint (3.1) on the scheduleswhen the dependence was strongly satisfied at a previous dimen-
sion. To nullify the constraint, a solution is to pick a lower boundlb such that (3.2) expresses constraints
which do not intersect with the polyhedron of legal affine multidimensional schedules.

ΘS
k(~xS)−ΘR

k (~xR)> lb (3.2)

When considering arbitrary values for the coefficients ofΘk, the only valid lower bound is−∞.
Consider again the thematvect example, at the first dimension. If we selectt1R = K, t1S = 1 and all other
coefficients to be 0, then we have:

lb = min
~xR∈DR, ~xS∈DS

(

ΘS
k(~xS)−ΘR

k (~xR)
)

=−K.N

ConsideringN > 0, sinceK ∈ Z we have:

lim
K→∞

(

min
(

ΘS
k(~xS)−ΘR

k (~xR)
))

=−∞

In order to compute a finite value oflb, one has to resort to bounding the values of theθ coefficients,
as proposed by Vasilache [111]. Without any loss of generality, we assume (parametric) loop bounds
are non-negative. Returning again to thematvect example, considering arbitrary schedules for the first
dimension we have:

∣

∣min
(

ΘS
k(~xS)−ΘR

k (~xR)
)∣

∣= (|t1S|+ |t2S|+ |t3S|+ |t1R|+ |t2R|) .N+ |t4S|+ |t3R|
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One can then selectK = (|t1S|+ |t2S|+ |t3S|+ |t1R|+ |t2R|+ |t4S|+ |t3R|)+1 to ensure

min
(

ΘS
k(~xS)−ΘR

k (~xR)
)

>−K.N−K

The existence ofK is stated in generality in the following Lemma.

Lemma 3.3 (Schedule lower bound)GivenΘR
k , ΘS

k such that each coefficient value is bounded in[x,y].
Then there exists K∈ Z such that:

min
(

ΘS
k(~xS)−ΘR

k (~xR)
)

>−K.~n−K

Proof. If the iteration domains are bounded then the highest value of the iteration domain in any of its
dimension is~a.~n+c. By definition of static control parts the iteration domain cannot be modified during
execution, hence~a andc are constant values that can be computed statically. As the schedule coefficients
are bounded, there exists a finite value bounding the timestamp difference.

If at least one of the iteration domains is not bounded, then if a dependence exists between the two
statements the only possibility to express a non-negative function over the dependence polyhedron is
with a (parametric) constant function. As the schedule coefficients are bounded, there exists a finite
value bounding the timestamp difference.

Vasilache discussed another method to nullify a constraint, based on multiplyingthe whole constraint
by a term which equals 0 when the constraint should be nullified. This technique has two drawbacks:
first and foremost, the generated solution set is not convex; second it involves extending the range of the
δS

k variables to[−1,1] instead of[0,1], which makes the problem more complex.

Note that this lower bound−K~n−K can also be linearized into constraints onΘR,ΘS using the Farkas
Lemma. To obtain the schedule constraints we reinsert this lower bound in the previous formulation, such

that either the dependence has not been previously strongly satisfied and then the lower bound isδDR,S

k ,
or it has been and the lower bound is−K~n−K. We thus derive the convex form of semantics-preserving
affine schedules of dimensionm for a program with bounded schedule coefficients, as a corollary of
Lemma 3.2.

Lemma 3.4 (Convex form of semantics-preserving affine schedules) Given a set of affine schedules
ΘR,ΘS. . . of dimension m, the program semantics is preserved if the three following conditions hold:

(i) ∀DR,S, δDR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δDR,S
p = 1 (3.3)

(iii) ∀DR,S, ∀p∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈ DR,S, (3.4)

ΘS
p(~xS)−ΘR

p(~xR)≥−
p−1

∑
k=1

δDR,S

k .(K.~n+K)+δDR,S
p

Given the conditions from Lemma 3.4, it is possible to build a convex setL of semantics-preserving
schedules, with one variable per coefficient in the scheduling matrix (whichhasm rows) andm Boolean
variables per dependence. For an efficient construction ofL , one should proceed dependence by de-
pendence. Building the constraints of the form of (3.4) is done for each dependence, then the Farkas
multipliers are eliminated for instance with the Fourier-Motzkin projection technique as presented in
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Chapter 4. The set of constraints obtained for each dependences arethen intersected, and the process is
replicated for all dimensions.

A convex set of affine multidimensional schedules is the perfect tool to model all kinds of optimiza-
tion problems. It opens the door to well understood operation research algorithms. It also facilitates
search-space pruning strategies, to focus the optimization problem towards the most profitable trans-
formations. Nevertheless, given its high dimension, our convex formalization may induce a tractability
challenge on the larger benchmarks. Pruning is also a powerful method to reduce the dimension of the
search space. In Chapter 8, we illustrate the power of joining convex modeling of multidimensional
schedules and pruning strategies when applied to loop fusion. Section 3.2 introduces the background
concepts supporting this pruning strategy.

3.1.4 Related Work

Feautrier was the first to propose a convex encoding of all affine non-negative one-dimensional schedules
[41]. He then extended to multi-dimensional schedules, focusing on providing an algorithm to compute
an optimal schedule for fine-grain parallelism [42]. In its original form hisformulation of the space of
legal schedule is a combinatorial combination of subspaces, one for eachweakly / strongly dependence
satisfaction scenario. We build on his approach, and by adding the constraint of bounding the schedule
coefficient we model directly into a single space the semantics-preserving multidimensional schedules.

Vasilache proposed the first convex characterization of all bounded affine multidimensional schedules
[111]. His approach, closely related to the one presented in this section, leads to the construction of an
affine set with only integer vertices and the same number of variables as in Feautrier’s formulation [42].
Yet the drawbacks of such an approach are twofold. First, Vasilache resorts to decision variablesδS

k which
are integers in[−1,1]. In contrast, our approach uses onlyBooleandecision variables, significantly
simplifying the complexity of linear programming. Second, Vasilache’s form involves coefficients in the
power of 2 to encode lexicopositivity of dependence satisfaction, with a maximum value of 2m−1 where
m is the schedule depth. Practical experiments indicate that large coefficientvalues may decrease the
efficiency of parametric integer programming solvers. Finally, let us note also that Feautrier proposed,
in an unpublished communication from 2007, the same simplifications of Vasilache’s characterization as
the one we have described earlier.

3.2 Semantics-Preserving Statement Interleavings

After providing a formulation to model in a single convex space the set of all possible affine transfor-
mations, we now focus on two highly performance-impacting transformations:loop fusion and loop
distribution. For that purpose we extract an affine subspace of all distinct, legalstatement interleavings,
modeling compositions of loop fusion and distribution. This subspace focuses the search on the most
difficult part of the optimization problem: it models transformations that have a significant impact on the
overall performance, isolated from enabling transformations for which effective heuristics exist.

We are interested in building an affine representation for the set of all legal and distinct multi-level
loop fusion and distribution possibilities for a program. Moreover, this set should be built in isolation
of the possibly required complementary transformations to make a given fusion / distribution legal. Ob-
viously, all these possibilities are included in the setL of all semantics-preserving schedules. However,
using directly the formulation for semantics-preservation has two main disadvantages. First, in the per-
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spective of performing iterative search in this set, uniqueness of the solution is a critical concern. By
using a representation of fusion / distribution based on the handling of somespecific schedule coeffi-
cients, it is not possible to present a subset ofL in which each solution represents a distinct combination
of fusion / distribution, as discussed in Section 3.2.2. Second, scalability is greatly challenged. To extract
the subspace of coefficients which models explicitly loop fusion and distribution, it is expected a projec-
tion step is required. This operation can quickly become intractable on systemsas large asL , especially
for programs with numerous dependences. On the contrary, we present a decoupled approach in Chap-
ter 8 where a schedule according to a given fusion / distribution scheme is recomputed, in a tractable
fashion.

Compared to the state-of-the-art in loop fusion, we now consider arbitrarily complex sequences of
enabling transformations, in a multidimensional setting. This generalization of loop fusion is called
fusability and results in a dramatic broadening of the expressiveness of the optimizer. As we model
candidate statement interleavings for fusability as total preorders, we mustfirst provide the first convex
characterization of the space of all distinct total preorders, before presenting a technique to prune this
space from the redundant and non semantics-preserving transformations. This encoding and the resulting
search space is used as a basis of Chapter 8, where we propose a complete iterative and model-driven
technique for the efficient selection of multidimensional statement interleavings.

3.2.1 Encoding Statement Interleaving

Fusion and fusability of statements In the polyhedral model, loop fusion is characterized by the fine-
grain interleaving of statement instances [20]. Two statements are fully distributed if the range of the
timestamps associated to their instances never overlap. Syntactically, this results in distinct loops to
traverse the domains. One may define fusion as the negation of the distribution criterion. For such case
we say that two statementsR,Sare fused under at least one common loop if there exists at least one pair
of iterations for whichR is scheduled beforeS, and another pair of iterations for whichS is scheduled
beforeR. This is stated in Definition 3.3.

Definition 3.3 (Fusion of two statements)Given two statements R,S. They are fused at level p if,∀k∈
{1. . . p}, there exists at least two pairs of executed instances~xR,~xS and~xR

′,~xS
′ such that:

ΘR
k (~xR)≤ ΘS

k(~xS)∧ΘS
k(~xS

′)≤ΘR
k (~xR

′)

But for fusion to have a performance impact, a stronger criterion is preferred to guarantee that at
mostx instances arenot finely interleaved. In general, computing the exact set of interleaved instances
requires complex techniques. A typical example is schedules generating a non-unit stride in the support-
ing lattice of the transformed iteration domain. For such cases, computing the exact number of non-fused
instance could be achieved using the Ehrhart quasi-polynomial of the intersection of the image of iter-
ation domains by the schedules [28]. However, this refined precision is not required to determine if a
schedule represents a potentially interesting fusion. We allow for a lack of precision to present an eas-
ily computable test for fusability based on anestimateof the number of instances that are not finely
interleaved.

We first propose to define an estimator of the number of unfused instances, considering two state-
ments and their associated schedules. Definition 3.4 introduces an Integer Program which admits a solu-
tion only if the difference between the lowest timestamp for the instances ofRand the lowest timestamp
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for the instances ofS is lower than a given constantc, for all schedules dimensions 1..p. The constant
c is the timestamp difference between the first scheduled instance ofR and the first scheduled instance
of S. By tuning the allowed size for this interval, one can range from full, alignedfusion (c= 0) to full
distribution (withc greater than the schedule latency ofR or S). Notec is an integer constantestimating
the number of instances which are not fused, this definition does not strictlystate that at mostc instances
are not fused.

Definition 3.4 (Estimator for the fusion of statements)Given two statements R and S and their asso-
ciated schedulesΘR andΘS. Given the parametric integer program FUSE(R,S, p) defined by:

FUSE(R,S, p) : ∀k∈ {1, . . . , p}, −c< min
(

ΘR
k (~xR)

)

−min
(

ΘS
k(~xS)

)

< c

If FUSE(R,S, p) has a solution∀~xR∈ DR, ∀~xS∈ DS, and ifΘR
k andΘS

k are not constant schedules, then
c is an estimator of the the number of fused instances of R and S.

To compute a value ofc for which a solution toFUSE(R,S, p) implies thatRandSare fused at level
p, one can take a small integer corresponding to the shifting one wishes to allow(e.g.,c= 10). As an
upper bound forc, one can enforcec to be lower than the smallest loop trip count to avoid the possibility
of finding a solution where the two loops are indeed distributed. Note that forthe case of parametric loop
bounds, there is no restriction to definec as a function of some parameters which value is not known at
compile time, e.g.c= min(M/3,N/3). We can now propose a definition for thefusabilityof statements,
based on the programFUSE(R,S, p).

Definition 3.5 (Fusability) Given two statements R,S. They are fusable at level p if there exists semantics-
preserving schedulesΘR,ΘS such that∀k∈ {1. . . p},

(i) FUSE(R,S, p) has a solution

(ii) If and only ifΘR
k andΘS

k are constant schedules, thenΘR
k = ΘS

k

(iii ) c< min
(

max
(

ΘR
k (~xR)

)

,max
(

ΘS
k(~xS)

))

The last step is to propose an encoding of the problem such that we can determine from the de-
pendence graph if a schedule leading to fuse the statements exists, without having to instantiate the
schedules. Let us first study the simpler problem when schedule coefficients are non-negative (that is,
θi, j ∈N). For the sake of simplicity, we assume that loop bounds have been normalized such that~0 is the
first iteration of the domain. When considering non-negative coefficients, the lowest timestamp assigned
by a scheduleΘR

k is simplyΘR
k (
~0). One can recompute the corresponding timestamp by looking at the

values of the coefficients attached to the parameters and the constant. Hence, the timestamp intervalc
between the two first scheduled instances byΘR

k andΘS
k is simply the difference of the parametric con-

stant parts of the schedules. In addition, to avoid the case whereΘR
k and/orΘS

k are constant schedules,
we force the linear part of the schedule to be non-null. This is formalized in Definition 3.6.

Definition 3.6 (Fusability restricted to non-negative schedule coefficients) Given two statements R,S
such that R is surrounded by dR loops, and S by dS loops. They are fusable at level p if,∀k∈ {1. . . p},
there exist two semantics-preserving schedulesΘR

k andΘS
k such that:

(i) ∀k∈ {1, . . . , p}, −c< ΘR
k (~0)−ΘS

k(~0)< c

(ii)
dR

∑
i=1

θR
k,i > 0,

dS

∑
i=1

θS
k,i > 0
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This very tractable definition is heavily used in Chapter 8, where we propose a practical implementation
of the selection of multidimensional interleavings.

Addressing the general case whereθi, j ∈Z is far more complex, as there is no easy way to retrieve the
instance scheduled first byΘR

k . To achieve a reasonable expression of a test for fusability in the general
case, we will actually limit ourselves to finding an encoding for Definition 3.3. This definition holds by
exhibiting two instances for whichR is executed beforeS, andR is executing afterS. For that purpose,
we select~0, and~mR the lexicographically largest instance ofDR. Then, to check for the fusability of
statements, one can check the possible orderingsΘR

k (
~0)< ΘS

k(
~0), ΘR

k (
~0)< ΘS

k(~mS), etc. As we check for
a pair of distinct instances, it is not required to ensure the schedules arenot constant: all checks will fail
if it is the case.

Definition 3.7 (Generalized fusability check)Given two statements R,S. They are fusable at level p if,
∀k∈ {1. . . p}, there exist two semantics-preserving schedulesΘR

k andΘS
k such that either one of the four

following problems has a solution:

(i) ΘR
k (~0)< ΘS

k(~mS)∧ΘS
k(~0)< ΘR

k (~mR)

(ii) ΘR
k (~mR)< ΘS

k(~mS)∧ΘS
k(~0)< ΘR

k (~0)

(iii ) ΘR
k (~0)< ΘS

k(~mS)∧ΘS
k(~mS)< ΘR

k (~mR)

(iv) ΘR
k (~mR)< ΘS

k(~0)∧ΘS
k(~mR)< ΘR

k (~0)

For completeness, one should in addition test for different values for~mR,~mS, in particular all vertices
of the iteration domains. As soon as there exists a value for~mR,~mS for which one of the above test do not
fail, then the statements are fusable. There exist pathological cases where the above tests all fail while it
is indeed possible to express a schedule leading to fusion. However, such schedules will correspond to
fusing only a small portion of the iteration domains. Hence, had we used a stricter fusability test (that
is, using a small integer value forc) the statements would have been detected as non-fusable with those
schedules.

Statement interleaving For our optimization problems, we are interested in building a space repre-
senting all ways to interleave the program statements. This relates to loop fusion and loop distribution:
possibles ways to interleave statements include them sharing the same outer loops, and them being dis-
tributed and placed at different positions in the program. Consider as an example a series of three
matrix-products,ThreeMatMat, shown in Figure 3.2.

for (i1 = 0; i1 < N; ++i1)
for (j1 = 0; j1 < N; ++j1)
for (k1 = 0; k1 < N; ++k1)

R C[i1][j1] += A[i1][k1] * B[k1][j1];
for (i2 = 0; i2 < N; ++i2)
for (j2 = 0; j2 < N; ++j2)
for (k2 = 0; k2 < N; ++k2)

S F[i2][j2] += D[i2][k2] * E[k2][j2];
for (i3 = 0; i3 < N; ++i3)
for (j3 = 0; j3 < N; ++j3)
for (k3 = 0; k3 < N; ++k3)

T G[i3][j3] += C[i3][k3] * F[k3][j3];

Figure 3.2:ThreeMatMat: C= AB, F = DE, G=CF
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To reason about statement interleaving, one may associate a vectorβS of dimensiond to each state-
mentSsuch that their lexicographic ordering encodes exactly the ordering andfusion information of each
loop level. If some statementS is surrounded by less thand loops,βS is post-padded with zeroes. As
an introductory example of statement interleavings Figure 3.3 shows four possible transformations for
the illustrating example, as defined by different configurations of theβ vectors. We also show, for each
version,L the sub-part of the scheduling matrix associated to the iterator dimensions enabling the trans-
formation. Note that we do not represent the schedule coefficientsγ associated to the global parameters
~n and the coefficientc associated to the constant, they are set to 0 for these examples.

for (t1 = 0; t1 < N; ++t1) {
for (t3 = 0; t3 < N; ++t3)

for (t5 = 0; t5 < N; ++t5)
R C[t3][t1] += A[t3][t5] * B[t5][t1];

for (t3 = 0; t3 < N; ++t3)
for (t5 = 0; t5 < N; ++t5)

S F[t1][t3] += D[t1][t5] * E[t5][t3];
for (t3 = 0; t3 < N; ++t3)

for (t5 = 0; t5 < N; ++t5)
T G[t5][t3] += C[t5][t1] * F[t1][t3];

}

LR=





0 1 0
1 0 0
0 0 1



 LS=





1 0 0
0 1 0
0 0 1



 LT =





0 0 1
0 1 0
1 0 0





βR =





0
0
0



 βS =





0
1
1



 βT =





0
2
2





for (t1 = 0; t1 < N; ++t1)
for (t3 = 0; t3 < N; ++t3)

for (t5 = 0; t5 < N; ++t5) {
R C[t1][t3] += A[t1][t5] * B[t5][t3];
S F[t1][t3] += D[t1][t5] * E[t5][t3];

}
for (t1 = 0; t1 < N; ++t1)

for (t3 = 0; t3 < N; ++t3)
for (t5 = 0; t5 < N; ++t5)

T G[t1][t3] += C[t1][t3] * F[t3][t5];

LR=





1 0 0
0 1 0
0 0 1



 LS=





1 0 0
0 1 0
0 0 1



 LT =





1 0 0
0 1 0
0 0 1





βR =





0
0
0



 βS =





0
0
0



 βT =





1
1
1





(1) (2)
for (t1 = 0; t1 < N; ++t1)

for (t3 = 0; t3 < N; ++t3)
for (t5 = 0; t5 < N; ++t5)

R C[t1][t3] += A[t1][t5] * B[t5][t3];
for (t1 = 0; t1 < N; ++t1)

for (t3 = 0; t3 < N; ++t3) {
for (t5 = 0; t5 < N; ++t5)

S F[t3][t1] += D[t3][t5] * E[t5][t1];
for (t5 = 0; t5 < N; ++t5)

T G[t5][t1] += C[t5][t3] * F[t3][t1];
}

LR=





1 0 0
0 1 0
0 0 1



 LS=





0 1 0
1 0 0
0 0 1



 LT =





0 0 1
1 0 0
0 1 0





βR =





0
0
0



 βS =





1
1
1



 βT =





1
1
2





for (t1 = 0; t1 < N; ++t1)
for (t3 = 0; t3 < N; ++t3)

for (t5 = 0; t5 < N; ++t5)
S F[t1][t3] += D[t1][t5] * E[t5][t3];
for (t1 = 0; t1 < N; ++t1)

for (t3 = 0; t3 < N; ++t3) {
for (t5 = 0; t5 < N; ++t5)

R C[t1][t3] += A[t1][t5] * B[t5][t3];
for (t5 = 0; t5 < N; ++t5)

T G[t1][t5] += C[t1][t3] * F[t3][t5];
}

LR=





1 0 0
0 1 0
0 0 1



 LS=





1 0 0
0 1 0
0 0 1



 LT =





1 0 0
0 0 1
0 1 0





βR =





1
1
1



 βS =





0
0
0



 βT =





1
1
2





(3) (4)

Figure 3.3: Four possible legal transformations forC= AB, F = DE, G=CF

Multidimensional affine schedules can be restricted to a form where statement interleaving vectors
are explicit: for each statementS, one may constrain the rows ofΘS to alternate between constant forms
of theβS vector and affine forms of the iteration and global parameter vectors. This2d+1-dimensional
encoding does not incur any loss of expressiveness [42, 64, 30, 51, 12]. For instance to build the full
scheduling matrixΘR from LR andβR, one may proceed by interleavingLR andβR such that (~γR=~0 and
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~cR =~0 here):

ΘR =

















0 0 0 0 βR
1

LR
1,1 LR

1,2 LR
1,3 γR

1 cR
1

0 0 0 0 βR
2

LR
2,1 LR

2,2 LR
2,3 γR

2 cR
2

0 0 0 0 βR
3

LR
3,1 LR

3,2 LR
3,3 γR

3 cR
3

















.













iR
jR
kR

N
1













Unlike standard 2d+1 encodings, we explicitlyforce the β vectors to exhibit important structural
properties of the transformed loop nest:

1. if βR
k = βS

k, ∀k∈ {1, . . . , p} then the statements share (at least)p common loops;

2. if βR
p 6= βS

p∧∀k ∈ {1, . . . , p−1},βR
k 6= βS

k then the statements do not share any common loop at
depthp (or more).

However, intuitively, several choices ofβ vectors represent the same multidimensional statement
interleaving: for example, the transformed code is invariant to translation ofall coefficients at a given
dimension, or by multiplication of all coefficients by a non-negative constant.Consider the following
example:

βR
1 = ( 0 ), βS

1 = ( 2 ), βT
1 = ( 2 )

This ordering defines thatSandT are fused together, and thatR is not and is executed beforeSandT.
An equivalent description is:

β
′R
1 = ( 0 ), β

′S
1 = ( 1 ), β

′T
1 = ( 1 )

To abstract away these equivalences, let us now formally define the concept of multidimensional
statement interleaving.

Definition 3.8 (Multidimensional statement interleaving) Consider a set of statementsS enclosed within
at most d loops and their associated vectorsB = {βS}S∈S . For a given p∈{1, . . . ,d}, the one-dimensional
statement interleaving ofS at dimension p defined byB is the partition ofS according to the coefficients
βS

p. The multidimensional statement interleaving ofS at dimension p defined byB is the list of d parti-
tions at dimension p.

The structural properties of statement interleaving indicate that equivalence classes at dimensionp
correspond to distinct loops at depthp in the transformed loop nest.

Definition 3.9 (Total preorder) A total preorder on a setS is a relation✁ which is reflexive, transitive,
and such that for any pair of elements(S1,S2) ∈ S , either S1✁S2 or S2✁S1 or both.

An important result is that any preorder of a setS is isomorphic to a partial order of some equiva-
lence classes ofS . Applying this result to the structural properties of statement interleavings yields the
following lemma.

Lemma 3.5 (Structure of statement interleavings)Each distinct one-dimensional statement interleav-
ing corresponds to a unique canonical total preorder of the statements and reciprocally.

We now propose an affine, complete characterization of multi-dimensional statement interleavings.
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3.2.2 Affine Encoding of Total Preorders

One-dimensional case For a given set ofn elements, we defineO as the set of all and distinct total
preorders of itsn elements. The key problem is to modelO as a polyhedron. This problem is not a straight
adaptation of standard order theory: we look for thesetof all distinct total preorders ofn elements, in
contrast to classical work defining counting functions of this set [104].

We recall that uniqueness implies only distinct total preorders are represented in the set. To the
best of our knowledge, uniqueness cannot be modeled in a convex fashion on the set ofβ vectors. The
problem lies in the ability to express affine constraints to prune all and only redundantβ vectors: there
is no affine description possible to remove allβ vectors expressing the same preorder. To overcome this
problem we propose to model the ordering of two elementsi, j with threebinary decision variables,
defined as follows.pi, j = 1 iff i precedesj, ei, j = 1 iff i equalsj andsi, j = 1 iff i succeedsj. To model
the entire set, we introduce three binary variables for each ordered pairof elements, i.e., all pairs(i, j)
such that 1≤ i < j ≤ n. This modelsO with 3×n(n−1)/2 variables.

O =







0≤ pi, j ≤ 1
0≤ ei, j ≤ 1
0≤ si, j ≤ 1







For instance, the interleavingβR
1 = 0, βS

1 = 0, βT
1 = 1 of Figure 3.3(2) is represented by:

eR,S= 1, eR,T = 0, eS,T = 0

pR,S= 0, pR,T = 1, pS,T = 1

sR,S= 0, sR,T = 0, sS,T = 0

From there, one may easily recompute the corresponding total preorder{βR
1 = 0,βS

1 = 0,βT
1 = 1}, for in-

stance by computing the lexicographic minimum of a system with 3 non-negative variables ({βR
1 ,βS

1,β
T
1})

embedding the ordering constraints defined by allpi, j , ei, j andsi, j :

eR,S= 1⇒ βR
1 = βS

1

pR,T = 1⇒ βR
1 < βT

1

pS,T = 1⇒ βS
1 < βT

1

The first issue is the consistency of the model, e.g. settinge1,2 = 1 andp1,2 = 1 would make im-
possible to recompute a valid total preorder. The second issue is the totality ofthe relation. These two
conditions can be merged into the the following equality, capturing both mutual exclusion and totality:

pi, j +ei, j +si, j = 1 (3.5)

To simplify the system, we immediately get rid of thesi, j variables, using (3.5). We also relax (3.5)
to get:

pi, j +ei, j ≤ 1

Mutually exclusive decision variables capture the consistency of the model for a single pair of ele-
ments. However, one needs to insert additional preordering constraintsto capture transitivity.
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Basic transitivity of e coefficients To enforce transitivity, the following rule must hold true for all
triples of statements(i, j,k):

ei, j = 1∧ei,k = 1⇒ ej,k = 1 (3.6)

We will omit the= 1 in the rest of the section. Then, the following equation is equivalent to Eq (3.6):

ei, j ∧ei,k⇒ ej,k

Similarly, we have:
ei, j ∧ej,k⇒ ei,k

These two rules set the basic transitivity ofe variables. Since we are dealing with binary variables,
the implications can be easily modeled as affine constraints:

{

∀k∈] j,n], ei, j +ei,k ≤ 1+ej,k

ei, j +ej,k ≤ 1+ei,k

}

Generalizing this reasoning, we collect all constraints to enforce the transitivity of the total preorder
relation.

Basic transitivity of p coefficients We apply a similar reasoning for thep coefficients. We have:

pi,k∧ pk, j ⇒ pi, j

This translates into:
{

∀k∈]i, j[, pi,k+ pk, j ≤ 1+ pi, j
}

(3.7)

Complex transitivity on p and t coefficients We also have transitivity conditions imposed by a con-
nection between the value for somee coefficients and somep ones. For instance,R< S andS= T
impliesR< T. The general equations for those cases are:

ei, j ∧ pi,k⇒ p j,k

ei, j ∧ p j,k⇒ pi,k

ek, j ∧ pi,k⇒ pi, j

These translate to the following affine constraints:






∀k∈] j,n] ei, j + pi,k ≤ 1+ p j,k

ei, j + p j,k ≤ 1+ pi,k

∀k∈]i, j[ ek, j + pi,k ≤ 1+ pi, j







(3.8)

Complex transitivity on s and p coefficients Lastly, we have to take into account the transitivity on
the fictitioussvariables (those modelingR> S). The transitivity condition is:

si,k∧ p j,k⇒ si, j

Since the reduction equation gives:
si, j = 1− pi, j −ei, j

with pi, j andei, j being mutually exclusive, the rule translates to the following affine constraints:
{

∀k∈] j,n] ei, j + pi, j + p j,k ≤ 1+ pi,k+ei,k
}

(3.9)
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General formulation of O All the previous constraints are gathered in the following expression ofO ,
the convex set of all, distinct total preorders ofn elements. For 1≤ i < n, i < j ≤ n, O is:

O =











































































































0≤ pi, j ≤ 1
}

Variables are
binary0≤ ei, j ≤ 1

pi, j +ei, j ≤ 1

}

Relaxed mutual
exclusion

∀k∈] j,n] ei, j +ei,k ≤ 1+ej,k
}

Basic transitivity
oneei, j +ej,k ≤ 1+ei,k

∀k∈]i, j[ pi,k+ pk, j ≤ 1+ pi, j

}

Basic transitivity
on p

∀k∈] j,n] ei, j + pi,k ≤ 1+ p j,k






Complex
transitivity
on p ande

ei, j + p j,k ≤ 1+ pi,k

∀k∈]i, j[ ek, j + pi,k ≤ 1+ pi, j

∀k∈] j,n] ei, j + pi, j + p j,k ≤ 1+ pi,k+ei,k







Complex
transitivity
onsandp

Lemma 3.6 (Completeness and correctness ofO ) The setO contains one and only one point per dis-
tinct total preorder of n elements.

Proof. The full proof (shown in Appendix A) proceeds by showing that the transitivity of the total
preorder relation is preserved for all points in the set, i.e., all possible cases of transitivity have been
enforced. Totality of the preorder comes from the mutual exclusion condition, and reflexivity is trivially
satisfied.

Multidimensional case To encode all possible and distinct values for the multi-level statement inter-
leaving for a program, we need to replicate the setO for each row of theβ vectors. Each row model
a given total preorder, but further constraints are needed to achieveconsistency and uniqueness of the
characterization across dimensions. Intuitively, if a statement is distributed at dimensionk, then for all
remaining dimensions it will also be distributed. This is modeled with the following equations:

∀l > k,
(

pk
i, j = 1⇒ pl

i, j = 1
)

∧
(

sk
i, j = 1⇒ sl

i, j = 1
)

The final expression of the setI of all, distinctd-dimensional statement interleavings is:

I =























∀k∈ {1, . . . ,d}, constraints onO k

}

Total preorders
at levelk

pk
i, j ≤ pk+1

i, j

}

Statement interleaving
uniquenessek+1

i, j + pk+1
i, j ≤ pk

i, j +ek
i, j

It is worth noting that eachO k contains numerous variables and constraints; but when it is possible
to determine — with the dependence graph for instance — that a given ordering of two elementsi
and j is impossible, some variables and constraints are eliminated. Our experiments indicate that these
simplifications are quite effective, improving the scalability of the approach significantly.
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3.2.3 Pruning for Semantics Preservation

The setI contains all and only distinct multi-level statement interleavings. Another levelof pruning is
needed to remove all interleavings that does not preserve the semantics. The algorithm proceeds level-
by-level, from the outermost to the innermost. Such a decoupling is possible because we have encoded
multi-dimensional interleaving constraints inI , and that fusion at levelk implies fusion at all preceding
levels. In addition, leveraging Lemma 3.4 and Definition 3.7 we can determine thefusabilityof a set of
statements at a given level by exposing sufficient conditions for fusion on the schedules.

The general principle is to detect all the smallest possible sets ofp unfusable statements at levelk,
and for each of them, to updateI k by adding an affine constraint of the form:

ek
R,S+ek

S,T + . . .+ek
V,W < p−1 (3.10)

thus preventing them (and any super-set of them) to be fused all together. We noteF the final set with all
pruning constraints for legality,F ⊆ I . A naive approach could be to enumerate all unordered subsets
of the n statements of the program at levelk, and check for fusability, while avoiding to enumerate a
super-set of an unfusable set.

Instead, we leverage the polyhedral dependence graph to reduce thetest to a much smaller set of
structures. The first step of our algorithm is to build a graphG to facilitate the enumeration of sets
of statements to test for, with one node per statement. Sets of statements to test for fusability will be
represented as nodes connected by a path in that graph. Intuitively, ifG is a complete graph then we can
enumerate all unordered subsets of then statements: enumerating all paths of length 1 gives all pairs of
statements by retrieving the nodes connected by a given path, all paths of length 2 gives all triplets, etc.
We aim at building a graph with less edges, so that we lower the number of setsof statements to test for
fusability.

We first check the fusability of all possible pairs of statements, and add an edge between two nodes
only if (1) there is a dependence between them, and (2) either they must be fused together or they can
be fused and distributed at that level. When two statements must be fused, they are merged to ensure all
schedule constraints are considered when checking for fusability.

The second step is to enumerate all paths of length≥ 2 in the graph. Given a pathp, the nodes in
p represent a set of statements that has to be tested for fusability. Each time they are detected to be
not fusable, all paths withp as a sub-path are discarded from enumeration, andF k is updated with an
equation in the form of (3.10). The complete algorithm is shown in Figure 3.4.

ProcedurebuildLegalSchedules computes the space of legal schedulesL according to Lemma 3.4,
for the set of statements given in argument.

ProceduremustDistribute tests for the emptiness ofL when augmented with fusion conditions
from Definition 3.7 up to leveld. If there is no solution in the augmented set of constraints, then the
statements cannot be fused at that level and hence must be distributed.

ProceduremustFuse checks if it is legal to distribute the statementsRandS. The check is performed
by inserting asplitter at leveld. This splitter is a constant one-dimensional schedule at leveld, to force
the full distribution of statement instances at that level. If there is no solution inthis set of constraints,
then the statements cannot be distributed at that level and hence must be fused.

ProcedurecanDistributeAndSwap tests if it is legal to distributeRandSat leveld and to executeS
beforeR. The latter is required to compute the legal values of thesR,S variables at that level. The check
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PruneIllegalInterleavings: Compute F
Input:

pdg: polyhedral dependence graph
n: number of statements
maxDepth: maximum loop depth

Output:
F : the space of semantics-preserving distinct interleavings

1 F ← I
2 un f usable← /0
3 for d ← 1 to maxDepthdo
4 G ← newGraph(n)
5 forall pairs of dependent statements R,S do
6 LR,S ← buildLegalSchedules({R,S}, pdg)
7 if mustFuse(LR,S, d) then
8 F d ← F d ∩ {ed

R,S = 1}
9 elseif mustDistribute(LR,S, d) then
10 F d ← F d ∩ {ed

R,S = 0}
11 else
12 if ¬ canDistributeAndSwap(LR,S, d) then
13 F d ← F d ∩ {ed

R,S + pd
R,S = 1}

14 end if
15 addEdge(G, R, S)
16 end if
17 end for
18 forall pairs of statements R,S such that ed

R,S = 1 do
19 mergeNodes(G, R, S)
20 end for
21 for l ← 2 to n−1 do
22 forall paths p in G of length l such that

there is no prefix of p in un f usabledo
23 Lnodes(p) ← buildLegalSchedules({nodes(p)}, pdg)
24 if mustDistribute(Lnodes(p), d) then
25 F d ← F d ∩ {∑p ed

pairs in p < l −1}
26 un f usable← un f usable∪ p
27 end if
28 end for
29 end for
30 end for

Figure 3.4: Pruning algorithm

is performed in a similar fashion as withmustFuse, except the splitter is made to makeR execute after
S.

Applications The first motivation of building a separate search space of multidimensional statement
interleavings is to decouple the selection of the interleaving from the selection of the transformation that
enables this interleaving. One can then focus on building search heuristicsfor the fusion / distribution of
statements only, and through the framework presented in this chapter compute aschedule that respects
this interleaving. Additional schedule properties such as parallelism and tilabilitycan then be exploited
without disturbing the outer level fusion scheme. We present in Chapter 8 acomplete technique to op-
timize programs based on iterative interleaving selection, leading to parallelizedand tiled transformed
programs. This technique is able to automatically adapt to the target framework, and successfully dis-
covers the optimal fusion structure, whatever the specifics of the program, compiler and architecture.

Another motivation of buildingI is to enable the design of objective functions on fusion with the
widest degree of applicability. For instance one can maximize fusion at outerlevel, by maximizing
∑i, j e

1
i, j or similarly distribution by minimizing the same sum. One can also assign a weight to the
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coefficientsei, j to favor fusion for statements carrying more reuse, for instance, etc. This formulation
allows devising further pruning algorithms, offering to the optimization the widest choice of legal only
interleavings.

3.2.4 Related Work

To the best of our knowledge, no previous work addressed the problem of modeling the set of possi-
ble loop fusion in a single convex set, especially with the range of enabling transformations for fusion
presented above. Traditional approaches to loop fusion [66, 84, 85,103] are restricted in their ability to
reason about compositions of loop transformations. This is mainly due to the lack of a powerful represen-
tation for dependences and transformations. Hence, non-polyhedralapproaches typically study fusion in
isolation from other transformations. Megiddo and Sarkar [85] proposed a way to perform fusion for an
existing parallel program by grouping components in a way that parallelism isnot disturbed. Decoupling
parallelization and fusion clearly misses several interesting solutions that would have been captured if
the legal fusion choices were itself cast into their framework. Darte et al. [38, 36] studied fusion for
data-parallelization, but only in combination with shifting. In contrast to all of these works, our search
space can enable fusion in the presence of all polyhedral transformations.

Bondhugula et al. proposed the first integrated fusion and tiling heuristic based on the polyhedral
model [20, 21], and subsuming a large space of additional loop transformations (interchange, skewing,
shifting). It inherits the flexibility of the tiling hyperplane method [60, 54] to buildcomplex sequences
of enabling and communication-minimizing transformations. The tiling hyperplane method proposes an
efficient model-driven technique to unify locality and parallelism together in asingle cost function. Tiled
parallel code is generated, resulting from a complex composition of transformations. Nevertheless, in
several situations more efficient code could be generated. An important fact is that the cost function
is geared towards maximal fusion as it will tend to maximally fuse statements under acommon tiling
hyperplane, if it exists, to increase locality and reduce communication [20].Although it is possible to
treat strongly-connected components of the dependence graph separately and not fuse across them, the
method does not permit the modeling of the legal fusion choices in a single space.
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Chapter 4

Computing on Large Polyhedral Sets

"Pessimists, we’re told, look at a glass containing 50% air
and 50% water and see it as half empty. Optimists, in con-
trast, see it as half full. Engineers, of course, understandthe
glass is twice as big as it needs to be."

– Bob Lewis

4.1 Computing on High-Dimensionality Polyhedra

One of the challenges of iterative optimization in the polyhedral model is the capability to manipulate rich
and complex search spaces of transformation candidates. To maximize expressiveness one has to build a
very complex search space, both in terms of the number of variables, and interms of the space cardinality.
In this thesis we propose to build spaces of candidate scheduling coefficient values. To get a clinch at the
complexity of the sets we wish to manipulate, consider that the set of candidate transformations has:

• possiblyhundredsof dimensions, one for each scheduling coefficient of the full program;

• possiblythousandsof constraints, coming for instance from the semantics-preserving constraints
that are embedded into the space;

• possibly infinite number of points, as the number of semantics-preserving transformation for a
program is often infinite.

Previous approaches for iterative search of scheduling coefficientsdid not consider building a single
space of transformation. Neither Long and Fursin [82] nor Nisbet [87]were able to build candidate
optimizations as a single set of legal transformations. This comes from two majorchallenges. First, the
task of building a set of semantics-preserving affine schedules is a verycomplex problem, and space
construction heuristics are needed as shown in Chapter 5. Second, no algorithm was available to enable
the traversal of such sets, given their complexity constraints as shown above.

We propose in this chapter to solve the problem of efficiently constructing and traversing very large
polyhedral sets, which can represent the set of semantics-preserving schedules for a program. We revisit
the problem of manipulating very large polyhedra, pinpointing the scalability bottleneck of existing
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algorithms in Section 4.2. We then discuss in Section 4.3 an appropriate representation for these sets,
such that standard operations are efficient. To address the problem ofdynamically scanning a large
polyhedron, we recall the key properties required on the constraints such that a linear-time scanning
procedure can be developed, and link these properties to the Fourier-Motzkin elimination algorithm in
Section 4.4. We present in detail the Fourier-Motzkin algorithm in Section 4.5 before introducing a small
variation of this algorithm which enables the required scalability on our large-sized problem instances.

4.2 Existing Techniques for Polyhedral Manipulation

4.2.1 Manipulation of Presburger Formulas

Presburger arithmetic is a convenient mathematical abstraction to manipulate integer sets. The language
of Presburger formulas contains affine equalities and inequalities on integer variables, conjunction and
disjunction of those, negation, and first-order quantifiers∀ and∃. Integer linear programming relates to
the task of checking the satisfiability of a set of Presburger formulas, an NP-complete problem, and is the
core of many optimization algorithms in particular for polyhedral program optimization. Although nu-
merous previous work addressed the problem of checking the emptiness of a polyhedron by eliminating
quantified variables, such as Ancourt and Irigoin [6], Irigoin et al. withthe PIPS system [61] or Lassez
[59], the Omega Test developed by Pugh [92] is a powerful technique based on Fourier-Motzkin elimi-
nation to check the emptiness of an integer set. This technique is implemented in the Omega library. It is
a complete system for simplifying and verifying Presburger formulas. Of course, the Omega test cannot
simplify all Presburger formulas efficiently (there is a non-deterministic lowerbound and a deterministic
upper bound on the time required to verify Presburger formulas). However, in practice the Omega test is
efficient for small-sized problems.

All these tools have mostly been developed for instancewise dependence analysis in the polyhedral
model, computing a single optimization for the program, and generate the resultingtransformed program.
They have to be seen as research efforts focused on the constraints imposed by their application: working
on reasonably small sets (a few tens of variables at most), with the emphasis on decidingand simplifying
Presburger formulas. In contrast, our objective is to manipulate sets with orders of magnitude more
variables, and to be able to efficiently perform a dynamic scan of these sets. It is little surprise that our
experiments on simplifying and scanning sets based on such tools totally fail to achieve the scalability
required.

Another recent development is the Integer Set Library by Verdoolaege[116], which roughly offers the
same functionality as the Omega library but using different algorithms. Although this work provides very
strong improvements in terms of scalability and efficiency of the mathematical algorithms implemented,
the focus still differs from our objectives. The library is dedicated to optimizing the common case for
parametric integer sets, and is not able to reach the scalability requirements for the dynamic scanning of
very large polyhedral sets. We recall once more that our problem is highly context specific, and differs
from standard problems faced in polyhedral program optimization.

4.2.2 Dual and Double-description of Polyhedra

Probably the most standard representation nowadays of (parametric) polyhedra is based on the implicit
and dual description of polyhedra. The implicit representation defines a polyhedron as the intersection of
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finitely many hyperplanes, each of which in the form of an affine constraint. GivenQn the set of rational
vectors of dimensionn, a polyhedronP ∈Qn is defined as follows.

Definition 4.1 (Implicit representation)

P : {~x∈Qn | A~x=~b, C~x≥ ~d}

The matrixA sets the dimensions which are affine combinations of others, if any. The matrixC sets the
affine hyperplanes used to bound the space, if any. One may note that neither A norC are imposed to be
canonical. Implicit equalities can be contained inC: from two or more constraints (that is, rows ofC)
their combination may exhibit a linear combination of some dimensions. Redundant constraints can be
contained too: some constraints may be equivalent or non contributing to bounding the polyhedronP .

If P is a polyhedron, then it can be decomposed as a polytope plus a polyhedral cone, this is the
fundamental theorem of decomposition for polyhedra [101]. Thedual representation models a polyhe-
dron as a combination of linesL and raysR (forming the polyhedral cone) and verticesV (forming the
polytope). The dual representation of a polyhedronP ∈Qn is defined as follows.

Definition 4.2 (Dual representation)

P : {~x∈Qn |~x= L~λ+R~µ+V~ν, ~µ≥ 0, ~ν≥ 0, ∑
i

νi = 1}

Every polyhedron has both an implicit and dual representation [101]. Furthermore, it is possible to
compute a dual representation from the implicit one by using Chernikova’s algorithm [26, 74]. Although
the complexity of this operation isΘ(k⌊n/2⌋), efficient implementations of this algorithm do exist. The
implementation by Le Verge and Wilde in PolyLib [74, 122] greatly contributed to popularizing this
technique.

Building on these representations, polyhedral operations such as intersection, image under an affine
mapping and elimination of redundant constraints can be achieved efficiently. The PolyLib is the result
of many years of theoretical developments in the manipulation of parametric polyhedral sets, and is
widely used in polyhedral compilation research. It has found numerous applications, in particular in
code generation [96, 10] which is a problem strongly related to ours.

But the pitfall of the dual description lies in the explicit representation of the polyhedron’s vertices.
When again considering very large polytopes, our experiments here shown that the thousands of con-
straints of the implicit representation can translate into billions of vertices. Simply asking the PolyLib to
compute the dual, redundancy-less representation of our solution sets could take hours, making the use
of dual representation-based algorithms unsuitable for our problem.

Let us note also the Parma Polyhedra Library (PPL) [2] and Jolylib from Reservoir Labs Inc., two
other libraries to manipulate (parametric) polyhedra based on the dual and double-description principles.
Although we did not perform experiments with these libraries, our observation on the explosion of the
number of vertices still holds.

4.2.3 Number Decision Diagrams

Any Presburger-definable set can be represented with an automaton encoding Number Decision Dia-
grams [29]. In a nutshell, one can build an automaton that recognizes a languageL such that each word
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in L is a point in the integer set encoded. Number Decision Diagrams are the automata-based symbolic
representation for manipulating sets of integer vectors encoded as stringsof digit vectors.

Standard operations such as union, intersection or projection can be computed directly on the au-
tomaton representation [127, 72]. An implementation of such techniques is available in the LASH tool
[1]. This is a promising direction which is able to offer polynomial-time algorithms to compute heav-
ily expensive algorithms such as the integer hull [73] or other good algorithms to compute the (partial)
projection of polyhedral sets [19]. Yet these techniques are not matureenough to be adapted to our prob-
lems. Based on the computation time reported to build the automaton representation of a polyhedral set,
which gathers the core of the complexity, modeling sets of more than a few tens of variables is simply
out of reach in a reasonable time. Still it is a promising direction and we left as afuture work of this
thesis the deep investigation of number decision diagrams for polyhedral program optimization.

4.3 Polyhedral Operations on the Implicit Representation

From the observations made in the previous section, we conclude that the dual representation of polyhe-
dra is not well suited to address the scalability challenges. Hence we decideto select the implicit repre-
sentation of polyhedra as a basis for manipulating the solution sets. We first recall the main operations
to be used on large polyhedral sets, before discussing in detail the problem of polyhedron simplification
for the case of the implicit representation.

4.3.1 Required Polyhedral Operations

Intersection Intersection is the most commonly used operation. During the computation of the solution
set, starting from the universe polyhedron we successively reduce itwith additional constraints, to remove
points from the set. GivenP = P1∩ P2. The intersection of polyhedra is defined as the conjunction
of the constraints definingP1 and the constraints definingP2. We choose to not perform any more
operation than simply adding all constraints to the polyhedron: no emptiness test is explicitly performed
for instance to detect if the resulting intersection is empty.

Note that in the case of the intersection of polyhedra with different dimensionality, we choose to
define that the operation implicitly extends the dimensionality of the smallest polyhedron to the dimen-
sionality of the largest one, and leaves the missing dimensions as unconstrained.

Emptiness test To determine if a polyhedron contains at least one integer point, several techniques are
available. The Omega test is based on an extension of Fourier-Motzkin variable elimination to integer
programming, and has worst-case exponential time complexity [92]. However, for many situations in
which other (polynomial) methods are accurate, the Omega test has low orderpolynomial time complex-
ity. Another technique developed by Feautrier is Parametric Integer Programming (PIP) [39], which also
handles the decision problem of the existence of an integer solution in a parametric polyhedron. It is a
specific extension of the simplex algorithm to handle parameters, preceded by a parameterized Gomory
cuts algorithm.

Although we do not aim at manipulating parametric polyhedra for the solution sets, we use the PIP
algorithm as implemented in the PIPLib. The motivation is mainly a convenience for interfacing the
tools, but PIPLib is a highly efficient implementation for our concerns.
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Projection and dynamic scanning Dynamic polytope scanning is the cornerstone of the decisions
taken for the design of algorithms operating on high-dimensionality polyhedra. In order to be efficient,
a traversal algorithm must be exhibited to operate with a low complexity. Other operations, such as
arbitrarily picking a point in the set, must also be performed efficiently. In Section 4.4 and later we
address this problem, by providing an efficient scanning method based ona previous projection of the
full set.

Simplification We recall that a constraint is redundant in the description if, once removed, the obtained
polyhedron is identical. The benefits of having a redundancy-less representation are twofold. First, no
space in memory is wasted to store useless constraints. Second, as the complexity of many polyhedral
operations is a function of the number of constraints, one can expect these operations to perform faster
on a simplified polyhedron.

Hence we offer the possibility of simplifying a polyhedron by removing the redundant constraints
in its implicit description. In particular, we provide a mechanism to efficiently reduce redundancy by
removing at almost no computational cost all parallel hyperplanes used to define the polyhedron. We also
provide a mechanism to removeall redundantconstraints. These are detailed below in Section 4.3.2.

4.3.2 Redundancy Elimination

A mandatory operation when working on the implicit representation is the ability to remove redundant
constraints from the description. When considering the dual description and the Chernikova algorithm as
implemented in the PolyLib, the backward conversion procedure from the dual representation generates a
redundancy-less implicit representation. Here, additional effort is required to exhibit a similar capability
for polyhedron simplification.

Basic Redundancy Elimination We propose to distinguish two kinds of redundancy. We differentiate
the local redundancy, where the redundancy can be observed between two constraints, andthe global
redundancywhere a constraint has to be checked against more than one constraint.

Definition 4.3 (Local redundancy) Given two constraintsα : ∑m
i=1cixi ≤ q andβ : ∑m

i=1dixi ≤ q′. α is
said to be locally redundant with respect toβ if one of the following holds:

(i) ∀k, ck = dk and q′ ≤ q (parallel hyperplanes)

(ii) ∃k, ck 6= 0, α/|ck|= β/|dk| (same hyperplane)

The three following examples highlight local redundancy.x1+x2 ≥ 2 is redundant with respect tox1+

x2≥ 1; 2x1+2x2≥ 2 is redundant withx1+x2≥ 1; and 2x1+2x2≥ 2 is redundant withx1+x2≥ 0.

Testing for local redundancy is one of the motivation for our choice to relax the problem over rationals
instead of integers. Testing for local redundancy is trivial if the constraints arenormalized. A constraint
with coefficients inQ can be normalized by selecting selectingi as the highest value for whichci 6= 0,
and then setck′ = ck/ci . The constant partq also must be normalized:q′ = q/ci . Then, testing if two
constraints are parallel (or equal) simply consists to check the equality of allck,dk coefficients, and in
that event only look atq andq′. On the other hand, normalizing a constraint which has coefficients
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in Z requires dividing the coefficients by thegcd of the full constraint (includingq). This prevents
from determining local redundancy by simply looking at the equality of coefficient values, and actually
requires a much heavier computation.

To efficiently eliminate local redundancy, we apply the following principle. Given a new constraint,
first it is normalized and a hash key is associated to it. This key is a function oftheck coefficients only.
Second, the constraint is tested for local redundancy against all otherconstraints, by first checking the
equality of the hash key, then if needed the equality of theck coefficients, then if needed the constant
parts. Local redundancy reduction is used at each step of all the algorithms operating on polyhedra.
Similar techniques are implemented in the Omega library and are standard implementation techniques to
control redundant constraint construction.

Although this principle may seem relatively trivial at first glance, we experimentally observed it is a
cornerstone of redundancy removal when used with the Fourier-Motzkin elimination algorithm.

Global redundancy elimination A constraint is said to be globally redundant if it is not locally redun-
dant with any other constraint of the system, and the system defines the samepolyhedron if we remove
this constraint. To detect this kind of redundancy we resort to performingan emptiness test on the global
polyhedron according to the following test.

Definition 4.4 (Global redundancy test) GivenP ∈Qm andα : ∑m
i=1cixi ≤ q a hyperplane.α is redun-

dant in the definition ofP if:

{P \α}∩

{

m

∑
i=1

cixi > q

}

= /0

Local redundancy elimination is detected through a set of lightweight tests that are embedded directly
into the polyhedral operations. Global redundancy requires much heavier computation and is a costly
process. It implies to perform at worst one polyhedron emptiness test per constraint.

One may note that removing a redundant constraint can make the other redundant constraints non
redundant, so it is not possible in general to remove them all at the same time. The order in which
constraints are checked for global redundancy can significantly modifythe efficiency of the test. Le Fur
experimented with several traversal orders to perform the redundancy check [46]. We experimentally
evaluated these traversal orders on the system we manipulate, in particulartheascendinganddescending
orders. The descending order checks first the constraints which areof highest dimensionality, and then
progressively checks constraints of lower and lower dimensionality. Conversely, the ascending order
checks first the constraints of lowest dimensionality. Our experiments conclude also that the descending
method is the most efficient for our problem instances, in particular when used during the elimination
of variables with the Fourier-Motzkin algorithm. Local redundancy tests usually perform well on low-
dimensionality constraints, motivating the good behavior of the descending order.

4.4 Efficient Dynamic Polytope Scanning

As we aim to represent solution sets as polyhedra, it is required to provideefficient mechanisms to
traverse these sets. To design iterative and feed-back driven techniques for the selection of an effective
transformation, operations such as partial, exhaustive or random scanmust be available. Moreover, for
the iterative search to perform efficiently the time to instantiate a point in the space must be negligible.
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In the context of polyhedral program optimization, this scanning problem has been largely addressed:
the code generation phase does exactly a scanning of the domain polytopes. Still, in the context of itera-
tive compilation, we face solution polytopes of a dimensionality that is orders ofmagnitude higher than
domain polyhedra. Currently, the performance of the best known algorithm for static code generation
does not permit to reuse these techniques on the polytopes we consider. This motivates the need for a
dynamicand scalable approach for scanning large polyhedra.

4.4.1 The Dynamic Scanning Problem

The problem of statically generating a code to scan a polyhedron, called code generation, strongly relates
to our problem. These techniques usually rely on recursively projecting the polyhedron to end up with
an expression of the projection bounds on the inner-most dimension. Consider for example the following
polyhedronP :

P :







i ≥ 0
j ≥ 0

i+ j ≤ 2

To construct all integer pointsp ∈ P , one must enumerate the different values for its two coordinates
p1 and p2, corresponding to thei and j dimensions. Here,p = [0 0], p = [0 1], p = [0 2], p = [1 0],
p= [1 1] andp= [2 0] are the 6 integer points inP . To compute these points, we intuitively computed
the bounds forp1 as the projection ofP along thei dimension, enumerated all possible values for it, and
for each of the values forp1 we also computed the bounds forp2 as the projection along thej dimension
and enumerated all possible values for it. We formalize this procedure with thefollowing algorithm to
dynamically scan all pointsp∈ P of dimensionm.

EXPLORE (p,k,P ):

1. compute the lower boundlb and the upper boundUb of pk in P , provided the coordinate values
for p1, . . . , pk−1;

2. for eachx∈ [lb,Ub]:

(a) setpk = x,

(b) if k< mcall EXPLORE (p,k+1, P ) else outputp.

The main difference between static and dynamic polyhedron scanning is the knowledge ofp1, . . . , pk−1

when computinglb andUb in the dynamic case. Moreover, our problem is much simpler in general: we
only want to scan a single polyhedron, which is not parametric, and do notcare about simplifying the
expressions oflb andUb.

4.4.2 Scanning Points Using Projections

Our objective is to minimize the complexity of the EXPLORE procedure. To achieve this goal, we must
control the complexity of the computation oflb andUb. This computation corresponds to evaluating
the bounds of the projection along a specific dimension, given the coordinate values for some other
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dimensions. Without further treatment, the complexity of computinglb and Ub is not linear in the
number of constraints. Consider for example the following polyhedronP :

P :























i ≥ 0
i ≤ 2

j ≥ 0
j ≤ 2

i+ j ≥ 3

Here, to compute the actual bounds ofi we cannot limit ourselves to inspect the constraints defining
0≤ i ≤ 2, but rather we have to resort to computing the actual projection ofP alongi, etc. We can allow
for a pre-processing pass which can be costly if it enables the processof instantiating a point to be very
efficient. This is motivated by the fact that the search space is usually built once and for all, while a huge
number points may be instantiated.

In order for the EXPLORE procedure to have a complexity linear in the number of constraints, we
rely on a fundamental property of the Fourier-Motzkin algorithm. This elimination algorithm generates
an equivalent set of constraints such that it is guaranteed that, provided a value in the projection of
v1, . . . ,vk−1, a value exists forvk, for all k. This is called theFM-propertyby some authors (including
ourselves), although it is often referred to as row echelon form. This property has been heavily used
in the design of code generation algorithms based on the Fourier-Motzkin projection [6]; we recall it in
Definition 4.5.

Definition 4.5 (FM property) Given a polyhedronP and its implicit representation A. A has the FM
property if, for p∈ P , the value of the kth coordinate pk only dependson p1, . . . , pk−1. In other words, if
all the affine inequalities in A needed to compute pk has non-null coefficients only for a1, . . . ,ak.

Consider now the polyhedronP ′, the result of the application of the Fourier-Motzkin algorithm on
P :

P ′ :







































i ≥ 0
i ≥ 1
i ≤ 2

j ≥ 0
j ≥ 1
j ≤ 2

i+ j ≥ 3

Now by simply inspecting the constraints 1≤ i ≤ 2, one has the correct bounds for the projection ofP on
i. This reasoning generalizes of course for polyhedra of arbitrary dimensions, provided that the sequential
order chosen to build coordinates is the reverse order of the Fourier-Motzkin elimination steps.

Furthermore, had we applied the simplification techniques described in the previous section, we
ended up with a simplified polyhedron with a minimal set of constraints. Combining the FM-property
with the EXPLORE procedure yields a linear time technique to build a point: each constraint is visited
at mostm times to build a point, for a polyhedron of dimensionm.

Note that we have not considered in this reasoning the case of holes in the projection ofZ-polyhedra.
In practice we have relaxed the manipulation of integer sets to rational sets, and the integer hull is
obtained by computing the ceil (or floor) of thelb andUbvalues obtained. Projection of integer polyhedra
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can lead to non-convex sets. Consider for instance the polyhedronP :

P :















i ≥ 0
j ≤ 1

2 j− i ≤ 0
3 j− i ≥ 0

The set of integer points inP are p = [0 0], p = [2 1] and p = [3 1]. Hence the projection on thei
dimension is not convex: whilelb = 0 andUb= 3, there is no point inP with p1 = 1. For such cases,
the FM-property does not necessarily hold for all points betweenlb andUb. When an integer hole is
encountered during the scan, it is detected by observing for some later dimension thatlb > Ub. The
recursive branching is simply not performed, and the process continues to iterate to the next value for the
previous coordinate. We acknowledge the existence of pathological cases where the integer hole occurs
at an early dimension while the hole observation is done at a much later depth ofthe recursion. The
design of an efficient backtracking technique for this case is left as a future work. Note that in practice
for the polyhedra we scan in the experiments presented in this thesis, the integer hole issue was rarely
encountered, and had a totally negligible impact on the traversal efficiencywhen encountered.

4.5 Fourier-Motzkin Projection Algorithm

There are many methods to solve a system of linear inequalities, some of them giving onesolution, or
simply deciding if a solution exists (see [101] for a comprehensive survey). Since the elimination method
works well to solve a system of linear equalities, it was natural to investigate asimilar method to solve
linear inequalities. Fourier first designed the method, which was rediscovered and studied several times,
including by Motzkin in 1936 and Dantzig [34].

The Fourier-Motzkin projection (or elimination) algorithm successively eliminates variables in a
given order. The result is a new set of constraints which defines the same polyhedron, but with the notable
property of enabling an easy construction of any point in this polyhedron. We now define precisely the
algorithm following Banerjee’s description of an efficient implementation for it[7].

4.5.1 The Genuine Algorithm

Given a polyhedronP : {~x∈Qm |C~x≥ ~d}, we first reduce its dimensionality by performing a Gaussian
elimination using the explicit equalities used to defineP . The Fourier-Motzkin projection algorithm
solves the system defined byC, with mvariables andn inequalities:

m

∑
i=1

ci j xi ≥ d j (1≤ j ≤ n) (4.1)

A solution to solve this system is to eliminate the variables one at a time, in the orderxm, xm−1, . . . , x1.
The elimination ofxm consists in a projection of the polyhedron (4.1) on the subspace{x1, . . . , m−1}.
This projected polyhedron is defined by:

m−1

∑
i=1

pi j xi ≥ q j (1≤ j ≤ n′) (4.2)
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(a) Sorting The first step of the algorithm is to rearrange the lines ofC such that inequalities where
cm j is positive come first, then those wherecm j is negative, and eventually those wherecm j is 0. We then
find integersn1 andn2 such that:

cm j =











> 0 if 1≤ j ≤ n1,

< 0 if n1+1≤ j ≤ n2,

= 0 if n2+1≤ j ≤ n,

(4.3)

Coefficientsn1 andn2 index the positive and negative inequalities.

(b) Normalization For 1≤ j ≤ n2, divide the j th inequality by|cm j|, to get:


















m−1

∑
i=1

ti j xi +xm≥ q j (1≤ j ≤ n1)

m−1

∑
i=1

ti j xi +xm≤ q j (n1+1≤ j ≤ n2)

(4.4)

Where
{

ti j = ci j/|cm j|

q j = d j/|cm j|

From (4.4) we derive−∑m−1
i=1 ti j xi +q j , an upper bound forxm for 1≤ j ≤ n1, and a lower bound for

xm for n1+1≤ j ≤ n2. It is so possible to define respectivelybm, the “lower bound ball”, andBm the
“upper bound ball” as:

bm(x1, ...,xm−1) = max
n+1≤ j≤n2

(

−
m−1

∑
i=1

ti j xi +q j

)

Bm(x1, ...,xm−1) = min
1≤ j≤n1

(

−
m−1

∑
i=1

ti j xi +q j

) (4.5)

Note that ifxm has no lower bound (meaningn1 = n2), we simply definebm = −∞. Reciprocally ifxm

has no upper bound (n1 = 0) we defineBm = ∞. We can then express the range ofxm as:

bm(x1, ...,xm−1)≤ xm≤ Bm(x1, ...,xm−1) (4.6)

The equation (4.6) is a description of the solution set forxm.

(c) Create projection We now have the solution set forxm, and we need to build the constraints for the
xm−1 dimensions. In addition to the constraints wherecm j = 0, we simply linearly add each constraint
wherecm j > 0 to each constraints wherecm j < 0, and add the obtained constraint to the system. One may
note that we addn1(n2−n1) inequalities, and the new system hasn′ = n−n2+n1(n2−n1) inequalities
for m−1 variables. The original system (4.1) has a solution iff this new system hasa solution, and so
on fromm to 1. If during this step, a contradiction occurs (0≤ q j with q j < 0) then the system has no
solution.

Once the algorithm has terminated (and did not yield an unsolvable system), it ispossible to build
the set of solutions by simply computing, fork= 1 tok= m, the values ofbk andBk (yielding the bounds
of acceptable values forxk).
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The algorithm From the previous formulation, we derive the algorithm in Figure 4.1.

Input: A system of n linear inequalities of the form
m

∑
i=1

ai j xi ≤ c j (1 ≤ j ≤ n)

Output: The solution set of the input system

for k = m to 1 do
1Sort the system according to the sign of

ak j, ∀ j.
Compute n1 the number of inequalities where ak j > 0, n2
the number of inequalities where ak j < 0.

2 Normalize the system, by dividing each inequalities
where ak j 6= 0 by |ak j|, ∀ j.
Store bk and Bk the lower and upper bound inequalities for
xk.

3 Create the system for xk − 1, by adding each
inequality where ak j < 0 to each one where ak j > 0 (use
n1 and n2 to find bounds for j). If a contradiction occurs,
stop: no solution. Add the inequalities where ak j = 0.
If the system is empty, stop: finished.

end do

Figure 4.1: Fourier-Motzkin elimination algorithm

4.5.2 Known Issues

The major drawback of the Fourier-Motzkin elimination algorithm is the strong possibility of generating
redundant constraints during step 3 of the algorithm. A constraint is redundant if it is implied by (an)other
constraint(s) of the system. Consider the following example:











x1+x2≥ 0

2x1−x2≥ 0

x1≥ 0

Then eliminatingx2 produces the additional constraint 3x1 ≥ 0, which is redundant withx1 ≥ 0. The
number of constraints can grow exponentially, and the worst case boundof the total number of polyno-
mials in the output of the Fourier-Motzkin algorithm is, formconstraints andn dimensions [120]:

m

∑
i=1

n2(i−1)

22i−1
+

n2m

2(2m+1−2)

More roughly ifn≥ 2, it is bounded by:

(m+1)
(n

2

)2m

4.5.3 Redundancy-Aware Fourier-Motzkin Elimination

The possible explosion of redundant constraints and thus useless computations makes this algorithm
poorly scalable, especially on large systems. The main modification which is required to make it scal-
able is to remove redundant constraints generated by a combination of two constraints. We defined in
Section 4.3 useful tools for the detection of local redundancy and constraint normalization. We re-inject



64 4. COMPUTING ON LARGE POLYHEDRAL SETS

these ideas into the reformulated algorithm of Figure 4.2. In addition, we also reduce the complexity
by using six smaller sets of constraints instead of one (their cumulative size is at most the same as the
original set).

Input: A system of n linear inequalities of the form
m

∑
i=1

ai j xi ≤ c j (1 ≤ j ≤ n)

Output: The solution set of the input system

forall j do
Normalize the constraint by |am j| (if am j 6= 0)
if am j > 0 STORE the inequality in S+
if am j < 0 STORE the inequality in S−
if am j = 0 STORE the inequality in S0

end do
Bm ← S−
bm ← S+
for k ← m − 1 to 1 do
∀ s+,s− ∈ S+ × S−, C = s+ + s−. If a
contradiction occurs, stop: no solution
∀ s0 ∈ S0 where s0k−1 6= 0, C = s0
if k > 1 then

∀ C:
normalize C on the k − 1th variable.
if ck−1 > 0 STORE the inequality in S+′
if ck−1 < 0 STORE the inequality in S−′
if ck−1 = 0 STORE the inequality in S0′

if S+′ = /0 ∧ S−′ = /0 ∧ S0′ = /0 ∧ S0 = /0 stop: finished
if k > 1, Bk = S−, bk = S+
if k = 1, Bk = max(S+), bk = min(S−)
S+ = S+′, S− = S−′, S0 = S0′
removeGlobalRedundancy(S+ ∩ S− ∩ S0)

end do

Figure 4.2: Modified Fourier-Motzkin elimination

The benefits of this formulation is twofold: first, thesort step is removed, since it has been replaced
by a simple test and three different sets; second, theSTOREoperation is done only on normalized con-
straints.

TheSTOREoperation is the core of the local redundancy elimination. We assure by construction that
we only store normalized constraints (let us recall that this normalization step was already mandatory to
the projection algorithm). To detect if a constraintC : ∑m

i=1cixi ≤ qc is locally redundant we only have to
check, with each constraintD already present in the set, if∀i,ci = di . If so, we check ifqd ≤ qc.

For global redundancy elimination, we resort to testing and eliminating constraints on the set result-
ing from a full projection step. For this particular purpose the Le Fur descending order performs very
well. The output of our algorithm is thus a simplified polyhedron with a minimal set of constraints for
its implicit description.

This modified algorithm does not contain highly complex mathematical optimization. Instead, we
simply provide an efficient mechanism to control redundancy generation at each step of the algorithm.
The output of this algorithm is a new set of constraints for the polyhedron which respects the FM-
property, and containingno redundant constraints. Our extensive experiments over the thousands of
polyhedra generated for the purpose of iterative schedule selection have demonstrated that redundancy
was the only major bottleneck of Fourier-Motzkin elimination on such problem instances. The modified
algorithm was implemented in the FM library [91] and, to the best of the author’sknowledge, is to date
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the most adapted algorithm for the projection and normalization of scheduling coefficients polyhedra as
constructed in this thesis.

4.5.4 Some Related Works

The study of eliminating redundant constraints is a long-term issue, and wastreated by numerous authors.
Many of the most useful references can be found in Schrijver [101].For a few additional references let
us explicitly cite Chernikov’s work [25, 83] who produced thereduced convolution method, which relies
on the concept of linear-dependence of the vectors generating a cone. Let us also recall the work of
Pugh [92] on the Omega Test, a practical method to solve integer linear programs; and Sehr etal. [105]
who worked on redundancy reduction heuristics based on the Chernikov criterion. We may also note
the work of Weispfenning [120] who proposed a derivative of the Fourier-Motzkin elimination with an
exponential worst case upper bound complexity.
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Part II

Constructing Program Optimizations
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Chapter 5

Building Practical Search Spaces

5.1 Introduction

Emerging microprocessors offer unprecedented parallel computing capabilities and deeper memory hi-
erarchies, increasing the importance of loop transformations in optimizing compilers. Because compiler
heuristics rely on simplistic performance models, and because they are boundto a limited set of trans-
formations sequences, they only uncover a fraction of the peak performance on typical benchmarks.
Iterative optimization is a maturing framework to address these limitations, but so far, it was not success-
fully applied to complex loop transformation sequences because of the combinatorial explosion of the
optimization search space.

A limitation of model-based approaches is the accuracy and portability of the optimization objective.
A strong motivation for offering a complete methodology to build a set of candidate optimizations is to
isolate and postpone the selection of a transformation to a subsequent stage. This result in a decoupling
of the expressiveness issue and the selection problem. Furthermore, byletting iterative processes such
as adaptive compilation working on a well-formed space we enable the possibilityto focus the search on
relevant candidates only.

Our solution for the search space construction is based on embedding critical properties directly into
the search space, to reduce the complexity of the selection stage. The threefollowing properties are
embedded in any search space generated by our algorithms.

1. Expressiveness.We aim at building a search space which encompasses arbitrarily complex se-
quences of transformations.

2. Legality.All candidates in the search space preserve the semantics of the original program.

3. Uniqueness.There is no duplicate in the space: each point corresponds to a distinct transformation,
leading to a distinct candidate version (that is, a distinct syntactic program) after the application of
the transformation.

In Chapter 3 we have shown that a space with maximal expressiveness can be built in a convex
fashion, hence bearing some of the mandatory tractability properties for its traversal. We address now
the problem of building practical search spaces, navigating the trade-off between expressiveness and
optimality of the solution versus tractability of the space construction and its traversal.
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5.1.1 The Trade-Off Between Expressiveness and Practicality

When considering a search space with maximal expressiveness which contains all transformations ac-
cessible for the current framework, scalability and convergence towards the optimal solution are the
dominant challenges.

1. Pros: Optimality of the solution guaranteed within the scope of the framework.

2. Cons:High complexity of polyhedral operations: they operate on high dimensionalpolyhedra.

3. Cons:Very large search spaces, challenging the convergence towards the optimal solution.

Complexity of Linear Programs The method proposed in Chapter 3 requires computing on a space
containing a possibly huge set of variables. For an illustration, consider the example of Figure 5.1.

/* Determine mean of column vectors of input data matrix */
for (j = 1; j <= m; j++) {

mean[j] = 0.0;
for (i = 1; i <= n; i++)

mean[j] += data[i][j];
mean[j] /= float_n;

}
/* Determine standard deviations of column vectors of data matrix. */
for (j = 1; j <= m; j++) {

stddev[j] = 0.0;
for (i = 1; i <= n; i++)

stddev[j] += (data[i][j] - mean[j]) * (data[i][j] - mean[j]);
stddev[j] /= float_n;
stddev[j] = sqrt(stddev[j]);
/* The following in an inelegant but usual way to handle

near-zero std. dev. values, which below would cause a zero-
divide. */

stddev[j] = stddev[j] <= eps ? 1.0 : stddev[j];
}
/* Center and reduce the column vectors. */
for (i = 1; i <= n; i++)

for (j = 1; j <= m; j++) {
data[i][j] -= mean[j];
data[i][j] /= sqrt(float_n) * stddev[j];

}
/* Calculate the m * m correlation matrix. */
for (j1 = 1; j1 <= m-1; j1++) {

symmat[j1][j1] = 1.0;
for (j2 = j1+1; j2 <= m; j2++) {

symmat[j1][j2] = 0.0;
for (i = 1; i <= n; i++)

symmat[j1][j2] += (data[i][j1] * data[i][j2]);
symmat[j2][j1] = symmat[j1][j2];

}
}
symmat[m][m] = 1.0;

Figure 5.1:Correlation program

In this example, constructing the space of all and only legal 3-dimensional affine schedules involves
computing on a system with≈ 500 variables. Hence, any optimization method which would aim at
finding a space optimal point would require to solve an ILP on those 500 variables. Furthermore, in the
context of iterative search projecting the legality constraints to shape the space in a form suitable for
dynamic traversal is required. This may imply to perform thousands of emptiness tests on such sized
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polytopes. At the time of writing of this manuscript, no known solving method exists toscale efficiently
to the number of variables involved for programs of more than a few tens of statements. Although we
have presented in Chapter 4 an efficient and scalable technique for projection, this technique reaches
its scalability limit on larger spaces. When considering programs beyond 10 to15 statements, another
strategy must be devised.

One of the practicality concerns when building a search space is to controlthe number of variables
involved at each stage of the process. We present in this chapter different strategies for significantly
reducing the space dimensionality.

Performance Distribution Along with more expressiveness comes the increasing chance to have (pos-
sibly many) candidates which have a similar or even very bad performance.For instance, considering
thematVect example of Figure 5.2.

for (i = 0; i <= n; i++) {
R s[i] = 0;

for (j = 0; j <= n; j++)
S s[i] = s[i] + a[i][j] * x[j];

}

Figure 5.2:matVect kernel

Applying a shift of 1 with the transformation:
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should not alter the performance. Applying a slowdown of 5 with the transformation:
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will generate complex control including modulo operations, as shown in Figure 5.3.

for (i = 0; i <= 5 * n; i++) {
if (i % 5 == 0) {

R s[i / 5] = 0;
for (j = 0; j <= n; j++)

S s[i / 5] = s[i / 5] + a[i / 5][j] * x[j];
}

}

Figure 5.3: TransformedmatVect kernel

These intuitive comments point us towards a space pruning approach, where some transformations
(that is, some coefficients values) are not explored. We show in Chapter6 that, mostly due to the com-
plexity of the optimization processes in most modern compilers, achieving the best performance may
require tweaking all coefficients. Yet, as unnecessary complex controlsshould be avoided, we will favor
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a coefficient bounding approach. Note that one strategy could usea posteriorinormalization techniques
for the schedule discussed by Vasilache [111], but this would harm the expressiveness and remove the
uniqueness property for the space as several distinct schedules may be identical after normalization.

Target Architecture Features Another concern about building a highly expressive search space is the
adequacy of the properties of the candidate program versions for the target architecture features. The
target architecture must drive the simplification, by considering at least:

• parallelism (multi-core, multiple vector computation units, etc.);

• memory features (existence of cache memory, depth of the hierarchy, etc.);

• dedicated blocks for some operations (hard-wired modulo operations, for instance).

High-level characteristics such as parallelism or schedule latency are not the only concern. It is
critical to observe that the complex interplay between all architectural features, emphasized by the grow-
ing complexity of modern processors, requires finely tuning the program toexhibit high-performance.
Even the tiniest, most of the time unexpected, modification of some of the scheduling coefficients can
increase performance in a hardly predictable manner. To assess the need to preserve a significant degree
of expressiveness in the search space, we show in Chapter 6 that this tuning has a dramatic impact, for
instance even within a set of candidates exhibiting identical vectorizable inner-loops.

Traversal and Convergence We have discussed in Chapter 3 some of the mandatory properties an
affine search space should encompass to enable an efficient traversal. Reducing the dimensionality of
the space is a key factor for the normalization step (to force the Fourier-Motzkin property on the space),
hence the dimensionality must be adapted to the scalability capability of the projection algorithm dis-
cussed in Chapter 4.

For an efficient convergence of an iterative technique towards a goodsolution, it is essential to build
dedicated space traversal methods. This is because exhaustive search would not be feasible on spaces
larger than a few hundreds of points, and because random or pseudo-random search may be efficient only
if the proportion of good solutions is large. Intuitively, larger spaces areharder to explore, unless some
properties could be exploited to focus the search. We show in Chapter 7 that such methods, leveraging
both static and dynamic characteristics of the performance distribution, can be developed.

5.1.2 Different Goals, Different Approaches

To the best of our knowledge, no previous work studied the performance distribution of affine schedules
for computation-intensive programs. We can exhibit two main directions to construct and traverse a
search space of affine transformations, the first favoring expressiveness in the search space, the second
focusing on aggressive pruning of the space.

Favoring Expressiveness The first approach we develop is to build and enumerate a search space of
affine transformations by constructing a large and very expressive search space, where only the smallest
input bias is used to prune the space. In a word, this first approach favors the quantity of the possible
transformations.
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With this method, it is necessary to develop traversal techniques that are adapted to the performance
distribution as we delegate to the traversal phase the task of focusing on relevant candidates. The only
bias that we choose to embed into the space itself is the form of parallelism: we propose an algorithm
for the search space construction which is geared towards inner parallelism when possible, allowing for
an efficient vectorization. This approach typically targets architectures with SIMD-capable processors,
but is not limited to it.

We show in the following that this approach enables the construction of extremely rich search spaces,
both in terms of the variability of the produced output and in performance distribution. In the following
chapter, we perform an extensive study of this distribution, exhibiting keyproperties required to design
very aggressive and efficient pruning strategies.

Favoring Space Pruning The second approach that is studied in this work is to perform several levels
of pruning directly into the search space. In a word, this approach favors the static characteristics of the
possible transformations.

Beyond constructing a search space which models only very few scheduling coefficients — in con-
trast of the first method — we refine the obtained space by pruning it to focus on several static properties
of the schedules: tilability, parallelism, locality and latency. This approach provides a more constrained
framework: candidate transformations are already optimized amongst several goals. The task of select-
ing a good schedule in the search space is extremely simplified, and even forprograms of a dozen of
statements an exhaustive enumeration is tractable. This technique is developed in Chapter 8.

5.2 Search Space Construction

We first present an algorithm to construct and practically bound the search space of all, distinct one-
dimensional schedules in Section 5.2.1. We then generalize this technique forthe case of multidimen-
sional schedules in Section 5.2.2, then building a search space of program transformations for any pro-
gram amenable to polyhedral representation.

5.2.1 One-Dimensional Schedules

We have described in Chapter 3 a technique to linearize the precedence constraints contained in the
dependence polyhedra into a single affine set. This results in the construction of the space of legal
one-dimensional schedulesT where, fork dependences,

T =
⋂

k

Tk

This formulation was first designed by Feautrier [41], the only notable difference with ours being that we
take schedule coefficients inZ instead ofN. This results in removing one linearization step that involved
applying the Farkas Lemma on the schedule coefficients also. Had we appliedFeautrier’s initial method
using Farkas multipliers to compute a non-negative schedule, we would havefaced the problem that
the function giving the schedule coefficients from the schedule Farkas multipliers is not injective (many
points of the obtained polyhedron can give the same schedule). This method, to the contrary, is very well
suited for an exploration of the different legal schedules since every (integral) point inT is a different
schedule.
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ConstructingT is efficient and tractable: it only involves solving small linear programs. The size of
the systems to solve can be easily expressed. For each statementS, there are exactly:

SS= dS+ |n|+1

schedule coefficients, wheredS is the depth of the statementSand|n| is the number of structure parame-
ters. An empirical fact is that the domain of a statementS is usually defined by 2.dS inequalities. Since
the dependence polyhedron is a subset of the Cartesian product of statements domains, the number of
Farkas multipliers for the dependence (one per row in the matrix, plusλ0) is:

SDR,S = 2.dR+2.dS+ p+s+1

wherep is the size of the precedence constraints (at most min(dR,dS)−1) ands is the subscript equality.
GivenΩ the set of statements, the dimension of the computed systems are at most:

∀ R,S∈Ω
Ssyst= SR+SS+SDR,S

= 3.dR+3.dS+2.|n|+min(dR,dS)+4

SincedR, dS, and|n| are in practice very small integers, it is noticeable that computed input systems
are small and tractable. They containdR+dS+ |n|+1 equalities andSDR,S positivity constraints for the
Farkas multipliers, yielding a system small enough to be efficiently computed. Theprojection operation
consists in projecting a space of sizeSsyst on a space of sizeSR+SS (or a space of sizeSsyst−dS on a
space of sizeSS if considering a self-dependence). The dimension ofT is exactly:

S= ∑
S∈Ω

(dS+ |n|+1)

This formulation gives a practical method to compute the (possibly infinite) set of legal one-dimensional
schedules for a program. We need to boundT into a polytope in order to make achievable an exhaustive
search of the transformation space. The bounds are given by considering a side-effect of the used code
generation algorithm [10] for sequential targets:the higher the transformation coefficients, the more
likely the generated code to be ineffective.

Practical Bounding of the Space

The legal one-dimensional schedule space for a given SCoP as described in Chapter 3 is possibly infinite.
For instance it is easy to see that if there is no data dependence at all, every value of the schedule
coefficients is possible. It is necessary to bound this space in such a waythat an exhaustive scan becomes
possible. Bounding the space will remove some possible program transformations. We have to ensure
we remove only the less interesting solutions for performance.

We can distinguish two families of coefficients in the schedule expressions, (1) iterator coefficients,
(2) parameter and constant coefficients. Each family will provide a specific contribution to the global
program transformation [12]. The iterator coefficients will impact on loop structure and bounds (skew-
ing-like transformations for instance) while parameters and constant will impacton loop ordering and
statement ordering within a loop (shifting-like transformations for instance). It follows, while the order of
magnitude of coefficients values for parameters and constant do not have any influence on performance,
using big iterator coefficients will result in a very high control overhead (like generation of complex loop
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bounds and costly modulo operation) that will waste the optimization they are potentially enabling [10].
Hence we should bound the values of the iterator coefficients with small values (we checked empirically
that the bounding interval[−1,1] is wide enough most of the time).

Parameter coefficients may have a hidden influence on locality. Let us consider the examplelocality
of Figure 5.4

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j) {

R b[j] = a[j];
S c[j] = a[j + m];

}

Figure 5.4:locality

One can note that the parameterm, which is in no initial loop bound, influences on locality. Ifm< n,
then a subset of thea array is read by bothR andS instructions. So the schedule of these instructions
should be the same for the corresponding subset of the iteration domains (m≤ jR≤ n and 0≤ jS≤ n−m),
to maximize the data reuse ofa. It implies them parameter has to be considered in the loop bounds of
the transformation.

Had we used Feautrier’s genuine method to compute positive affine schedules by applying Farkas
lemma also on schedule functions [41], we would have missed the bounds onm, since it is not involved
in any loop bound (no Farkas multiplier is attached to it, its schedule coefficientwould always have been
0).

Still, the coefficients of the parameters and the constant have also to be bounded to avoid an infinite
search space. The difference between the two bounds should be greater than the number of statements to
ensure that at least every ordering of the statements within or outside loopsis possible. Greater intervals
will offer more possibilities, for instance to achieve more peeling transformations but a large flexibility
is rarely useful in practice.

We made several tests to compare our approach, taking into account only the legal schedules, and
considering all schedules then the filter legal ones using a legality check, as Long et al. suggest [82].
We used different compute-intensive kernel benchmarks coming from various origins and listed in Fig-
ure 5.5. h264 is a fractional sample interpolation of the H.264 standard [121].fir andfft are DSP
kernels extracted from UTDSP benchmark suite [121].lu, gauss, crout andmatmult are well known
mathematical kernels corresponding to LU factorization, Gaussian elimination,Crout matrix decom-
position and matrix-matrix multiply.MVT is a kernel including two matrix-vector multiplications, one
matrix being the transposition of the other.locality is a hand-written memory access intensive kernel.
Notice our motivation is not to evaluate the performance of our schedules withrespect to aggressive
optimizations performed manually (like the BLAS), or by application-specific active libraries (like AT-
LAS or SPIRAL): we are evaluating an automatic source-to-source framework, exploringall but only
one-dimensional schedules, and not considering any domain-specific knowledge.

These kernels are typically small, from 2 to 17 statements. They suit well the present study and
allow for a fair comparison with present production compiler: first, they should not challenge present
production compiler optimization schemes, and second, they will make it possibleto achieve an exhaus-
tive traversal of our search space which is necessary to evaluate the potential of the method and to design
heuristic techniques. Dealing with larger benchmarks presents some technical difficulties: first of all, ev-
ery SCoP does not have a one-dimensional schedule, and the likeliness decreases with the complexity of
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the dependence graph; second, although we achieved a breakthrough by giving the possibility for much
larger optimization spaces to be characterized and traversed, going beyond 20 to 30 statements chal-
lenges the scalability of our constraint simplification method (based on Fourier-Motzkin elimination),
due to the hundreds of transformation coefficients to consider simultaneously.

Further scalability may be achieved through algorithmic improvements in the exploitation of regu-
larity properties in the constraint systems, and through heuristics to prioritizethe most important depen-
dences and / or to partition the problem into smaller, modular scheduling spaces.

Figure 5.5 summarizes the study of the search space. The first column presents the various kernel
benchmarks; the second one labeled#Dependences shows the number of dependence relations for the
corresponding kernel;~ı-Bounds shows the iterator coefficient bounds used for search space bounding;
~p-Bounds shows the parameter coefficient bounds;c-Bounds shows the constant coefficient bounds;
#Schedules shows the total number of schedules, including illegal ones;#Legal shows the number of
actual schedules in our space, i.e. the number of legal schedules; finally, Time shows the search space
computation time on a Pentium 4 Xeon, 3.2GHz.

We can represent classical loop transformations like reversal, skewing, and slowing only with the~ı
coefficients. Their values directly imply the complexity of the control bounds,and may generate modulo
operations in the produced code; and bounds between−1 and 1 are accurate most of the time. Yet to
enable the discovery of a one-dimensional schedule, in some cases like FFT it is required to increase the
bounds, to allow for larger slowing or for the creation of more distinct loop nests with loop distribution.

Benchmark #Dependences ~ı-Bounds ~p-Bounds c-Bounds #Schedules #Legal Time

locality 2 −1,1 −1,1 −1,1 5.9×104 6561 0.001
matmult 7 −1,1 −1,1 −1,1 1.9×104 912 0.003
MVT 10 −1,1 −1,1 −1,1 4.7×106 16641 0.001
fir 12 −1,1 −1,1 −1,1 4.7×106 432 0.004
lu 14 0,1 0,1 0,1 3.2×104 1280 0.005
h264 15 −1,1 −1,1 0,4 7.5×105 360 0.011
gauss 18 −1,1 −1,1 −1,1 5.9×104 506 0.021
crout 26 −3,3 −3,3 −3,3 2.3×1014 798 0.027
fft 36 −2,2 −2,2 0,6 5.8×1025 804 0.079

Figure 5.5: Search space computation

The results show the very high benefit of working directly on a space including only legal transfor-
mations since it lowers the number of considered transformations by one to many orders of magnitude
for a quite acceptable computation time. These results also show that without such a policy, achieving an
exhaustive search is not possible even for small kernels. While these results show profitability, it is not a
demonstration of scalability. In Chapter 7 we will propose to actually visit the search space exhaustively
or heuristically.

5.2.2 Generalization to Multidimensional Schedules

One-dimensional schedules suffer from many limitations, the dominant being that:

1. not all programs accept a one-dimensional schedule,

2. many combinations of transformations are not modeled.
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Multidimensional schedules allows working on any program, and the space of multidimensional affine
schedules is very expressive. Each point in the space correspondsto potentially very different program
versions, exposing a wide spectrum of interactions between architectural components and back-end com-
piler optimizations. This section presents the construction of a practicalspace of legal, distinct affine
multi-dimensional schedules.

Multidimensional Problem

Nisbet [87], then Long and Fursin [81] experimentally observed that choosing a schedule at random is
very likely to lead to an illegal program version. Moreover, the probability of finding a legalone (which
does not alter semantics) decreases exponentially with program size, as shown in the previous section.
This challenge can only be tackled when integrating data dependence information into the construction
of the search space.

We showed it is possible to build efficiently the legal space for small programsthat accept one-
dimensional schedules. But dealing with multidimensional schedules leads to a combinatorial explosion.

Using one-dimensional schedules, all dependences have to be satisfiedwithin a single time dimen-
sion: the precedence constraint is simplyθR(~xR) < θS(~xS) andθ is a row vector. In multidimensional
schedules, the legality constraints can also be built time dimension per time dimension, with the dif-
ference that a dependence needs to beweakly satisfied— θS(~xS)− θR(~xR) ≥ 0 — for the first time
dimensions until it isstrongly satisfied— θS(~xS)− θR(~xR) > 0 — at a given time dimensiond. Once
a dependence has been strongly satisfied, no additional constraint is required for legality at dimensions
d′ > d. Reciprocally, a dependence must be weakly satisfied for alld′′ < d. There is freedom tode-
cideat which time dimension a dependence will be strongly satisfied. Each possibledecision leads to a
potentially different search space. Furthermore, it is possible to arbitrarily increase the number of time
dimensions of the schedule, resulting in an infinite set of scenarios in general.

The output of our algorithm is in the form of a list of polyhedra of legal schedules, one for each time
dimension. This scheme significantly favors polyhedral tractability when compared to the technique
presented in Chapter 3: the dimension of polyhedra is limited to the number of schedule coefficients
for one schedule dimension. That is, we have removed all binary variables required for dependence
satisfaction, and partitioned the schedule coefficients in rows, with one polyhedron of possible values
per row. The downside is that, for each dependence satisfaction scenario, we may end up building a
different set of polyhedra for the search space. This makes the problem highly combinatorial.

Building a Practical Search Space

To build the search space, we face two combinatorial problems. First, thereare too many scenarios to be
considered. Second, one needs to limit the search to bounded polytopes.Yet, even the smallest bound
leads to polytopes that are too large to be explored exhaustively for complex loop nests.

Feautrier found a systematic solution to the explosion of the number of polyhedra: he considers a
space of legal schedules leading to maximum fine-grain parallelism [42, 118]. To achieve this, a greedy
algorithm maximizes the number of dependences solved for a given dimension.While this solution
is interesting because it reduces the number of dimensions and may exhibit inner parallelism, it is not
practical enough in its original formulation for several reasons.

First, it needs to solve a system of linear inequalities involving every schedule coefficientplus a
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decision variable per dependence [42]. This makes the problem very complex to solve for kernels with a
large set of dependences.

Maximizing the number of dependences satisfied at outer levels relaxes the scheduling constraints on
the inner levels. Then, inner parallelism may be exhibited in the schedule and exploited by the back-end
compiler. However, reducing the number of schedule dimensions is not wanted for our purpose, as we
wish to build a search space where the search process is able to operate on each loop level. To maximize
the expressiveness of the search space, and hence its expected efficiency, iteratively selecting coefficients
of the inner dimensions is critical. Thus it can have a dramatic performance impact: inner dimensions
are associated with the inner loops, and the vectorization process can be highly influenced by the shape
of these inner loops.

In addition, minimizing the number of dimensions often translates into big schedule coefficients;
these generally lead to algorithmic complexity and both significant loop bounds and control flow over-
head after generation of the target imperative code [63]. We can boundthe coefficient values of the linear
part of the schedule within{−1,0,1} to minimize control-flow overhead. Non-unit coefficients for the
linear part of the schedule are required to model compositions of slowing and non-unit skewing, however
we believe the benefit to search for such compositions of transformations isin average exceeded by the
benefit of generating programs with simpler control-flow. Note this boundingwould have been very re-
strictive if we were constrained to one-dimensional schedules. In the multidimensional case, although it
eliminates some schedules from the space, these bounds are compatible with theexpression of arbitrary
compositions of loop fusion, distribution, interchange, code motion; in the worst case, it translates into
additional time dimensions.

Algorithm 5.6 sketches our search space construction for a given static control part. It outputs a col-
lection of polytopesT = {Td}, whereTd is the polytope of legal scheduling coefficients for dimensiond.
ProcedurecreatePolytope creates a polytope with one variable per coefficient in a row of the program
scheduling matrix. We use the first range argument ([−1,1] here) to bound the values of coefficients
attached to loop iterators (that is, the linear part of the schedule). We use the second range argument
([−1,1] also here) to bound the values of coefficients attached to the parametric constant part. Procedure
buildWeakLegalSchedules builds the constraints on the scheduling coefficients such that the depen-
dence is weakly satisfied by any schedule in the computed set. The Farkas Lemma is used to express
the conditions on affine functions which are non-negative over the given dependence polyhedronDR,S,
for ∆R,S = ΘS

d(~xS)−ΘR
d(~xR). Farkas multipliers are projected so that the setW DR,S contains only con-

straints on the schedule coefficients. ProcedurebuildStrongLegalSchedules builds the constraints on
the scheduling coefficients such that the dependence is strongly satisfiedby any schedule in the com-
puted set. Each schedule inSDR,S enforce∆R,S= ΘS

d(~xS)−ΘR
d(~xR)−1 to be non-negative for all points

of the dependence polyhedron. The reader may refer to Section 3.1.2 for an example of how such a set
is computed.

To study the termination of our algorithm, we first observe that arbitrary bounds for the scheduling
coefficients may prevent finding at least one schedule for the program.A simple example is given in
Figure 5.7, together with the bounds[0,1] for all coefficients. Here a range of 3 possible values for the
constant part (e.g.,[0,2]) is required to exhibit a valid schedule.

In general, bounding the linear part of the schedule to[0,1] does not prevent finding a schedule,
however bounding the constant part to[0,1] may. To guarantee the algorithm terminates, we first observe
that an interval of sizex for the bounding coefficients attached to the constant part, for a program with
x statements, is enough to guarantee the existence of a schedule. Second, we rely on the same termina-
tion proof as Feautrier’s multidimensional scheduling algorithm [118]: at least one dependence can be
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BuildSearchSpace: Compute T
Input:

pdg: polyhedral dependence graph
Output:
T : the bounded space of candidate multidimensional schedules

1 d ← 1
2 while pdg 6= /0 do
3 Td ← createPolytope([−1,1],[−1,1])
4 for each dependence DR,S ∈ pdg do
5 W DR,S

← buildWeakLegalSchedules(DR,S)

6 Td ← Td ∩ W DR,S
7 end for
8 for each dependence DR,S ∈ pdg do
9 SDR,S

← buildStrongLegalSchedules(DR,S)

10 if Td ∩ SDR,S
6= /0 then

11 Td ← Td ∩ SDR,S

12 pdg ← pdg - DR,S

13 end if
14 end for
15end do

Figure 5.6: Algorithm for Search Space Construction

for (i = 0; i <= n; i++)
R s += s;

for (i = 0; i <= n; i++)
S s += s;

for (i = 0; i <= n; i++)
T s += s;

Figure 5.7: A Program with no schedule in[0,1]

strongly solved per time dimensiond. Note that in our experiments presented in the next section, we
have used the bounding[−1,1] for all coefficients: these bounds did not prevent us from finding a valid
solution set for the considered benchmarks.

Our algorithm is a bounded variation of Feautrier’s genuine algorithm for maximal fine-grain par-
allelism. Although it benefits from the same termination property provided an appropriate coefficient
bounding, it differs in the properties of the generated set of schedules. It does not guarantee a max-
imal number of dependences solved per dimension. Therefore, it may notminimize the number of
dimensions of the schedule. Interestingly, if we remove the coefficient bounding and initializeTd as the
universe polyhedron instead, this algorithm is fully equivalent to Feautrier’s genuine version. This is be-
cause the maximal set of dependences which can be strongly solved for agiven dimension is unique [42].
Hence, our algorithm can be used to favor the solving of several smaller problems (one emptiness test
per dependence) in place of a single problem involving additionally one binary variable per dependence.

Our algorithm is efficient and only needs one polyhedron emptiness test per dependence (overTd
which contains exactly one variable per schedule coefficient). The elimination of Farkas multipliers used
to enforce the precedence constraint on schedule coefficients is performed dependence per dependence
(i.e., on very small systems).

So far, we have not defined the order in which dependences are considered when checking against
strong satisfaction. This problem does not arise with Feautrier’s genuinealgorithm because of the unique-
ness of the maximal set of strongly satisfied dependence for a given dimension. But with our bounded
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version, this order can have a significant impact on the constructed space.

Considering two dependencesd1 andd2, such that they can individually be strongly satisfied for
the current scheduling level — that is, there exists a scheduleΘ1 strongly satisfyingd1 and weakly
satisfying all other program dependences, similarly forΘ2 andd2. Without any coefficient bounding, it
is possible to strongly solved1 andd2 at the current scheduling level,Θ = Θ1+Θ2 is such a solution.
But because we have bounded the coefficients, the scheduling constraints imposed byd1 may prevent to
find a solution to strongly satisfy alsod2 at the same time. Intuitively, this arises because we may not
be able to formΘ = Θ1+Θ2, the composite schedule satisfying both dependences, without going out
of the schedule coefficients bounds. As a consequence, the dependence order in which we perform the
check of step 10 can lead to having a different number of dependencesto be strongly solved for a given
schedule dimension.

A long term approach would be to consider this order as part of the search space, but this is not
currently practical due to combinatorial explosion. Instead, we use two analytical criteria to order the
dependences. First of all, each dependence is assigned a priority, depending on the memory traffic
generated by the pair of statements in dependence. We use a simplified version of the model by Bastoul
and Feautrier [13]: for each arrayA and dimensiond, we approximate the traffic asmrA

d , wheremd is the
size of thedth dimension of the array, andrA is the rank of the concatenation of the subscript matrices
of all references to dimensiond of arrayA in the statement. Thus, the generated traffic evaluation for
a given statement is a multivariate polynomial in the parametric sizes of all arrays. We use profiling
to instantiate these size parameters. Intuitively, maximizing the depth where a dependence is strongly
solved maximizes reuse in inner loops and minimizes the memory traffic in outer loops. Therefore, we
start with dependences involved in the statements with the least traffic. Our second criterion is based
on dependence interference; it is used in case of non-discriminating priorities resulting from the first
criterion. Two dependences interfere if it is impossible to build a one-dimensional schedule strongly
satisfying these two dependences. We first try to solve dependences interfering with the smaller number
of other dependences, maximizing our chance to strongly solve more dependences within the current
time dimension.

Search Space Statistics

Benchmark #Inst. #Loops #Dep. #Dim. dim 1 dim 2 dim 3 dim 4 Total

compress-dct 6 6 56 3 20 136 10857025 n/a 2.9×1010

edge 3 4 30 4 27 54 90534 43046721 5.6×1015

iir 8 2 66 3 18 6984 > 1015 n/a > 1019

fir 4 2 36 2 18 52953 n/a n/a 9.5×107

lmsfir 9 3 112 2 27 10534223 n/a n/a 2.8×108

matmult 2 3 7 1 912 n/a n/a n/a 912
latnrm 11 3 75 3 9 1896502 > 1015 n/a > 1022

lpc 12 7 85 2 63594 > 1020 n/a n/a > 1025

ludcmp 14 10 187 3 36 > 1020 > 1025 n/a > 1046

radar 17 20 153 3 400 > 1020 > 1025 n/a > 1048

Figure 5.8: Search space statistics

Figure 5.8 summarizes the size of the legal polytopes for different benchmarks, for all schedule
dimensions. We consider 10 SCoPs extracted from classical benchmarks. The first eight are UTDSP
benchmarks [76] directly amenable to polyhedral representation:compress-dct is an image compres-
sion kernel (8x8 discrete cosine transform),edge-convolve2d is an edge detection kernel (different
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from Ring-Roberts),fir is a Finite Impulse Response filter,lmsfir is a Least Mean Square adaptive
FIR filter, iir is an Infinite Impulse Response filter,matmult is a matrix multiplication kernel,latnrm
is a normalized lattice filter, andlpc (LPC_analysis) is the hot function of a linear predictive coding
encoder. We considered two additional benchmarks:ludcmp solves simultaneous linear equations by
LU decomposition, andradar is an industry code for the analysis of radar pulses. For each benchmark,
we report the number of (complex) instructions carrying array accesses (#Inst), the number of loops
(#Loops), dependences (#Dep), schedule dimension (#Dim), and the total number of points for those di-
mensions (still only legal schedules) where> 10n provides a conservative lower bound when it was not
possible to compute the exact space size in a reasonable amount of time.

5.2.3 Scanning the Search Space Polytopes

The algorithm presented in Section 5.2.2 constructs one polytope per dimension of the schedule. Picking
one point in every polytopeTd fully describes one multidimensional schedule, hence one program ver-
sion: the generated imperative codes will be distinct if the scheduling matricesare distinct. To construct
a program version, that is a schedule, we need to scan the legal polytopes. This is reminiscent of the
classical polyhedron scanning problem [65, 10]; however, none ofthe existing algorithms scale to the
hundreds of dimensions we are considering. Fortunately, our problem happens to be simpler than “static”
loop nest generation: we only need to “dynamically” enumerate every integral point that respects the set
of constraints.

Each program version is represented by a unique scheduling matrixΘ. The first columns are schedule
coefficients associated with each loop iterator surrounding a statement in theoriginal program (~ı), for all
statements. The next set of columns are schedule coefficients associatedwith global parameters (~p), for
all statements. The last column are the schedule coefficients associated with the constant (c), for all
statements.

Since we represent legal schedules as multidimensional affine functions,each rowΘd of the schedul-
ing function corresponds to an integer point in the polytope of legal coefficientsTd, built explicitly for
this dimension. A program version in the optimization space can thus be represented as follows, for a
SCoP oft statements, a schedule of dimensions, and the iteration vector~x:
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To build each rowΘd, we scan the legal polytopeTd, by successively instantiating values for each
coefficient in a predefined order.1 Fourier-Motzkin elimination — a.k.a. projection — [101] provides a
representation of the affine constraints of a polytope suitable for its dynamictraversal. Computing the
projection of all variables of a polytopeTd results in a set of constraints defining the same polytope,

1The order has no impact on the completeness of the traversal.
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but where it is guaranteed that for a pointv ∈ Td, the value of thekth coordinatevk only dependson
v1, . . . ,vk−1, that is the affine inequalities involve onlyv1, . . . ,vk. Thus, the sequential order to build
coefficients is simply the reverse order of the Fourier-Motzkin elimination steps. This scheme guarantees
that provided a value in the projection ofv1, . . . ,vk−1, a value exists forvk, for all k.2 In its basic form, the
Fourier-Motzkin algorithm is known to generate many redundant constraints; these redundancies reduce
its scalability on large polyhedra. Instead, we use our modified, redundancy-aware projection algorithm
which is described in Chapter 4. In practice, this modified algorithm scales to hundreds of variables
(schedule coefficients) in the original system. It is applied on each polytopeTd generated.

5.3 Related Work

The growing complexity of architectures became a challenge for compiler designers to achieve the peak
performance for every program. In fact, the termcompiler optimizationis now biased since both compiler
writers and users know that those program transformations can result inperformance degradation in some
scenarios that may be very difficult to understand [27, 18, 110]. Iterative compilation aims at selecting the
best parameterization of the optimization chain, for a given program or fora given application domain.
It typically affects optimization flags (switches), parameters (e.g., loop unrolling, tiling), phase ordering,
the heuristic itself, or the hybridization of multiple heuristics [27, 18, 5, 71, 3,86, 107, 22, 69]

This thesis studies a different search space: instead of relying on existing compiler options to trans-
form the program, we statically construct a set of candidate program versions, considering the distinct
result of numerous legal transformations in a particular class. Building an actual optimization phase
out of this search space is much easier than from the composition of multiple search spaces arising
from short-sighted, local transformations. Our method is also complementaryto other forms of itera-
tive optimization which address the orchestration of existing heuristics. Furthermore, it is completely
independent from the compiler back-end.

In recent years, the benefits of iterative compilation have been widely reported [67, 32, 33, 58]. It-
erative compilation is often able to find optimization sequences that outperformthe highest optimization
settings in commercial compilers. Kulkarni et al. [71] introduce the VISTA system, an interactive com-
pilation system which concentrates on reducing the time to find good solutions. Another system that
attempted to speedup iterative compilation was introduced by Cooper et al. called ACME [31]. Tri-
antafyllis et al. [109] develop an alternative approach to reduce the totalnumber of evaluations of a new
program. Here the space of compiler options is examined off-line on a per function basis and the best
performing ones are classified into a small tree of options.

Because iterative compilation relies on multiple, costly “runs” (including compilation and execution),
the current emphasis is on improving the profiling cost of each program version [71, 48], or the total
number of runs, using, e.g., genetic algorithms [70] or machine learning [3,22]. Our heuristic is tuned
to the rich mathematical properties of the underlyingpolyhedralmodel of the search space.Combining it
with machine learning techniques seems promising and is the subject of our ongoing work.

Several researchers have also looked at using machine learning to construct heuristics that control a
single optimization. Stephensonet al. [107] used genetic programming (GP) to tune heuristic priority
functions for three compiler optimizations: hyperblock selection, register allocation, and data prefetching
within the Trimaran’s IMPACT compiler. Cavazoset al. [23] describe the use of supervised learning to

2The case of holes inZ-polyhedra is handled through a schedule completion algorithm describedin the next section.
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control whether or not to apply instruction scheduling.

Iterative optimization has been used effectively on a variety of compilation and parallelization prob-
lems and its applicability and practicality has been demonstrated beyond the academic world [94]. Al-
though multidimensional affine scheduling is an obvious target for iterative optimization, its profitability
is one of the most difficult to assess, due to (1) the model’s intrinsic expressiveness (the downside of
its effectiveness) and (2) its lack of analytical models for the impact of transformations on the target
architecture. Hence, related work has been very limited up to this point. To thebest of our knowledge,
Nisbet pioneered research in the area with one of the very first papersin iterative optimization. He de-
veloped the GAPS framework [87] which used a genetic algorithm to traverse a search space of affine
schedules for automatic parallelization. In addition, Long and O’Boyle [80]considered a search space
of transformation sequences represented in the UTF framework [63]. Both of these approaches suffer
from under-constraining the search space by considering all possibleschedules, including illegal ones.
Downstream filtering approaches do not scale, due to the exponentially diminishing proportion of legal
schedules with respect to the program size. For instance, Nisbet obtainsonly 3− 5% of legal sched-
ules for the ADI benchmark (6 statements). Moreover, under-constraining the search space limits the
possibility to narrow the search to the most promising subspaces.

Long et al. also tried to define a search space based on the Unified Transformation Framework [82,
81], targeting Java applications. Long’s search space includes a potentially large number of redundant
and/or illegal transformations, that need to be discarded after a legality check, and the fraction of distinct
and legal transformations decreases exponentially to zero with the size of program to optimize. On the
contrary, we show how to build and to take advantage of a search space which, by construction, contains
no redundant and no illegal transformation.

The polyhedral model is a well studied, powerful mathematical framework torepresent loop nests
and their transformations, overcoming the limitations of classical, syntax-driven models. Many studies
have tried to assess a predictive model characterizing the best transformation within this model, mostly to
express parallelism [79, 42] or to improve locality [125, 37, 84]. However such models do not scratch the
full complexity of the target architecture and the interference of the back-end compiler phases, because
they abstract away most of the fine-grain architectural properties in theircost model for the selection
of an affine transformation. This yields sub-optimal results even on simple kernels, as well as a poor
performance portability on different architectures.
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Chapter 6

Performance Distribution of Affine
Schedules

In the previous chapter, we formally defined how to build a singular searchspace where each point
corresponds to a distinct legal program version. We also adapted this space in such a way that a scan
becomes possible in any case. In the following, we will actually traverse the search space to evaluate its
potential for program optimization.

In Section 6.1 we focus on the exhaustive traversal of the search space for programs that accept
a one-dimensional schedule. We highlight critical results about the performance distribution, and its
connection with the compiler and the target machine. In Section 6.2 we provide an extensive study for the
general case of multidimensional schedules. We provide and experimentallyvalidate a powerful subspace
decomposition of the search space, a mandatory step towards devising efficient traversal heuristics.

6.1 Scanning the Optimization Search Space

6.1.1 Experimental Setup

The experimental protocol is as follows. For each point of the search space, (1) generate the kernel code
with CLooG1 (2) add input initialization and measure tools, to produce a C compilable unit (3)Compile
it provided a compiler and its optimization options (4) run the program on the target architecture and
gather the results. In order to be consistent, the original code is included inthis procedure starting at the
second step.

We ran our experiments on an Intel workstation based on Xeon 3.2GHz, 16KB L1, 1024KB L2
caches. We used four different compilers: GCC 3.4.2, GCC 4.1.1, Intel ICC 9.0.1 and PathScale
EKOPath 2.5. We used hardware counters to measure the number of cyclesused by various programs.
In order to avoid interferences with other programs and the system, we setthe system scheduler policy to
FIFO for every test. The kernel benchmark set is the one presented in Section 5.2.1. The time to compute
the performance of each version in the space is connected to the executiontime of each candidate. It can
be a matter of a few minutes formatMult (912 points executing fast) or more than one hour forlocality
(thousands of points).

1CLooG version 0.14.0, with default options
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6.1.2 Exhaustive Space Scanning

Because our search space is only based on legal schedules, the number of solutions for kernel benchmarks
is small enough to make it possible to achieve an exhaustive search in a reasonable amount of time.
Figure 6.1 and Figure 6.2 summarize our results. TheBenchmark column states the input program;
theCompiler column shows the compiler used to build each program version of the searchspace (GCC
version was 4.1.1); theOptions column gives the full compiler options; theParameters column shows
the values of the global parameters (e.g., for array sizes, parameters are chosen to exceed L2 cache size);
the#Improved column shows the number of version that achieves a better performance than the original
program (the total number of versions is shown in Figure 5.5); theID best gives the unique “identifier”
of the best solution; lastly, theSpeedup column gives the speedup achieved by the best solution with
respect to the original program performance. On average, one second is needed to explore a point (code
generation, compilation and run of the target version).

The two main results shown by this figure are, first of all, that the best program version highly de-
pends on both compiler and compiler options. Even considering the several“best” solutions, there is typ-
ically no intersection between the set of best transformations for two pairs compiler/compilation-options.
Second, significant speedups are achieved, demonstrating the interestof the method for optimizing com-
pilation. In few cases, a 0% speedup is achieved, meaning that the originalcode was already optimal
for our experimental setup and model. On average, the method leads to a 35.4% speedup, or to 14.9%
excluding the extreme results of matrix-multiply kernel which is known to be a good candidate for such
study. A global observation is the correlation between observed speedups and locality improvements and
/ or transformations enabled in the back-end compiler by our program versions.

6.1.3 Intricacy of the Best Program Version

Another interesting result is the form of the best transformed programs since they typically appear to
be quite complex. Most of the time, it was not possible to easily understand which part of the trans-
formation sequence was responsible for the speedup since a significantpart of the answer was related
to the compiler design. We also noticed that optimization algorithms based on formalrepresentations
were sometimes far away from the optimal solution. A very simple but striking example is shown in
Figure 6.3.

The simple, supposed optimal locality transformation in our class suggests a schedule of(i) for S1
and ( j + n) for S2 using theChunkingtechnique from Bastoul [13], which results in maximizing the
reuse of the arraya. The very best schedules were in fact(i− j) and(i + j−n+1) (the code generated
by our framework is given in Figure 6.3). While the supposed optimal schedules generate a speedup of
147% withn= 100 andm= 500k using GCC 3.4, the very best schedules generate a speedup of 398%
(with a similar number of L1 and L2 cache-misses but a heavily reduced data TLB misses).

The relation with the compiler is described further in section 6.1.4. Section 6.1.5 deals with the effect
of compiler options and lastly, we discuss the performance distribution in section 6.1.6.

6.1.4 The Compiler as an Element of the Target Platform

Our iterative optimization scheme is independent from the compiler and may be seen as a higher level
to classical iterative compilation. In the same way as a given program transformation may better exploit
a feature of a given processor, it also may enable more aggressive options of a given compiler. Because
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Benchmark Compiler Options Parameters #Improved ID best Speedup

h264 PathCC -Ofast none 11 352 36.1%
GCC -O2 19 234 13.3%
GCC -O3 26 250 25.0%
ICC -O2 27 290 12.9%
ICC -fast 0 N/A 0%

fir PathCC -Ofast N=50000 240 72 6.0%
GCC -O2 259 192 15.2%
GCC -O3 119 289 13.2%
ICC -O2 420 242 18.4%
ICC -fast 315 392 3.4%

fft PathCC -O2 N=256 M=256 O=8 21 267 7.2%
GCC -O2 10 285 0.9%
GCC -O3 11 289 1.8%
ICC -O2 17 260 6.9%
ICC -fast 20 112 6.4%

lu PathCC -Ofast N=1000 100 224 6.5%
GCC -O2 321 339 1.6%
GCC -O3 330 337 3.9%
ICC -O2 281 770 9.0%
ICC -fast 262 869 8.7%

gauss PathCC -Ofast N=150 212 4 3.1%
GCC -O2 204 2 1.7%
GCC -O3 52 2 0.01%
ICC -O2 63 288 0.05%
ICC -fast 15 39 0.03%

crout PathCC -Ofast N=150 0 N/A 0%
GCC -O2 132 638 3.6%
GCC -O3 56 628 1.7%
ICC -O2 37 625 0.5%
ICC -fast 63 628 2.9%

Figure 6.1: Search space statistics for exhaustive scan (1/2)

production compilers have to generate a target code in any case in a reasonable amount of time, their
optimizations are very fragile, i.e. a slight difference in the source code mayenable or forbid a given
optimization phase.

To study this behavior and estimate how a higher level iterative optimization scheme may lead to
better performances, we performed a exhaustive scan of our searchspace for various programs and
compilers with aggressive optimization options. We illustrate our results in Figure6.2, studying the
matrix multiplication kernel in more details in Figure 6.4 (this benchmark has been extensively studied,
and is a typical target of aggressive optimizations of production compilers).

We tested the whole set of legal schedules within the bounds[−1,1] for all coefficients (912 points),
and checked the speedup for various compilers with aggressive optimizations enabled. Matrices are
250×250 arrays of double-precision floats. We compared, for a given compiler, the number of cycles
the original code took (Original) to the number of cycles the best transformation took (Best) (results are
in millions of cycles).

Figure 6.4 shows significant speedups achieved by the best transformations for each back-end com-
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Benchmark Compiler Options Parameters #Improved ID best Speedup

matmult PathCC -Ofast N=250 402 283 308.1%
GCC -O2 318 573 243.6%
GCC -O3 345 143 248.7%
ICC -O2 390 311 56.6%
ICC -fast 318 641 645.4%

MVT PathCC -Ofast N=2000 5652 4934 27.4%
GCC -O2 3526 13301 18.0%
GCC -O3 3601 13320 21.2%
ICC -O2 5826 14093 24.0%
ICC -fast 5966 4879 29.1%

locality PathCC -Ofast N=10000, M=2000 6069 5430 47.7%
GCC -O2 30 5494 19.0%
GCC -O3 589 4332 6.0%
ICC -O2 3269 2956 38.4%
ICC -fast 4614 3039 54.3%

Figure 6.2: Search space statistics for exhaustive scan (2/2)

piler. Such speedups are not uncommon when dealing with the matrix-multiplicationkernel. The impor-
tant point is that we do not perform any tiling on the input code (it requiresmulti-dimensional schedules
and modification of the polyhedral representation), contrary to nearly allother works (see [126, 4] for
useful references). Yet, we do not prevent the backend compiler applying itself further optimizations,
which potentially includes tiling.

In general, it was possible to check using PathScale EKOPath that many optimization phases have
been enabled or disabled, depending on the version generated from our exploration tool. The enabling
transformation aspect of our method is brought to light with for instance theh264 benchmark: the
EKOPath compiler fuses 4 times in the original version but only once with the best found one, but was
able to vectorize 3 times more with our transformation. Nevertheless it is technically hard to know
precisely the contribution of the one-dimensional schedule (which has a high potential, by itself, as an
optimizing transformation) with respect to the enabled compiler optimizations. In thematmult case,
Interchanging loops onk and i is the core of the transformation embedded in all best schedules found.
This drastically improves locality: for instance, with ICC -fast, the number of L1 and L2 cache-misses
is comparable for the original code and the best found version, but the number of data TLB misses goes
from 15M to 164k, diminishing with a similar ratio the number of floating point operations executed
(the results are consistent whether the matrices are allocated withmalloc or directly on the stack). This
encourages the potential of a combination with tiling.

But more transformations are embedded in the schedules, and another striking result is the high vari-
ation of the best schedules depending on the compiler. For instance the lackof the j iterator inθS1(~xS1)

for GCC or the lack of then parameterθS2(~xS2) for ICC. These results, which are consistent with the
other tested programs, emphasize the need of a transformationspecifically built for a given compilerto
achieve the best possible performance. One possible explanation is the difference between optimization
phases in the different back-end compilers. Compilers have reached such a level of complexity that it is
no longer possible to model the effects of downstream phases on upstream ones. Yet it is mandatory to
rely on the downstream phases of a back-end compiler to achieve a decent performance, especially those
which cannot be embedded naturally in the polyhedral model.
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S1(i): a[i] = i
S2(i,j): b[j] = (b[j] - a[i]) / 2

Original code:
for (i = 0; i <= M; i++) {
S1(i);
for (j = 0; j <= N; j++) {
S2(i,j);

}
}

Chunked code:
for (t = 0; t <= M; t++) {
S1(t);

}
for (t = M; t <= M+N; t++) {

for (i = 0; i <= M; i++) {
S2(i,t-M);

}
}

best transformation:
S1(0);
for (t = -M+1; t <= 0; t++) {

for (i = max(0, t+M-N-1); i <= t+M-1; i++) {
S2(i,t-i+M-1);

}
S1(t+M);

}
for (t = 1; t <= N+1; t++) {

for (i = max(t+M-N-1, 0); i <= M; i++) {
S2(i,t-i+M-1);

}
}

Figure 6.3: Intricacy of transformed code

Compiler Option Original Best Schedule Speedup

GCC 3.4.2 -O3 519 163
θS1(~xS1) = −1
θS2(~xS2) = k+1

318.4%

GCC 4.1.1 -O3 515 207
θS1(~xS1) = −i− j +n−1
θS2(~xS2) = k+n

248.7%

ICC 9.0.1 -fast 465 72
θS1(~xS1) = −i +n
θS2(~xS2) = k+1

645.4%

PathCC 2.5 -Ofast 228 79
θS1(~xS1) = j−n−1
θS2(~xS2) = k

308.1%

Figure 6.4: Results for thematmult example

6.1.5 On the Influence of Compiler Options

Experiments have shown a relation between the best transformations and thecompiler options. For
instance, in thematmult kernel benchmark case with the ICC compiler used with the aggressive-fast
option, the best transformation yields a 4.5% slowdown when it is compiled with-O2 and compared
to the best one found for this compiler option. This behavior was observedon all the tested programs.
Finding the best compiler options is the subject of many research works in iterative compilation (see
section 8.5). Studying this aspect is out of the scope of the present paper but those results are a sign that
combining our method with existing iterative compilation techniques is a promising way.

6.1.6 Performance Distribution

Exhaustive scanning of all program versions is feasible on (small) kernels, and we can observe the
complete performance distribution. Figure 6.5 shows this distribution formatmult andlocality which
are compiled withGCC 4.1.1 -O2. In Figure 6.6 the leftcrout is compiled withICC -fast, and the
second withGCC 4.1.1 -O3. Each graph represents the computation time of every point in the search
space as a function of its number in the scanning order. The horizontal lineshows the performance of
the original program: every point below this line corresponds to a more efficient program version.
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Although the scanning order may be a weird choice for such representation, it shows that the perfor-
mance distribution is not totally random.2

Figure 6.5: Performance distributions formatmult andlocality with GCC -O3

Figure 6.6: Performance distributions forcrout with ICC -fast and GCC -O3

From these observations, we conclude that:

• in most cases, contiguous regions of similar performance can be identified;

• several transformations may be close to the best performance, but the probability of finding them
at random can be very low (e.g., onlocality);

• for some benchmarks (e.g., onmatmult), strong correlations do exist but are not easily observ-
able without reordering the index space of the transformations (the X axis on the performance
distribution figures).

The impact of the compiler on the distribution is emphasized on thecrout example, in Figure 6.6.
Here we compare, for an identical original program (hence an identicaloptimization search space), the
distribution onICC -fast andGCC 4.1.1 -03 on thecrout kernel benchmark. Hence, understanding
performance regularities may help to findhot regions in the search space, thus avoiding useless runs in
low-interest regions and diminishing-return searches among nearly optimalsolutions.

2It is not an absurd ordering though: the scanning procedure could beseen as a very deep loop nest were the outer loop
iterates on values of the first iterator coefficient of the first statement and the inner loop iterates on values of the constant
coefficient of the last statement.
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6.2 Extensive Study of Performance Distribution

The polyhedral representation of programs offers a compact way of representing arbitrarily complex se-
quences of transformations, significantly increasing the expressiveness of the search space. Moreover,
the design of traversal methods for such spaces is facilitated by the algebraic properties of the model. For
instance it is possible to consider only legal sequences, dramatically narrowing the search. We propose
to go deeper and expose static characteristics of the space correlated to performance distribution.Con-
sidering the search space constructed with the technique described in Chapter 5, we extensively study
the performance distribution of some representative benchmarks to assess the following hypotheses.

1. It is possible to statically order the impact on performance of transformation coefficients, that is,
decompose the search space in subspaces where the performance variation is maximal or reduced.

2. The more a schedule dimension impacts a performance distribution, the more itis constrained.

As a result of this hypothesis, traversal techniques can be designed to focus on the most promising
subspaces first, notably increasing the efficiency of the search method.

6.2.1 Experimental Protocol

For each tested point of the search space, we generate the corresponding C code withClooG [10], add all
the required instrumentation to the code, then compile and run it on the target machine. Our target archi-
tecture is an AMD Athlon X64 3700+ (single core), running at 2.4GHz (configured with 64KB+64KB
L1 cache and 1024k L2 cache). The system is Mandriva Linux and the native compiler is GCC 4.1.2. All
generated programs (as well as the original codes) were compiled using the following optimization set-
tings, known to bring excellent performance for this platform:-O3 -msse2 -ftree-vectorize. The
ACPI is not influential on this setting: the processor frequency is set to its maximum. The performance
data are collected using hardware counters, using the PAPI library. We collected counters for cycles, L1
and L2 hits and misses, and branches taken and mispredicted. To limit OS interference to the minimum,
all program versions are run with real-time priority scheduler and averaged over 100 executions.

6.2.2 Study of thedct Benchmark

The dct benchmark presented in Figure 6.7 computes a 32x32 Discrete Cosine Transform (M=32).
This well known kernel is a good candidate for aggressive optimizations,and representative of several
challenges for compilers. It is imperfectly nested, has 35 dependences and exposes possible multi-level
fusion. Also, thecos1 array can be reused, by means of a complex transformation sequence.

Thelatnrm benchmark presented in Figure 6.8 is a normalized lattice filter, and will be studied in
Section 6.2.3.

Statistics of the search space fordct

The space of legal affine multidimensional schedules is built according to thealgorithm presented in
Section 5.2.2. This technique builds a search space where 3 sequential dimensions are necessary to
respect the program dependences (theΘ matrix has 3 rows). Its statistics are summarized in Figure 6.9.
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for (i = 0; i < M; i++) {
for (j = 0; j < M; j++) {
temp2d[i][j] = 0.0;
for (k = 0; k < M; k++) {
temp2d[i][j] += block[i][k] *

cos1[j][k];
}

}
}
for (i = 0; i < M; i++) {

for (j = 0; j < M; j++) {
sum = 0.0;
for (k = 0; k < M; k++) {
sum += cos1[i][k] * temp2d[k][j];

}
block[i][j] = ROUND(sum2);

}
}

Figure 6.7: Source Code fordct

for (i = 0; i < M; i++) {
top = data[i];
for (j = 1; j < N; j++) {

left = top;
right = internal_state[j];
internal_state[j] = bottom;
top = coefficient[j-1] * left -

coefficient[j] * right;
bottom = coefficient[j-1] * right +

coefficient[j] * left;
}

internal_state[N] = bottom;
internal_state[N+1] = top;
sum = 0.0;
for (j = 0; j < N; j++)
sum += internal_state[j] *

coefficient[j+N];
outa[i] = sum;

}

Figure 6.8: Source Code forlatnrm

For each schedule dimension, we report thedegree of freedom(that is, the number ofdifferent legal
schedules) decomposed in 3 different classes. The~ı class represents all the schedules with a distinct~ı
prefix (that is, where iterator coefficients are going to be different, typically distinct legal combinations
of interchange, skewing, reversal); then respectively for the~ı+~p class (adding fusion, distribution); and
the~ı+~p+c class (adding peeling, shifting). Finally, the size of the search space forthe entire program is
shown in theTotal combined row, for each 3 classes (multiplying the degree of freedom for each schedule
dimension).

Schedule dimension ~ı ~ı+~p ~ı+~p+c
Dimension 1 39 66 471
Dimension 2 729 19683 531441
Dimension 3 60750 1006020 64855485

Total combined 1.7×109 1.3×1012 1.6×1016

Figure 6.9: Search Space Statistics fordct

It is worth recalling that each program version corresponds to an arbitrarily complex sequence of
transformations applied to the original program. It is possible to limit the degreeof freedom to (a part
of) the~ı or~ı+~p classes, by simply relying on our completion algorithm to find the minimal set of
complementary transformations (contained in the larger classes) to make the current sequence legal. In
this case we do not explore the numerous possibilities of making this sequencelegal, but instead use the
completion algorithm to generate only one of them.

Performance distribution

To limit the set of tested program versions, we rely upon two empirical observations. First, it is expected
that the degree of freedom for peeling and shifting will have a low impact onthe performance distribution,
as shown in the previous section, hence we can safely limit the traversal to the~ı+~p class. Second, for the
dct benchmark, it is expected that the third schedule dimension will have a low impact on performance:
it will only affect the inner-most scheduling of two statements with a regular memory pattern, thus very
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little improvement can be expected.3 Eventually, we consider a search space of 1.29× 106 different
program versions, where each schedule coefficient that is not explored is computed with the completion
algorithm.

Figure 6.10 shows the performance distribution of all versions generatedfor thedct program. Fig-
ure 6.10(a) plots thebest, worst, andaverageperformance for each of the 66 possible values forΘ1

(represented in thex axis). For each of these values, we evaluated the 19683 possible valuesfor Θ2, and
reported the performance. The performance of the original code is represented by the bold horizontal
bar: each point above this bar improves the original code. Figure 6.10(b) plots the raw performance
(sorted from the best to the worst) of all the 19683 points ofΘ2, using the value ofΘ1 of the best found
version.

(a) Representatives for each point ofΘ1 (b) Raw performance of each point ofΘ2, for the best
value forΘ1

Figure 6.10: Performance Distribution fordct

The first observation is that an important speedup can be discovered: the best optimization achieves
a speedup of 44.17%. Also, as what was pointed out for the case of one-dimensional schedules, several
program versions achieve a similar performance.

The difficulty in reaching the best improving points in the search space is emphasized by their ex-
tremely low proportion: only 0.14% of points achieve at least 80% of the maximalspeedup, while only
0.02% achieve 95% and more. Conversely, 61.11% degrade performance of the original code, while in
total 10.88% degrade the performance by a factor 2 or more. Hence in this context it is expected that
pure random approaches will fail to converge quickly to the best speedup.

We note that there are several values for the first schedule dimension from which it is impossible
to attain the maximal performance. However, the maximal performance is attainable from more than
one point in the first dimension. We conclude that effectively searching for points inΘ1 is important
in obtaining good performance, but cannot be the only criterion in designingsearch techniques when
performing iterative optimization in the polyhedral representation.

3We performed sampling also in the~ı+~p+ c class as well as for the third schedule dimension: it always confirmed these
assumptions.
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Statistical analysis

This section describes a finer grain analysis by capturing the relative impact of the schedules coefficients
on the performance distribution. We first compute the variance of each schedule coefficient on the set
of versions achieving at least 80% of the maximum speedup. Coefficients with little to no variance
among points with good speedups mean that those coefficients are important inobtaining that good
performance. We observe that 7 (out of 12) coefficients of the~ı class ofΘ1 have the same value, as well
as 2 (out of 5) coefficients of the~p class. Also, 3 (out of 12) coefficients of the~ı class ofΘ2 have a very
low variance, emphasizing that the second dimensionΘ2 plays an important role in obtaining a good
characterization of the performance distribution. The impact of the coefficients with low variance on
the complete distribution shape is confirmed by correlating the performance ofa program version with
a non-optimal value of these coefficients. For example, we found that slight changes to any of the~ı low
variance coefficients ofΘ1 translated into major performance variations.

We observe that a relevant ordering of the impact of the several classes of coefficients is~ı > ~p>~c,
and studying the variance of the coefficients confirmed our first hypothesis stated in Section 6.2.

Hardware counters details

Figure 6.11 gives more details on source of performance improvements anddegradations. It reports the
behavior for theL1 accesses, L2 accessesandBranch countmetrics.4 The performance of the original
code is represented by a bold horizontal bar.

(a) L1 Accesses (b) L2 Accesses (c) Branch Count

Figure 6.11: Hardware Counters Distribution fordct

The metric that seems to capture the performance distribution shape best is theL1 accessescurve. We
observe that all transformations access the L1 cache more than the original code does. The transformed
code performs at least 8% more L1 accesses than the original code. Also, the lowest L1 accesses points
corresponds exactly to the peaks of highest speedup reported in Figure 6.10(a). On the other hand, several
transformed program versions access the L2 cache less than the original code. Hence, the criterion in
terms of memory accesses for optimal performance is to minimize L1 and L2 accesses. Note, we increase
the number of L1 accesses as compared to the original code because there are more hits to the L1 cache,
thereby minimizing L2 accesses. The last reported performance counter statistic is Branch count. We can
correlate this statistic with the control statements added in the transformed code.The polyhedral code
generation algorithms are likely to generated many complicated control statements(if and modulos)

4Accesses = hits + misses, count = taken + mispredicted
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when highly complex transformations are applied. While not directly correlated to the performance
distribution itself, this metric shows that the space contains many complicated versions, and in most
cases a transformation sequence leads to more branches than the originalcode.

Discussion of the performance counter statistics

The best performing transformations reduce the numbers of stall cycles by a factor of 3, while improving
the L2 hit/miss ratio by 10%. Transformation sequences achieving the optimal performance are not
obvious at first glance: they involve complex combinations of skewing, reversal, distribution and index-
set splitting. These transformations address specific performance anomalies of the loop nest, but they are
often associated with the interplay of multiple architecture components. Overall,our results confirm the
potential of iterative optimization to find program versions that better exploit the complex behavior of
current superscalar processors. Also, we have extended iterativeoptimization to optimization problems
far more complex than those commonly solved in adaptive compilation.

6.2.3 Evaluation of Highly Constrained Benchmarks

We established in the previous sections a connection between the~ı class and the dispersion of the per-
formance distribution, on a representative benchmark offering a large degree of freedom for scheduling.
In this section, we study the influence of a strong limitation of the degree of freedom of the~ı class. In
particular, such a situation may derive from the greedy algorithm of Section5.2.2 which tends to reduce
the degree of freedom for the~ı class of the first dimension.

Search space statistics on more examples

In the following we focus on four representative benchmarks extractedfrom the UTDSP suite. Namely
latnrm, a normalized lattice filter (shown in Figure 6.8);fir, Finite Impulse Response filter;lmsfir, a
Least Mean Square adaptive FIR filter; andiir, an Infinite Impulse Response filter. Figure 6.12 shows
the search space statistics for the first schedule dimension for the~ı, ~p, andc classes. We also report, for
each benchmark, the number of statements (# St.), the number of dependences (# Deps.) and the number
of schedule dimensions (# Dim.) needed to represent the program.

Benchmark # St. # Deps. # Dim. ~ı ~ı+~p ~ı+~p+c

latnrm 11 75 3 1 9 27
fir 4 36 2 1 9 18

lmsfir 9 112 2 1 9 27
iir 8 66 3 1 9 18

Figure 6.12: Search Space Statistics

We observe for each benchmark that the degree of freedom of the~ı class, for the first dimension, is
null: there is only one sequence of interchange, reversal and skewingavailable for the first schedule di-
mension in the search space. This situation is not connected to usual program indicators such as number
of statements or dependences, it is necessary to build the search space todetect this static property. More-
over, the four benchmarks we consider are syntactically different, andrepresentative of many kernels in
embedded computing.



96 6. PERFORMANCEDISTRIBUTION OF AFFINE SCHEDULES

We show in the following how this lack of degree of freedom translates into regularities of the per-
formance distribution, and in performance improvements.

Performance distribution

We conducted for each of these benchmarks the same study as presentedin Section 6.2.2. We exhaus-
tively traverse the~ı+~p class, for the first two schedule dimensions. Figure 6.13 shows the performance
distributions from this search.

(a) iir (b) lmsfir (c) latnrm

Figure 6.13: Performance Distribution for 3 UTDSP benchmarks

Again, we see there is significant speedup to be discovered: more than 30% speedup can be achieved
for each of these benchmarks. Hence, for these benchmarks, the limited degree of freedom of the first
schedule dimension does not restrict significant speedups.

The performance distribution is almost flat, another evidence of the impact oftransformation coeffi-
cient freedom. We can conclude that the degree of freedom in the~ı class translates into variations in the
performance distribution.

We also conducted variance studies to capture the relative impact of schedule coefficients. We ob-
serve that the impact on performance distribution of the~p coefficients is lower than the~ı ones, while
the impact of thec coefficients is almost negligible. Overall, all the conducted experiments confirm our
initial hypothesis from Section 6.2.

6.2.4 Addressing the Generalization Issue

In order to assess the hypothesis that schedule coefficients can be ordered with respect to their impact on
performance, we need to distinguish two different concerns: the generalization to other programs, and
the generalization to other architectures.

Generalization to other programs We showed a positive correlation between the amount of variation
in the performance distribution and the degree of freedom in the~ı class, especially for the first schedule
dimension. Hence, it is expected that a traversal of each possible value for this class will be necessary
in order to guarantee the maximal performance is achieved. Nevertheless,in the general case, particular
fusions and distributions can achieve a dramatic impact on performance, and the full~ı+~p class is of
interest for traversal. Finally, traversing the degree of freedom for peeling and shifting is almost useless,
as the aim of those transformations usually is program legality and not program performance.
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Generalization to other architectures Generalizing the results obtained on AMD Athlon64 to other
architectures must be done with care. First, even if it is clear that the~ı class will still have a large impact
on performance regardless of the architecture, one has to pay attention tofusion and distribution: which
are important transformations for several embedded architectures. Hence, motivating the traversal of the
degree of freedom offered by the~ı+~p class. We also conducted experiments on the ST231 embedded
VLIW processor, though different from the AMD Athlon, we still observed a similar impact of the~ı class
to the shape of the performance distribution. Although smaller speedups were found (the regular VLIW
architecture is easier to model and well exploited by the STMicroelectronics compiler), our framework
is still able to discover performance improvements on all tested benchmarks, with an average of 13.3%.

An important factor on modern and upcoming architectures is the influence offrequency scaling
mechanisms such as the Advanced Configuration and Power Interface (ACPI). Considering for instance
that only the processor frequency is decreased by the operating system, then the influence of locality
effects may be reduced: the penalty to load a data element is reduced. In that context, an appropriate ap-
proach is to run the iterative process for a few representative configurations (e.g., maximal performance,
average and minimal power). The same observations on the benefit of exploring first the~ı class then also
the~ı+~p holds whatever the power configuration. As a best transformation is found for each use scenario,
versioning is used in the generated code. However we believe that in the general case where performance
is critical, limiting to the version found when the processor performance is maximal is satisfactory.

Performance distribution discussion From this study of the performance distribution of several pro-
grams, we deduce the following facts.

1. The degree of freedom in the~ı class ofΘ1, the first row ofΘ, translates into variation in the
performance distribution.

2. When the degree of freedom in the~ı class ofΘ1 is nonexistent, the performance distribution is
almost flat.

3. The impact of coefficients on performance is ordered:Θ1 impacts performance more thanΘ2, and
inside a schedule row,~ı coefficients impact performance more than~p andc.
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Chapter 7

Efficient Dynamic Scanning of the Search
Space

7.1 Introduction

Applying iterative optimization to the polyhedral model provides a significant breakthrough to the chal-
lenges of expressiveness and applicability. It enables searching in a space where every point is relevant:
each point corresponds to a legal, distinct program version resulting in the application of an arbitrar-
ily complex sequence of transformations. Since it is impractical to explore the whole search space on
large benchmarks, we propose heuristics to enumerate only a high-potential subspace, using the proper-
ties of the polyhedral model to characterize the highest potential and narrowest one. We first present a
heuristic adapted to the case of one-dimensional schedules in Section 7.2, which is able to discover the
space-optimal point in our experiments without having to traverse the full set.

We then extend our approach for one-dimensional schedule search to the case of multidimensional
schedules in Section 7.3, offering a feedback-driven iterative heuristic tailored to the search space prop-
erties of the polyhedral model. Although it quickly converges to good solutions for small kernels, larger
benchmarks containing higher dimensional spaces are more challenging and our heuristic misses op-
portunities for significant performance improvement. Thus, we introduce inSection 7.4 the use of a
genetic algorithm with specialized operators that leverage the polyhedral representation of program de-
pendences. We provide experimental evidence that the genetic algorithm effectively traverses huge opti-
mization spaces, achieving good performance improvements on large loop nests with complex memory
accesses.

7.2 Heuristic Search for One-Dimensional Schedules

7.2.1 Decoupling Heuristic

We represent the schedule coefficients of a statement as a three component vector:

θS(~xS) = (~ı ~p c)





~xS

~n
1




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where~ı represents the iterators coefficients,~p the parameters coefficients andc the constant coefficient.

In this search space representation, two neighbor points may representa very different generated
code, since a minor change in the~ı part can drastically modify the compound transformation (a pro-
gram whereinterchangeand fusionare applied can be the neighbor of a program with none of these
transformations). The most significant impact on the generated code is caused by iterator coefficients,
and we intuitively assume their impact on performance will be equally important. Conversely, modify-
ing parameters or constant coefficients is less critical (especially when one-dimensional schedules are
considered). Hence it is relevant to propose an exploration heuristic centered on the enumeration of the
possible combinations for the~ı coefficients.

The proposed heuristic decouples iterator coefficients from the others,enabling a systematic explo-
ration of all the possible combinations for the~ı part. At first, we do not care about the values for the~p
andc part (they can be chosen arbitrarily in the search space, as soon as they are compatible with the~ı se-
quence). The resulting subset of program versions is then filtered with respect to effective performance,
keeping the top points only. Then, we repeat the systematic exploration of thepossible combination of
values for the~p andc coefficients to refine the program transformation sequence.

The heuristic can be sketched in 5 steps.

1. Build the set of all different possible combinations of coefficients for the~ı part of the schedule,
inside the set of all legal schedules. Choose~p andc at random in the space, according to the~ı part.

2. For each schedule in this set, generate and instrument the corresponding program version and run
it.

3. Filter the set of schedules by removing those associated with a run time more thanx% slower than
the best one (combined with a bound on the limit of selected schedules).

4. For each schedule in the remaining set, explore the set of possible values for the~p and c part
(inside the set of all legal schedules) while the~ı part is left unmodified.

5. Select the best schedule in this set.

7.2.2 Discussion

Figure 7.1 details a run of our decoupling heuristic (with a filtering level of 5%and a static limit of
10 points per coefficient type, see below), and compares it with a plain random search for three of our
benchmarks. It shows the relative percentage of the best speedup achieved as a function of the number of
iterative runs. The decoupling heuristic (theDH plot) yields much faster convergence, bringing to light
the correlation between the speedup and the~i-coefficients. On these tested examples, one may achieve
over 98% of the maximum speedup within less than 20 iterations.

On the other hand, we observed the heuristic behavior to be comparable to afull random driven
approach (theR plot), as Figure 7.1 shows for thematmult kernel. Not surprisingly, as soon as the
density of good transformations is large, a random space scan may converge faster than our enumeration-
based method. For theMVT kernel, even if there is a large set of improved versions in the search space,
the low density of good ones is emphasized by the poor convergence of therandom-driven approach.

A more important problem is the scalability to larger SCoPs. To prevent the possibly large set of
legal values for the~ı coefficients, it is possible to:

1. impose a static or dynamic limit to the number of runs, which should be coupled toan exploration
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Figure 7.1: Comparison between the random and the decoupling heuristics

strategy starting with coefficients as close as possible to 0 (remember 0 may notcorrespond to any
legal schedule);

2. replace an exhaustive enumeration of the~ı combinations by a limited set of random draws in the~ı
space.

The choice between the exhaustive, limited or random exploration of the~ı space can be heuristically
determined with regards to the size of the original SCoP (this size usually gives a good intuition of the
search space size order of magnitude).

7.3 Heuristic Search for Multidimensional Schedules

7.3.1 Schedule Completion Algorithm

For SCoPs with more than 3 or 4 statements, the space construction algorithm leads to very large search
spaces, challenging any traversal procedure. It is possible to focusthe search on some coefficients of
the schedule with maximal impact on performance, postponing the instantiation ofa full schedule in a
second heuristic step. We show that such a two-step procedure can be designed without breaking the
fundamental legality property of the search space. This approach will beused extensively to simplify the
optimization problem.

We rely on the previous projection pass to guarantee it is always possible tocomplete or even correct
any point, by slightly modifying its coordinates, to make it lie within a given polytopeTd. Ourcompletion



102 7. EFFICIENT DYNAMIC SCANNING OF THE SEARCH SPACE

algorithm is sketched in the following. Given a pointv in a n-dimensional space with some coordinates
which have been set (for instance, with a heuristic search procedure as presented below), and some other
undefined coordinates:

1. set all undefined coordinates to 0;

2. for eachk∈ [1,n]:

(a) compute the lower boundlb and the upper boundub of vk in Td, given the coordinate values
for v1 . . .vk−1,

(b) if vk /∈ [lb,ub], thenvk = lb if vk < lb or vk = ub if vk > ub.1

Therefore it is possible to partially build a schedule prefix, e.g., values forthe~ı coefficients, leaving
the other coefficients undefined. Then, applying this completion algorithm willresult in finding the
minimal amount of complementary transformations to make the transformation lie in the computed legal
space. The completion algorithm motivates the order of coefficients in theΘ matrix. We showed that the
most performance impacting transformations (interchange, skewing, reversal) are embedded in the first
coefficients ofΘ — the~ı coefficients; followed by coefficients usually involved in fusion and distribution
— the~p coefficients; and finally the less impactingc coefficients, representing loop shifting and peeling.
The completion algorithm finds complementary transformations in order of leastto most impacting, as it
will not alter any vector prefix if a legal vector suffix exists in the space.

Three fundamental properties are embedded in this completion algorithm:

1. if v1, . . . ,vk is a prefix of a legal pointv, a completion is always found;

2. this completion will only updatevk+1, . . . ,vdmax, if needed;

3. whenv1, . . . ,vk are the~ı coefficients, the heuristic looks for the smallest absolute value for the~p
and constant coefficients, which corresponds to maximal (nested) loop fusion — relative to the~ı
coefficients.

Picking coefficients as close as possible to 0 has several advantages in general: smaller coefficients
tend to simplify code generation, improve locality, reduce latency, and increase the size of basic blocks
in inner loops.

While it is possible to exhaustively traverse the constructed space of legalversions for small SCoPs,
in the case of one-dimensional schedules, it becomes intractable in the multidimensional case. We have
given earlier a preliminary answer by means of a heuristic to narrow this space and accelerate the traversal
for the case of one-dimensional schedules. We build on this result to design a powerful heuristic suitable
for the multidimensional case.

7.3.2 A Multidimensional Decoupling Heuristic

Our approach is called thedecoupling heuristicas it leverages the completion algorithm of Section 7.3.1
to stage the exploration of large search spaces. It derives from the observation of the performance distri-
bution from Chapter 6, where density patterns hinted that not all schedulecoefficients have a significant

1Z-holes are detected by checking iflb > ub.
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impact on performance. The principle of the decoupling heuristic for one-dimensional schedules is (1)
to enumerate different values for the~ı coefficients, (2) to instantiate full schedules with the completion
algorithm, and (3) to select the best completed schedules and further enumerate the different coefficients
for the~p part.

A direct extension to the multidimensional case exhibits two major drawbacks. First, the relative
performance impact of the different schedule dimensions must be quantified. Second, an exhaustive
enumeration of~ı coefficients for all dimensions is out of reach, as the number of points exponentially
increases with the number of dimensions. Figure 5.8 illustrates this assertion bysummarizing the size of
the legal polytopes for different benchmarks, for all schedule dimensions.

Relations between schedule dimensionsTo extend the decoupling approach to multidimensional
schedules, we need to integrate interactions between dimensions. For instance, to distribute the outer
loop of a nest (which can improve locality and vectorization [4]), one can operate on the~p andc parts
of the schedule for the first dimension (a parametric shift). On the other hand, altering the~ı parts will
lead to the most significant changes in the loop controls. Indeed, the largest performance variation is
usually captured through the~ı parts, and a careful selection of those coefficients is mandatory to attain
the best performance; conversely, it is likely that the best performing transformations will share similar~ı
coefficients in their schedules.

Furthermore, the first dimension is highly constrained in general, since all dependences need to be
— weakly or strongly — considered. Conversely, the last dimension is the least constrained and often
carries only very few dependences.2

The decoupling heuristic in a nutshell We conducted an extensive experiment showing thatΘ1 (the
first time dimension of the schedule) is a major discriminant of the overall performance distribution.
Therefore, the heuristic starts with an exploration of the different legal values for the coefficients ofΘ1,
and the completion algorithm is called to compute the remaining rows ofΘ. Furthermore, this exploration
is limited to the subspace associated with the~ı coefficients ofΘ1 (and the remaining coefficients ofΘ1

are also computed with the completion algorithm), except if this subspace is smallerthan a given constant
L1 (L1 = 50 in our experiments).L1 drives the exhaustiveness of the procedure: the larger the degree
of freedom, the slower the convergence. By limiting to the~ı class we target only the most performance
impacting subspaces.

To enumerate points in the polytopes, we incrementally pick a dimension thenpick an integerin the
polyhedron’s projection onto this dimension. Note that the full projection is computed once and for all
by the Fourier-Motzkin algorithm presented in Section 5.2.3,beforetraversal. Technically, to enumerate
integer points of the subspace composed of the firstm columns ofTd, we define the following recursive
procedure to build a pointv:

EXPLORE (v,k,Td):

1. compute the lower boundlb and the upper boundub of vk in Td, given the coordinate values for
v1 . . .vk−1;

2. for eachx∈ [lb,ub]:

2This is typically the case when the final dimension is required to order the statements within an innermost loop.
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(a) setvk = x,

(b) if k< mcall EXPLORE (v,k+1, Td) else outputv.

The enumeration is initialized with a call to EXPLORE (v,1,Td). The completion algorithm is then
called on each pointv generated, to compute a legal suffix forv (corresponding to the columns[m+1,n]
of Td), finally instantiating a legal point of full dimensionality.

Then, the heuristic selects thex% best values forΘ1 (x= 5% in our experiments), it proceeds with
the exploration of values for coefficients ofΘ2 with the selected values ofΘ1, and recursively until the
last but one dimension of the schedule. The last dimension (corresponding to the innermost nesting depth
in the generated code) is not traversed, but completed with a single value: exploring it would yield a huge
number of iterations, with limited impact on the generated code, and negligible impact on performance.
Eventually, the exploration is bounded with a static limit (1000 evaluations in our experiments).

7.3.3 Experiments on AMD Athlon

Figure 7.3 shows the results fordct along with seven other kernels from the UTDSP suite that were
amenable to the polyhedral representation without code modification. Note that herematmult is a 2
statement matrix multiplication, for 10×10 matrices. See Chapter 6 for an extensive study of this kernel
on larger dataset sizes.

We report the number of statements (# Stm.), the size of the~i class for the first schedule dimension,
the size of the search space considered (Space), the run number at which the best performing version was
found (Id Best: the lower, the earlier), and the speedup achieved (Speedup). The overhead of picking
a point in the search space and building its syntactic representation is negligiblein comparison to the
execution time of the program version, and several points can be tested within a second. Finally, the
procedure is fully automated.

Similarely as in Chapter 6, our target architecture is an AMD Athlon X64 3700+(single core), run-
ning at 2.4GHz (configured with 64KB+64KB L1 cache and 1024k L2 cache). The system is Mandriva
Linux and the native compiler is GCC 4.1.2. All generated programs (as well as the original codes) were
compiled using:-O3 -msse2 -ftree-vectorize.

dct matmult lpc edge-c2d iir fir lmsfir latnrm
#Inst. 5 2 12 3 8 4 9 11

i 39 76 243 1 1 1 1 1

Space 1.6×1016 912 > 1025 5.6×1015 > 1019 9.5×107 2.8×108 > 1022

Id Best 46 16 489 11 34 33 51 6
Speedup 57.1% 42.87% 31.15% 5.58% 37.50% 40.24% 30.98% 15.11%

Figure 7.2: Heuristic Performance for AMD Athlon

The heuristic succeeds in discovering an average speedup of 32.56% for the 8 tested benchmarks. All
the best versions are the result of the application of a complex transformation sequence, syntactically very
different from the original code. Analysis of the performance counters for these transformations shows
improvements in memory behavior, combined with a better workload of the processor units which is
likely to be the result of hard to predict interaction between the compiler optimizations and the processor
features.

The limited performance improvement foredge is directly correlated to the code structure: this
benchmark performs a convolution of a 3x3 kernel, and is an excellent candidate for optimization with
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loop unrolling — a transformation not embedded in our search space. Our technique is fully compat-
ible with other iterative search techniques such as parameters tuning [3], and it is expected that this
combination would bring excellent performance.

For the case of highly constrained benchmarks, we also specifically studied the performance of a
single statically computed schedule, corresponding to applying the completion heuristic on a fully unini-
tialized schedule. For this class of benchmarks, this schedule performs very well, and succeeds in dis-
covering 75%–99% of the maximum speedup available in the space. We recallthat this schedule is
computed in a deterministic fashion from the spaceT , by using the completion algorithm on all coef-
ficients. Hence this schedule is generatedwithout any performance evaluationof other schedules. The
proposed heuristic can be coupled with the detection of the special case where the size of the~i class on
the first dimension is 1,to avoid traversing a space leaving little room for further improvements (as it
is expected that the performance distribution will be almost flat). This approach leads to a an average
17.8% speedup on the 5 benchmarks where this criteria applies, without anyfurther evaluation required.

7.3.4 Extensive Experimental Results

We now consider three target architectures. The AMD Alchemy Au1500 is an embedded SoC with a
MIPS32 core (Au1) running at 500MHz. We used GCC 3.2.1 with the -O3 flag (version of GCC and
option with peak performance numbers, according to the manufacturer). The STMicroelectronics ST231
is an embedded SoC with a 4-issue VLIW core running at 400MHz and a blocking cache. We used
st200cc 1.9.0B (Open64) with the flags-O3 -mauto-prefetch -OPT:restrict. The AMD Athlon
X64 3700+ has a 1MB L2 cache and runs at 2.4GHz. It runs MandrivaLinux and the native compiler is
GCC 4.1.1. We used the following optimization flags for this platform which are known to bring excellent
performance:-O3 -msse2 -ftree-vectorize . For this particular machine, hardware counters were
used to collect fine-grained cycle counts, and we used a real-time priority scheduler to minimize OS
interference. We used the average of 10 runs for all performance evaluations.

We implemented an instancewise dependence analysis, the construction of thespace of legal trans-
formations, and the efficient scanning algorithms introduced in this thesis.3 We used free software such
asPipLib [39, 122] (a polyhedral library and parametric integer linear programmingsolver) andCLooG
[10] (an efficient code generator for the polyhedral model). For each tested point in the search space, (1)
we generated the kernel C code withCLooG,4 (2) then we integrated this kernel in the original benchmark
along with instrumentation to measure running time (we use performance counters when available), (3)
we compiled this code with the native compiler and appropriate options, (4) andfinally ran the program
on the target architecture and gathered performance results. The original code is included in this proce-
dure starting at the second step, for appropriate performance comparison. The full iterative compilation
and execution process takes a few seconds using our heuristic, and upto a few minutes using the GA
described in Section 7.4 for the largest benchmark (up to 1000 tested versions). The time to compute
the legal space and to generate points is negligible with respect to the total running time of the tested
versions.

Results Figure 7.3 shows the results for the three architectures we considered. We report the total
numbers of tested versions (Tested), the run index of the best performing version (Id Best; the lower,

3LETSEE, the LEgal Transformation SpacE Explorator, available athttp://letsee.sourceforge.net.
4We use CLooG version 0.14.0 with default options.
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compress-dct edge iir fir lmsfir matmult
Tested 480 243 1000 77 1000 81

AMD Athlon Id. Best 19 11 34 33 51 16
Perf. Imp. 37.11% 5.58% 37.50% 40.24% 30.98% 42.87%

Tested 480 243 1000 77 1000 81
ST231 Id. Best 39 12 6 2 9 16

Perf. Imp. 15.11% 3.10% 24.91% 17.96% 10.17% 17.91%
Tested 480 243 1000 77 1000 81

Au1500 Id. Best 30 17 38 27 11 17
Perf. Imp. 22.37% 2.51% 3.12% 14.00% 15.80% 20.18%

latnrm lpc ludcmp radar Average
Tested 1000 1000 1000 1000

AMD Athlon Id. Best 6 489 37 405
Perf. Imp. 15.11% 31.15% 4.50% 6.42% 25.14%

Tested 1000 1000 1000 1000
ST231 Id. Best 13 158 391 709

Perf. Imp. 2.61% 1.99% 6.33% 4.12% 10.42%
Tested 1000 1000 1000 1000

Au1500 Id. Best 43 82 175 454
Perf. Imp. 15.19% 14.08% 3.66% 3.39% 11.43%

Figure 7.3: Results of the decoupling heuristic for AMD Athlon, ST231 and Au1500

the earlier), and the performance improvement of execution time in percentage (Perf. Imp.). We also
imposed a static limit of evaluating 1000 data points in the search space.5

Discussion Optimizing static control parts makes the optimization insensible to the dataset, because
the control flow is not changed whatever the data. However, iterative search is sensitive to the dataset
size. To guarantee optimality, one should perform the search for several values of the size of the dataset,
because there is no guarantee that the best transformation is identical when the dataset size changes.
Here, all UTDSP experiments use the reference dataset size. Increasing data size would emphasize
locality effects, yielding actually an even better performance improvements. E.g., matmult on Athlon
with n = 250 yields 361% performance improvement,n = 64 yields 318% improvement, whereas the
reference valuen= 10 yields 43% improvement. However, changing the dataset size may theoretically
also require to search again for the best transformation. This would lead togenerate different optimized
versions of the code for different dataset size, as most of the auto-tuning libraries such as ATLAS do.

Our results show significant improvement on all kernels of the UTDSP suite.In addition, about 50
runs were sufficient for kernels with less than 10 statements (all butlpc andradar).

For all benchmarks, the best program version is syntactically very far from the original one.

A good illustration of this is given for theRing-Roberts running example, which achieves a 47%
performance improvement on a full HD image on AMD Athlon; hardware counter details show a 54%
reduction of the L1 hit/miss ratio and a 51% of the data TLB misses. This complex transformation is
the result of multidimensional shifting and peeling of the iterations preventing fusion, and the complete
fusion of the remaining iterations.

We also noticed that performance improvements are often the result of indirect enabling of back-
end compiler optimizations (e.g., vectorization or scalar promotion), in addition to the direct impact on
hardware components (e.g., locality). Modern compiler optimization heuristics are still fragile, and the
interactions between optimization phases are not captured in their design. Predicting this interaction on

5This matches the maximum number of versions considered by the genetic algorithm in Section 7.4.



7.4. EVOLUTIONARY TRAVERSAL OF THEPOLYTOPE 107

non-trivial codes is still out of reach, and slight syntactic differencescan trigger different optimization
results. Testing different source code having the same semantics is one way to circumvent the compiler’s
optimization unpredictability.

In addition, the best iteratively found transformation for a given benchmark is different when con-
sidering a different target architecture. This is due to different interactions with the compiler, as well as
different architectural features to optimize for. Note that it is not a consequence of working with more
expressive schedules: we already highlighted a similar pattern for the case of one-dimensional sched-
ules. It confirms the complexity of the optimization problem and the relevance ofa feedback-directed
approach.

The heuristic heavily relies on the observation that the first dimension of the schedule contains very
few points — it traverses this dimension exhaustively. However, exhaustive enumeration is only possi-
ble for small kernels, such as most UTDSP benchmarks. Unfortunately, for larger programs likelpc,
ludcmp, radar, and to some extent onlatnrm, this approach does not scale.

To address this scalability issue, we substitute the exhaustive search with a traversal driven by a
genetic algorithm.

7.4 Evolutionary Traversal of the Polytope

This section introduces novel genetic operators tailored to the traversal of polytopes of legal affine sched-
ules.

Genetic algorithms (GA) [52] are known for their genericity: we chose an evolutionary approach be-
cause of the natural encoding of the geometric properties of the search space into crossover and mutation
operators. The two main properties are the following:

1. to enforce legality and uniqueness of the program versions, the genetic operators must be closed
on the search space polytope; we construct dedicated mutation and crossover operators satisfying
this property;

2. unlike random search, the traversal is characterized by its non-uniformity (from the initial popula-
tion and the crossovers); this is utterly important as the largest part of the search space is generally
plagued with poor or similar performing versions.

Genetic algorithms have often been used in program optimization. Our contribution is to reconcile
fine-grain control of transformation heuristics — as opposed to optimization flag or pass selection [109,
3] — with the guaranteed legality of the transformed program — as opposed tofiltering approaches
[87, 80, 81] or always-correct transformations [107, 71].

7.4.1 Genetic Operators Design

Using classical GA operators would not be an efficient way to generate data points in our search space.
This is because legal schedules lie in affine bounds that are strongly constrained and changing them at
random has a very low probability of preserving legality. Moreover, in general, this probability decreases
exponentially with the space dimension [87]. We thus need to understand the properties of the space of
legal schedules, and to embed them into dedicated GA operators.
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Some properties of affine schedules The construction algorithm outputs one polytope per schedule
dimension. We can deduce numerous properties on these polytopes, eitherderiving from the construction
algorithm or from affine scheduling itself. In the following, the termaffine constraintrefers to any
dependence, iteration domain, or search bound constraint on coefficients of the schedule.

1. No affine constraint involves coefficients from different rows ofΘ, since those coefficients are
computed from distinct polytopes. Of course, multiple coefficients inside a rowcan be involved in
a constraint.

2. Multiple coefficients involved in a constraint are calleddependent. Each row can be partitioned
into classes of dependent coefficients, where no constraint involves coefficients from different
classes. For example, in the polyhedron defined by{x1 + x2 ≥ 0∧ x3 ≥ 0} we say that the set
{x1,x2} is independent from the set{x3}. Legality preservation is local to each class of dependent
coefficients.

We design novel genetic operators exploiting and preserving these properties.

Initialization We first introduce an individual with a statically computed schedule, built by applying
the completion algorithm on a fully-undefined schedule. This choice sharesits motivation with the
decoupling heuristic in Section 7.3.2.

The rest of the population is initialized by performing aggressive mutations onthis static schedule;
we generate 30 to 100 individuals, depending on the space dimension. Theinitial population is heavily
biased towards a particular subspace (typically the subspace of the~ı coefficients), emphasizing the non-
uniformity of the traversal.

Mutation The mutation operator starts with the computation of a probability distribution for themod-
ification of each schedule coefficient. This probability is driven by three factors; the first one derives
directly from the heuristic of the one-dimensional case:

• coefficients of the iteration vectors have a dramatic impact on the structure ofthe generated code;
minor modifications trigger wild jumps in the search space;

• coefficients with few linear dependences with others may require more mutations to trigger sig-
nificant changes, e.g., modifying their value will not require updating many other coefficients to
make the point legal;

• lower dimensions and especially the scalar ones usually have a lower impact on performance.

In addition, we weigh the probabilities with a uniform annealing factor, to tune the aggressiveness of
the mutation operator along with the maturation of the population.

We randomly pick a valuewithin the legal bounds for this coefficient, and according to the distribution
of probabilities. As this mutation may cause other coefficients to become incorrect, we then update the
schedule with the completion algorithm depicted in Section 7.3.1; it is a simple update because the
schedule prefix can be kept in the legal space, computing mutated coefficients in the reverse order of
Fourier-Motzkin elimination.
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We also experimented with a simpler mutation operator, where the bounds to pick mutated values
where not adjusted to the corresponding polytope of legal versions, applying our correction mechanism
a posteriori. This approach did not prove very effective as coefficients are often correlated or severely
constrained: randomly picking values for multiple correlated coefficients often leads to identical sched-
ules after correction. Only an incremental application of the correction mechanism avoids the generation
of many duplicates (which strongly degrade the effectiveness of the mutation operator).

Crossover We propose two operators. Therow crossover aims to compensate the row-wise scope
of the mutation operator. Given two individuals represented byΘ andΘ′, the row crossover operator
randomly picks rows of eitherΘ or Θ′ to build a new individualΘ′′. This operator obviously preserves
legality since there are no dependences between rows. Since the mutation operates within a schedule
dimension, it may succeed in finding good candidates for a given row ofΘ or Θ′, but may mix these with
ineffective rows. Combining these rows may lead to a good schedule, with a much higher probability
than with mutation alone.

The columncrossover is dedicated to crossing independent classes of schedule coefficients (repre-
sented by sets of columns not connected by any affine constraint); this operator is quite original and
specific to the geometrical properties of the search space. It can be seen as a finer-grained crossover
operator. From two individualsΘ andΘ′, it randomly selects an independent class from either parent
— at every dimension — to buildΘ′′. When there is only one independent class in a given schedule
dimension this operator behaves like the row crossover. This situation is morelikely to occur for outer
schedule dimension(s). But inner schedule dimensions are less constrained, because numerous depen-
dences have been solved at previous level. Hence, the probability of having independent statements (that
is, independent classes of schedule coefficients) increases with the scheduling level.

We rely on the geometric properties of the polytope to compute classes of dependent coefficients for
a given schedule dimension. These classes are computed immediately after thesearch space polytope is
built, and do not change during traversal. This operator preserves legality as it only modifies independent
sets of schedule coefficients. Dependences constrain schedule coefficients in pairs of statements. Several
transitive steps are needed to characterize all correlations between coefficients in a dependent class. This
operator carefully refines the grain of schedule transformations, while preserving legality.

Selection The selection process uses the best half of the current population for the next generation.
Mutation and crossover are applied on these individuals to generate a newfull population. Instead of
considering only running time, a better option might be to combine multiple metrics, including perfor-
mance predictors (to avoid running the code) or multiple hardware counters.

7.4.2 Experimental Results

Figure 7.4 summarizes the results of the genetic algorithm applied to all benchmarks for the three archi-
tectures presented in the previous section, with the same experimental setup.Row Heuristic/GA shows
the fraction of the performance improvement achieved by the decoupling heuristic w.r.t. the genetic algo-
rithm, and fractions are averaged for the benchmarks of less than 10 statements versus more than 10. We
initialized the population with 30 to 100 individuals, and performed at most 10 generations; therefore,
the maximum number of runs for each program was 1000.

Comparing these results with the table in Figure 7.3 shows the efficiency and scalability of our
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Architecture compress-dct edge iir fir lmsfir matmult

AMD Athlon 44.17% 7.86% 32.18% 40.70% 24.23% 42.87%
Heuristic/GA 84.31% 82.26% 93.58% 98.86% 80.71% 100%

ST231 18.42% 3.29% 27.40% 18.81% 8.63% 17.91%
Heuristic/GA 83.33% 94.52% 90.91% 95.48% 85.14% 100%

AMD Au1500 25.11% 3.03% 4.07% 14.10% 19.18% 22.67%
Heuristic/GA 89.21% 82.83% 78.29% 99.50% 81.64% 88.93%

Architecture latnrm lpc ludcmp radar Average

AMD Athlon 28.23% 45.84% 69.63% 40.18% 37.58%
Heuristic/GA 53.57% 67.68% 6.52% 16.05% 89.95% / 35.95%

ST231 0.86% 3.44% 5.96% 28.32% 13.30%
Heuristic/GA 92.30% 32.20% 22.26% 30.82% 91.56% / 44.39%

AMD Au1500 27.01% 17.43% 15.71% 30.87% 17.91%
Heuristic/GA 55.55% 82.35% 16.56% 10.91% 86.73% / 41.35%

Figure 7.4: Results of the Genetic Algorithm. The decoupling heuristics succeeds in discovering 78-
100% of the performance improvement achieved by GA for all benchmarksof less than 10 statements.
For larger benchmarks, the GA performs 2.46× better in average, and up to 16× better.

method. The genetic algorithm (GA) achieves good performance improvements for the larger kernels;
these improvements are much better than those of the decoupling heuristic for the larger benchmarks. On
the other hand, the decoupling heuristic exposes 78–100% of the improvement obtained with GA within
the first 50 runs, for all kernels of less than 10 statements

Results are better on AMD Athlon than on embedded processors, probablybecause the architecture
is more complex: a good interaction between architectural components is harder to achieve and brings
higher improvements. Conversely, the ST231 and AMD Au1500 have a predictable behaviour, more
effectively harnessed by the back-end compiler, and showing less room for improvement; yet our results
are still significant for such targets.

We report a detailed study of the representativecompress-dct benchmark, on AMD Athlon. Fig-
ure 7.5 summarizes the results, and confirms the huge advantage of the GA given the statistically sparse
and chaotic occurrence of performance-enhancing schedules. Figure 7.5(a) shows the convergence of
ourGA approach versus aRandom traversal in the space of legal schedules (only legal points are drawn).
The GA algorithm ran for 10 generations from an initial population of 50 individuals. Both plots are
an average of 100 complete runs. Figure 7.5(b) reports the performance distribution of the legal space.
We exhaustively enumerate and evaluate all points with a distinct value for the~ı+~p coefficients of the
first schedule dimension, combined with all points with a distinct~ı value for the second one; a total of
1.29×106 schedules are evaluated. For each distinct value of the first schedule dimension (plotted in the
horizontal axis), we report the performance of theBest schedule, theWorst one, and theAverage for all
tested values of the second schedule dimension. Figure 7.5(c) shows the performance distribution for all
tested points of the second schedule dimension, provided a single value forthe first one, sorted from the
best performing one to the worst (the best performing schedule belongsto this chart).

Figure 7.5(a) shows that our GA converges much faster than random search. Random search achieves
only 18% performance improvement, after 500 runs, while the GA takes only 120 runs to match this
result. The GA converges towards 44.1% performance improvement after 350 runs, at the 7th generation,
before the imposed limit of 10 generations. This the maximum performance improvement available, as
shown by the exhaustive search experiments in Figure 7.5(b). The effectiveness of the genetic operators
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(a) (b)

(c)

Figure 7.5: Performance Distribution ofcompress-dct, AMD Athlon. GA discovers the maximum
performance improvement available in the search space.

is illustrated by the lack of correlation of the performance improvements and theactual performance
distribution. Conversely, random traversal follows the shape of the performance distribution, and on
average is not able to reach the best performing schedules — as their density in the space is very low. The
difficulty to reach the best points in the search space is emphasized by their extremely low proportion:
only 0.14% of points achieve at least 80% of the maximal performance improvement, while only 0.02%
achieve 95% and more, as observed in Chapter 6.

Finally, we studied the behavior of multiple schedules for thecompress-dct benchmark, analyzing
hardware counters on Athlon. This study highlights complex interactions between the memory hierarchy
(both L1 and L2 accesses are minimized to achieve good performance), vectorization, and the activity
of functional units. The best performing transformation reduces the numbers of stall cycles by a factor
of 3, while improving the L2 hit/miss ratio by 10%. Transformation sequences achieving the optimal
performance are opaque at first glance: they involve complex combinations of skewing, reversal, distri-
bution and index-set splitting. These transformations address specific performance anomalies of the loop
nest, but they are often associated with the interplay of multiple architecture components. Moreover,
we observe that the best optimizations are usually associated with more complexcontrol flow than the
original code. The number of dynamic branches is increased in most cases, although stall cycles are
heavily reduced due to locality and ILP improvements.
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Our results confirm the potential of iterative optimization to accurately capturethe complex behavior
of the processor and compiler, and extends its applicability to optimization problems far more complex
than those typically solved in adaptive compilation.
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Chapter 8

Iterative Selection of Multidimensional
Interleavings

8.1 Introduction

Selecting the appropriate combination of loop fusion, loop distribution and code motion is a key per-
formance factor, and a highly target-specific problem — the best combination varies across architec-
tures. Yet this selection is very hard, in terms of expressiveness, semantics preservation, and profitability.
Worse, deciding which sequence of enabling transformations — requiredfor semantics preservation —
to obtain the selected combination of loop fusion and distribution is a hard combinatorial problem.

For the first time, we address this fundamental challenge in its most general setting, offering to the
optimizer the choice of selecting fusions and distributions among a space of all,distinct and semantics-
preserving transformations. We propose a level-by-level decompositionof the problem to exhibit nec-
essary and sufficient conditions. Compared to the state-of-the-art in loop fusion, we consider arbitrarily
complex sequences of enabling transformations, in the multidimensional case.This generalization of
loop fusion, calledfusability, results in a dramatic broadening of the expressiveness (hence of expected
effectiveness) of the optimizer.

To make the characterization of semantics-preserving transformations tractable, we have introduced
the first affine encoding of all statement interleavings at a given loop level in Chapter 3. We now demon-
strate key properties about fusability of loops at the statement level, and study the transitivity of this
relation along with enabling transformations. We first state in Section 8.2 the optimization problem in
the polyhedral framework by giving a concrete example for the need of different loop fusion / distribution
choices for different target architectures. In Section 8.3 we presentkey results to reduce the problem of
deciding the fusability of statements to the existence of compatible pairwise loop permutations. We fur-
ther improve the tractability through the design of an objective function to predict complex sequences of
enabling transformations for fusion, that include coarse-grain parallelism and tiling. Finally, we present
a complete and tractable optimization algorithm to select profitable interleavings, before its experimen-
tal evaluation in Section 8.4. Our experiments demonstrate the effectivenessof this approach, both in
obtaining solid performance improvements over existing auto-parallelizing compilers, and in achieving
portability of performance on various modern multi-core architectures.
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8.2 Problem Statement

8.2.1 Motivating Example

Let us illustrate the optimization challenge and the associated formalism on a simple example, again a
series of three matrix-products,ThreeMatMat, shown in Figure 8.1.

for (i1 = 0; i1 < N; ++i1)
for (j1 = 0; j1 < N; ++j1)

for (k1 = 0; k1 < N; ++k1)
R C[i1][j1] += A[i1][k1] * B[k1][j1];
for (i2 = 0; i2 < N; ++i2)

for (j2 = 0; j2 < N; ++j2)
for (k2 = 0; k2 < N; ++k2)

S F[i2][j2] += D[i2][k2] * E[k2][j2];
for (i3 = 0; i3 < N; ++i3)

for (j3 = 0; j3 < N; ++j3)
for (k3 = 0; k3 < N; ++k3)

T G[i3][j3] += C[i3][k3] * F[k3][j3];

Figure 8.1: Running example:C= AB, F = DE, G=CF

We setN = 512, and computed 5 different versions ofThreeMatMat resorting to complex transfor-
mations that include tiling. We experimented on three high-end machines described in Section 8.4, using
Intel ICC compiler for the AMD and Intel machines, and IBM XL/C for the Power5+, all with aggressive
optimization flags. With the Power5+, none of the versions are able to outperform the native compiler.
But with the Intel and AMD machines, we outperform ICC by a factor 2.28× and 1.84×, respectively.
We observe that the best found version depends on the target machine:for the Intel, the best found ver-
sion is shown in Figure 8.2(2), on which further polyhedral tiling and parallelization have been applied
(not shown in Figure 8.2). But on the AMD machine distributing all statements and individually tiling
them performs best, 1.23× better than 8.2(2).

for (t1 = 0; t1 < N; ++t1) {
for (t3 = 0; t3 < N; ++t3)

for (t5 = 0; t5 < N; ++t5)
R C[t3][t1] += A[t3][t5] * B[t5][t1];

for (t3 = 0; t3 < N; ++t3)
for (t5 = 0; t5 < N; ++t5)

S F[t1][t3] += D[t1][t5] * E[t5][t3];
for (t3 = 0; t3 < N; ++t3)

for (t5 = 0; t5 < N; ++t5)
T G[t5][t3] += C[t5][t1] * F[t1][t3];

}
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for (t1 = 0; t1 < N; ++t1)
for (t3 = 0; t3 < N; ++t3)

for (t5 = 0; t5 < N; ++t5) {
R C[t1][t3] += A[t1][t5] * B[t5][t3];
S F[t1][t3] += D[t1][t5] * E[t5][t3];

}
for (t1 = 0; t1 < N; ++t1)

for (t3 = 0; t3 < N; ++t3)
for (t5 = 0; t5 < N; ++t5)

T G[t1][t3] += C[t1][t3] * F[t3][t5];
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Figure 8.2: Two possible legal transformations forC= AB, F = DE, G=CF

The challenge lies in the conjunction of a combinatorial transformation space and a poorly under-
stood profitability model for those transformations. Figure 8.2 shows a few combinations of loop fusions:
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one combination may expose better temporal reuse of the intermediate arraysC and/orF, while potentially
damaging other important performance components. Of course, given a selected combination of loop fu-
sions, many other decisions have to be taken: is it profitable to interchange some of the loops to exhibit
fine-grain vector parallelism? is it possible to tile the iteration space (blocked-matrix-multiplication)
to further improve temporal locality? Is such a tiling transformation compatible with the extraction of
coarse-grain thread-level parallelism? Is there a way to select those transformations to benefit from both
thread-level and vector parallelism? Of course, there is no well understood methodology or heuristic
to answer such questions. The state-of-the-art provides only rough models of the impact of loop trans-
formations on the actual execution, and it does not provide any effectiveness guarantee regarding the
heuristics.

8.2.2 Challenges and Overview of the Technique

We want to provide a general and sound optimization framework based on the selection of multi-level
statement interleavings. Several challenges must be tackled:

1. Expressionof any possible multidimensional statement interleaving in a convex fashion, to enable
the design of operation research algorithms (e.g., linear programs) for interleaving selection, and
to enable an efficient enumeration of this set; this was covered in Chapter 3.

2. Pruning this set so that all and only semantics-preserving interleavings remain, in themost gen-
eral framework of arbitrary transformations for interleaving construction; this was covered also in
Chapter 3.

3. providingtractabletechniques to perform program optimization based on interleaving selection,
together with powerful optimizations such as loop tiling and parallelization.

Our technique relies on a level-by-level decomposition for all these problems. In a nutshell, we
proceed from the outermost dimension (corresponding to the outermost loops) inwards, and prune the
space of interleavings at each dimension. This results in a space of candidate interleavings at that level,
for each of which we may exhibit an optimizing affine schedule enabling the effective transformation of
the loop nest.

8.3 Optimizing for Locality and Parallelism

In Chapter 3 we defined a general framework for multi-level statement interleaving. We address now
the problem of providing a complete optimization algorithm that integrates tiling and parallelization,
along with the possibility to iteratively select different interleavings. Interleaving selection allows us to
determine which statements are fused and which are not, a critical decision for performance.

The optimization algorithm proceeds recursively, from the outermost levelto the innermost. At each
level of the recursion, weselectthe associated schedule dimension by instantiating its values. We then
build the set of semantics-preserving interleavings at that level, pick one and proceed to the next level
until a full schedule is instantiated.

We first present additional conditions on the schedules to improve the performance of the generated
transformation, by integrating parallelism and tilability as criteria. As we progressively instantiate the
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schedule dimensions, constructing the set of legal interleaving at a givenlevel is simplified: we have
reduced the number of unknowns, as we know exactly which dependences have been solved at a previous
level. We show how to construct this set without having to resort to testing theset of legal schedules for
sets larger than a pair of statements. Finally we present the complete optimization algorithm.

8.3.1 Additional Constraints on the Schedules

Tiling (or blocking) is a crucial loop transformation for parallelism and locality. Bondhugula et al. de-
veloped a technique to compute an affine multidimensional schedule such that parallel loops are brought
to the outer levels, and loops with dependences are pushed inside [20, 21]; at the same time, the number
of dimensions that can be tiled are maximized. We extend and recast their technique into our framework.

Legality of tiling Tiling along a set of dimensions is legal if it is legal to proceed in fixed block sizes
along those dimensions: this requires dependences to not be backward along those dimensions, thus
avoiding a dependence path going out of and coming back into a tile; this makesit legal to execute the
tile atomically. Irigoin and Triolet showed that a sufficient condition for a scheduleΘ to be tilable [60],
givenR the dependence cone for the program, is that

Θ.R≥~0

In other words, this is equivalent to saying that all dependences must beweakly satisfied for each dimen-
sionΘk of the schedule. Such a property for the schedule is also known as Forward Communication Only
property [53]. Note that schedule does not need to respect the FCO property to be legal: given a schedule
dimensiond at which a dependence is strongly satisfied, it does not need to be taken into account for the
legality constraints for subsequent schedule dimensions. On the contrary, FCO requires the dependence
to still be taken into account for subsequent dimensions, but enforcing only weak satisfaction (that is,
ΘS

k(~xS)−ΘR
k (~xR) ≥ 0) is enough. Considering thep first schedule dimensions, if they respect the FCO

property then they can be permuted without breaking the program semantics[53, 20]. Tiling thesep
dimensions is thus legal.

Returning to Lemma 3.4, it is possible to add an extra condition such that thep first dimensions of
the schedules are permutable. This gives a sufficient condition for thep first dimensions to be tilable.
This translates into the following additional constraint on schedules, to enforce permutability of schedule
dimensions.

Definition 8.1 (Permutability condition) Given two statements R,S. Given the conditions for semantics-
preservation as stated by Lemma 3.4. Their schedule dimensions are permutable up to dimension k if in
addition:

∀DR,S, ∀p∈ {1, . . . ,k}, ∀〈~xR,~xS〉 ∈ DR,S,

ΘS
p(~xS)−ΘR

p(~xR)≥ δDR,S
p

To translatek into actual number of permutable loops, thek associated schedule dimensions must
express non-constant schedules (unless these dimensions could express only statement interleaving).
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Rectangular tiling Selecting schedules such that each dimension is independent with respectto all
others enables a more efficient tiling. Rectangular or close to rectangular blocks are achieved when
possible, avoiding complex loop bounds in the case of arbitrarily shaped tiles. We resort to augmenting
the constraints, level-by-level, with independence constraints. At this stage, this implies: to compute
schedule dimensionk, we need to haveinstantiateda schedule for all previous dimensions 1 tok−1.
This comes from the fact that orthogonality constraints are not linear or convex and cannot be modeled
as affine constraints directly. In its complete form, adding orthogonality constraints leads to a non-
convex space, and ideally, all cases have to be tried and the best among those kept. When the number
of statements is large, this leads to a combinatorial explosion. In such cases,we restrict ourselves to
the sub-space of the orthogonal space where all the constraints are non-negative (that is, we restrict to
haveθi, j ∈ N). By just considering a particular convex portion of the orthogonal sub-space, we discard
solutions that usually involve loop reversals or combination of reversals withother transformations;
however, we believe this does not make a strong difference in practice. For the rest of this chapter,we
now fix θi, j ∈ N.

Flexible permutability condition If it is not possible to express permutable loops for the first level,
Bondhugula proposed to split the statements into distinct blocks to increase thepossibility to find outer
permutable loops [21]. Since our technique already supports explicitly the selection of any semantics-
preserving possibility to split statements into blocks via the statement interleaving,we propose instead to
enable the construction ofinner permutable loops, by choosing to maximize the number of dependences
solved at the first levels until we (possibly) find permutable dimensions at thecurrent level. Doing so
increases the freedom for the schedule at inner dimensions when it is notpossible to express permutable
loops at the outer levels. Maximizing the number of dependences solved at agiven level was introduced
by Feautrier [42] and we use a similar form:

Si = max∑
DR,S

δDR,S

k (8.1)

This cost function replaces the permutability condition, when it is not possibleto find a permutable
schedule for a given dimensionk.

Dependence distance minimization There are infinitely many schedules that may satisfy the per-
mutability criterion from Definition 8.1 as well as (8.1). An approach that has proved to be simple,
practical, and powerful has been to find those schedules that have the shortest dependence components
along them [20]. For polyhedral code, the distance between dependent iterations can always be bounded
by an affine function of the global parameters, represented as ap-dimensional vector~n.

u.~n+w≥ΘS(~xS)−ΘR(~xR) 〈~xR,~xS〉 ∈ DR,S (8.2)

u ∈ Np,w∈ N

The permutability and bounding function constraints are recast through theaffine form of the Farkas
Lemma such that the only unknowns left are the coefficients ofΘ and those of the bounding function,
namelyu, w. Coordinates of the bounding function are then used as the minimization objective to obtain
the unknown coefficients ofΘ.

minimize≺ (u,w, . . . ,θi,1, . . .) (8.3)
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The resulting transformation is a complex composition of multidimensional loop fusion, distribu-
tion, interchange, skewing, shifting and peeling. Eventually multidimensional tiling is applied on all
permutable bands, and resulting tiles can be executed in parallel or at worse with a pipeline-parallel
schedule [21]. Tile sizes are computed such that data accessed by eachtile roughly fits in the L1 cache.

8.3.2 Computation of the Set of Interleavings

As we now proceed level-by-level, we face a simpler problem when considering the construction of the
set of interleavings. We haveselecteda schedule for the previous levels, and so we know exactly the
polyhedral dependence graph to consider for the current level.

We look at the problem of deciding if a given set of statements is fusable at level k, given the schedule
constraints from Definition 8.1 and a schedule for levels 1 tok−1. The solution put forward in Chapter 3
resorts to testing the existence of a semantics-preserving schedule leadingto fusionfor the whole set of
statements. As we are now considering a more constrained problem, we propose a technique based on
checking the existence of compatible permutations along allpairs of statementsin the set.

Fusability is the capability to exhibit a semantics-preserving schedule such that some of the instances
are fused according to Definition 3.6. First let us remark that fusability is not a transitive relation. As
an illustration, consider the sequence of matrix-by-vector productsx = Ab, y = Bx, z= Cy. While it
is possible to fuse them 2-by-2, it is not possible to fuse them all together. When considering fusing
loops for x = Ab, y = Bx, one has to permute loops iny = Bx. When considering fusing loops for
y= Bx, z=Cy, one has to keep loops iny= Bx as is.

Let us now propose a decomposition ofone-dimensional schedulesin two sub-parts, with the objec-
tive of isolating loop permutation from the other transformations embedded in theschedule. One can
decompose a one-dimensional scheduleΘR

k with coefficients inN into two sub-schedulesµR andλR such
that:

ΘR
k = µR+λR, µR

i ∈ N, λR
i ∈ N

without any loss of expressiveness. Such a decomposition is always possible because of the distributivity
of the matrix multiplication over the matrix addition. For our purpose, we are interested in modeling one-
dimensional schedules which arenot constant schedules. This is relevant as we do not want to consider
building a schedule for fusion that would translate only into statement interleaving. On the contrary we
aim at building a schedule that performs the interleaving of statementsinstances, hence the linear part of
the schedule must be non-null. ForR surrounded byd loops, we enforceµ to be a linear form of thed
loop iterators:

µR(~xR) =
(

µR
1 . . . µR

d
~0 0

)

.
(

i1 . . . id ~n 1
)t

To model non-constant schedules, we add the additional constraint∑d
i=1µR

i = 1. Note that by constraining
µ to have only one coefficient set to 1, this does not prevent to model any compositions of slowing or
skewing: these would be embedded in theλ part of the schedule, as shown in the example below.

Theµ part of the schedule models different cases of loop permutations. For instance for statementR
surrounded by 3 loops in the illustrating example,µR can take only three values:

µR(~xR) =
(

1 0 0 0 0
)

.
(

i j k N 1
)t
= (i)

µR(~xR) =
(

0 1 0 0 0
)

.
(

i j k N 1
)t
= ( j)

µR(~xR) =
(

0 0 1 0 0
)

.
(

i j k N 1
)t
= (k)
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while λR can take arbitrary values. For better illustration let us now build the decomposition of the
scheduleΘR

k = (2. j +k+2). ΘR
k is the composition of a permutation, a non-unit skewing and a shifting,

and can be decomposed as follows:

ΘR
k (~xR) =

(

0 2 1 0 2
)

.
(

i j k N 1
)t
= (2. j +k+2)

µR(~xR) =
(

0 1 0 0 0
)

.
(

i j k N 1
)t
= ( j)

λR(~xR) =
(

0 1 1 0 2
)

.
(

i j k N 1
)t
= ( j +k+2)

ΘR
k (~xR) = (µR+λR)(~xR) = (2. j +k+2)

One may note that another possible decomposition isµR(~xR) = (k), λR(~xR) = (2 j + 2). In general,
when the schedule contains skewing it is possible to embed either of the skewing dimensions in theµ
part of the schedule. For the sake of coherency we add an extra convention for the decomposition:µ
matches the first non-null iterator coefficient of the schedule. Returningto the example,µR(~xR) = ( j),
λR(~xR) = ( j +k+2) is thus the only valid decomposition ofΘR

k .

Note that this decomposition prevents modeling of compositions of loop permutations in theλ part.
For λ to represent a loop permutation,λ must have values inZ, as shown in the following example:

µR(~xR) =
(

1 0 0 0 0
)

.
(

i j k N 1
)t
=
(

i
)

(µR+λ)(~xR) =
(

j
)

⇒ λ =
(

−1 1 0 0 0
)

which is not possible as we have constrainedλi ∈N. Hence, when considering arbitrary compositions of
permutation, (parametric) shifting, skewing and peeling, theµ+λ decomposition separates permutation
(embedded in theµ part of the schedule) from the other transformations (embedded in theλ part of the
schedule). We now show it is possible to determine if a set of statements are fusable only by looking at
the possible values for theµ part of their schedules.

Considering three statementsR,S,T that are fusable while preserving the semantics at levelk. Then
there existΘR

k = µR+λR, ΘS
k = µS+λS, ΘT

k = µT +λT leading to fusing those statements. Considering
now the sub-problem of fusing onlyR andS, we build the setMR,S of all possible values ofµR,µS for
which there exist aλR,λS leading to fuseRandS. Obviously, the value ofµR,µS leading to fusingR,S,T
are inMR,S, andµS,µT are also inM S,T . Similarly µR,µT are inMR,T . We derive a sufficient condition
for fusability based on pairwise loop permutations for fusion.

Lemma 8.1 (Pairwise sufficient condition for fusability) Given three statements R,S,T such that they
can be 2-by-2 fused and distributed. GivenMR,S (resp.MR,T , resp.M S,T) the set of possible tuples µR,µS

(resp. µR,µT , resp. µS,µT) leading to fusing R and S (resp. R and T, resp. S and T) such that the full
program semantics is respected. R,S,T are fusable if there exists µR,µS,µT such that:

µR,µS∈MR,S

µR,µT ∈MR,T

µS,µT ∈M S,T

Proof. Given the scheduleΘR
k = µR+λR,ΘS

k = µS+λS leading to fusingRandS, Θ′Rk = µR+λ′R,ΘT
k =

µT +λT leading to fusingR andT, andΘ′Sk = µS+λ′S,Θ′Tk = µT +λ′T leading to fusingSandT, such
that they all preserve the full program semantics.
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The scheduleΘ∗Rk = µR+λR+λ′R,Θ∗Sk = µS+λS+λ′R is legal, as addingλ′R consists in performing
additional compositions of skewing and shifting, which cannot make the dependence vectors lexico-
graphically negative. It cannot consist in performing a parametric shift(resulting in a loop distribution),
ΘR

k is a schedule fusingRandSandΘ′Rk is a schedule fusingRandT. As Θ∗Rk is a non-constant schedule,
it leads to fusingRandS. Generalizing this reasoning we can exhibit the following semantics-preserving
schedule leading to the fusion ofR,S,T:

Θ∗Rk = µR+λR+λ
′R+λS+λ

′S+λT +λ
′T

Θ∗Sk = µS+λR+λ
′R+λS+λ

′S+λT +λ
′T

Θ∗Tk = µT +λR+λ
′R+λS+λ

′S+λT +λ
′T

As all statements are fused 2-by-2, they are fused all together. As the three statements can be distributed
2-by-2, there is no dependence cycle.

To stress the importance of Lemma 8.1, let us return to the illustrating example. We can compute the
pairwise permutations for fusion sets at the outermost level:

MR,S = {(i, i);(i, j);(i,k);( j, i);( j, j);( j,k);(k, i);(k, j);(k,k)}
MR,T = {(i, i);( j,k)}
M S,T = {(i,k);( j, j)}

These sets are computed by iteratively testing, against the set of constraints for semantics-preservation
augmented with fusion and orthogonality constraints, for the existence of solutions with a non-null
value for each of the coefficients associated with the statement iterators. Technically, we do not need
to computeMR,S as the two statements are independent, and are trivially fusable. HenceMR,S does
not contribute to the fusability ofR,S,T. Here we can decide thatR,S,T are fusable, as the solution
µR = j, µS = i, µT = k respects the conditions from Lemma 8.1. This solution is presented in Fig-
ure 8.2(1). Note that fusability at leveld does not imply fusability at leveld+1, although the number of
dependences to consider can only decrease for leveld+1. This is because again we add orthogonality
constraints, providing stronger conditions on the remaining schedule dimensions.

To improve further the tractability, we rely on two more standard properties onfusion. Given two
statementsRandS:

1. if R andS are not fusable, then any statement on whichR transitively depends on is not fusable
with Sand any statement transitively depending onS;

2. reciprocally, ifRandSmust be fused, then any statement depending onRand on whichSdepends
must also be fused withR andS.

These properties cut the number of tested sequences dramatically, in particular, in highly constrained
programs such as loop-intensive kernels. They are used at each stepof the optimization algorithm.
Note that it was not profitable to rely on these properties for the general pruning algorithm: computing
the existence of dependent statements at a given level is a combinatorial problem when the schedule at
previous levels is not yet known.

8.3.3 Optimization Algorithm

We now present our optimization algorithm. The algorithm explores possible interleavings of dimension
maxExploreDepth, and generates a collection of program schedules, each of them being acandidate for
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the optimization. We use iterative compilation to select the best performing one. For each candidate
program schedule we generate back a syntactic C code, compile it and runit on the target machine.

The structure and principle of the optimization algorithm, shown in Figure 8.3, matches that of the
pruning algorithm of Figure 3.4, as it also aims at computing a set of feasible interleavings at a given
level. It is in essence aspecializationof the pruning algorithm for our optimization problem instance.
To decide the fusability of a set of statements, we put the problem in a form matching the applicability
conditions of Lemma 8.1. We merge nodes that must be 2-by-2 fused to guarantee that we are checking
for the strictest set of program-wise validµ values when considering fusability.

OptimizeRec: Compute all optimizations
Input:

Θ: partial program optimization
pdg: polyhedral dependence graph
d: current level for the interleaving exploration
n: number of statements
maxExploreDepth: maximum level to explore for interleaving

Output:
Θ: complete program optimization

1 G ← newGraph(n)
2 F d ← O
3 un f usable← /0
4 forall pairs of dependent statements R,S in pdg do
5 TR,S ← buildLegalOptimizedSchedules({R,S}, Θ, d, pdg)
6 if mustDistribute(TR,S, d) then
7 F d ← F d ∩ {eR,S = 0}
8 else
9 if mustFuse(TR,S, d) then
10 F d ← F d ∩ {eR,S = 1}
11 end if
12 F d ← F d ∩ {sR,S = 0}
13 MR,S ← computeLegalPermutationsAtLevel(TR,S, d)
14 addEdgeWithLabel(G, R, S, MR,S)
15 end if
16 end for
17 forall pairs of statements R,S such that eR,S = 1 do
18 mergeNodes(G, R, S)
19 updateEdgesAfterMerging(G, R, S)
20 end for
21 for l ← 2 to n−1 do
22 forall paths p in G of length l such that

there is no prefix of p in un f usabledo
23 if ¬ existCompatiblePermutation(nodes(p)) then
24 F d ← F d ∩ {∑p epairs in p < l −1}
25 un f usable← un f usable∪ p
26 end if
27 end do
28 end for
29 forall i ∈ F d do
30 Θd ← computeOptimizedSchedule(Θ, pdg, d)
31 if d < maxExploreDepththen
32 OptimizeRec(Θ, pdg, d+1, n, maxExploreDepth)
33 else
34 finalizeOptimizedSchedule(Θ, pdg, p)
35 return Θ
36 end if
37 end for

Figure 8.3: Optimization Algorithm

ProcedurebuildLegalSchedules computes, for a given pair of statementsR,S, the setLR,S of
semantics-preserving schedules as described by Lemma 3.4. Whend > 1, then some of the schedule
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coefficients have already been instantiated, those inΘk, k < d. For such case, the corresponding coeffi-
cients inLR,S are explicitly set to their instantiated value inΘ, and for dependences which are strongly

solved byΘk the associated Boolean variablesδDR,S

k are set to 1.

ProceduremustDistribute checks if it is legal to fuse the statementsRandS. To perform the check,
LR,S is augmented with additional constraints:

• the fusion constraints up to leveld according to Definition 3.6;

• the permutability constraints up to leveld from Definition 8.1;

• the linear independence constraints (i.e., orthogonality constraints as discussed in the previous
section) up to leveld.

If there is no solution in the augmented set of constraints, then the statements cannot be fused at that
level and hence must be distributed.

ProceduremustFuse checks if it is legal to distribute the statementsRandS. The check is performed
by augmentingLR,S with the permutability and linear independence constraints up to leveld, together
with the insertion of a splitter at leveld. If there is no solution in this set of constraints, then the statements
cannot be distributed at that level and hence must be fused.

ProcedurecomputeLegalPermutationsAtLevel computesMR,S the set of all valid permutations
µR,µS leading to fusion. This procedure operates on the same set asmustDistribute, that is,LR,S

augmented with the fusion and permutability constraints. To check if a given permutationµR,µS is valid
and leading for fusion at leveld, the set of constraints is tested for the existence of a solution where the
schedule coefficients of rowd corresponding toµR andµS is not 0. This is sufficient to determine the
existence of the associatedλ part. Returning to theThreeMatMat example, and considering statementsR
andS. The two prototype schedules forR andSat leveld are:

ΘR
d = θR

d,1.i+θR
d,2. j +θR

d,3.k+θR
d,4.N+θR

d,5.1

ΘS
d = θS

d,1.i+θS
d,2. j +θS

d,3.k+θS
d,4.N+θS

d,5.1

To determine all pairsµR,µS leading to fusion at leveld, we successively test for the existence of a
solution in the augmented set of constraints whereθR

d,1 > 0,θS
d,1 > 0, thenθR

d,1 > 0,θS
d,2 > 0, and so

on for the 9 different pairs. Then, each time a solution do exist, the corresponding tupleµR,µS (e.g.,
µR = i,µS= i) is inserted inMR,S.

ProcedureupdateEdgesAfterMerging modifies the graph edges after the merging of two nodesR
andS such that: (1) if forT there was an edgeeT→R and noteT→S or vice-versa,eT→R is deleted, and
eS,T = 0, this is to remove triplets of trivially unfusable sets; (2) if there are 2 edgesbetweenT andRS,
one of them is deleted and its label is added to the remaining one existing label; (3) the label of the edge
eR→S is added to all remaining edges to/fromRS, andeR→S is deleted.

ProcedureexistCompatiblePermutation collects the setsM of the pairs of statements connected
by the pathp, and tests for the existence ofµ values according to Lemma 8.1. If there is no compatible
permutation, then an additional constraint is added toF d such that it is not possible to fuse the statements
in p all together. The constraint sets that theei, j variables, for all pairsi, j in the pathp, cannot be set to
1 all together.
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ProcedurecomputeOptimizedSchedule instantiates a scheduleΘd at the current dimensiond, for
all statements. The interleaving is given byi, and for each group of statements to be fused under a
common loop, a schedule is computed to maximize fusion and to enforce permutabilityif possible. To
select the coefficient values we resort to the objective function (8.3).

ProcedurefinalizeOptimizedSchedule computes the possibly remaining schedule dimensions,
whenmaxE ploreDepthis lower than the maximum program loop depth. Note that in this case, maximal
fusion is used to select the interleaving, hence we do not need to build a setof interleavings for the
remaining depths.

In practice this algorithm proved to be very fast, and for instance computingthe setF 1 of all
semantics-preserving interleavings at the first dimension takes less than 0.5 second for the benchmark
ludcmp, pruningI 1 from about 1012 structures to 8, on an initial space with 182 binary variables to model
all total preorders.

Let us go back to the illustrating example. We have set the value ofmaxE ploreDepthto 1. A graph
G is constructed with 3 nodes, and two edges. The edgeeR→T is labeled withMR,T , andeS→T with
M S,T . There is no edgeeR→S as the statements are not dependent. All statements can be 2-by-2 fused
and distributed, so there is no additional constraint on thepR,S, pS,T , pR,T variables noreR,S,eS,T ,eR,T .
But T depends onR andS, henceT cannot be executed before them:sR,T andsS,T are set to 0. There
is only one path of length 2, testing for the fusability ofR,S,T which are indeed fusable. The resulting
interleaving space contains 5 possibilities, from all fused to all distributed, plus combinations whereR
is executed afterS. For each case a complete optimization is computed, the resulting programs (before
tiling) for three of them are shown in Figure 8.2.

8.3.4 Search Space Statistics

Severalei, j and pi, j variables are set during the pruning ofO , so several consistency constraints are
made useless and are not built, significantly helping to reduce the size of the space to build. Table 8.4
illustrates this by highlighting, for our benchmarks considered, the properties of the polytopeO in terms
of the number of dimensions (#dim), constraints (#cst) and points (#points) when compared toF 1, the
polytope of possible interleavingsfor the first dimension only. For each benchmark, we list#loops the
number of loops,#stmts the number of statements,#refs the number of array references, as well as the
time to build all candidate interleavings from the input source code (that is, including all analysis) on an
Intel Xeon 2.4GHz. The number of candidates that end up being tested during the iterative process is
reported (#Tested), as explained in the following section. We also report the dataset size we used for the
benchmarks (Pb. Size).

O F 1

Benchmark #loops #stmts #refs #dim #cst #points #dim #cst #points #Tested Time Pb. Size

advect3d 12 4 32 12 58 75 9 43 26 52 0.82s 300x300x300
atax 4 4 10 12 58 75 6 25 16 32 0.06s 8000x8000
bicg 3 4 10 12 58 75 10 52 26 52 0.05s 8000x8000
gemver 7 4 19 12 58 75 6 28 8 16 0.06s 8000x8000
ludcmp 9 14 35 182 3003 ≈ 1012 40 443 8 16 0.54s 1000x1000
doitgen 5 3 7 6 22 13 3 10 4 8 0.08s 50x50x50
varcovar 7 7 26 42 350 47293 22 193 96 192 0.09s 1000x1000
correl 5 6 12 30 215 4683 21 162 176 352 0.09s 1000x1000

Figure 8.4: Search space statistics

Finally, for each candidate fusion structure, we also test with and without the application of poly-
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hedral tiling (hence the number of tested candidates being twice the number ofpoints in F1). The
motivation is twofold. Firstly, tiling may be detrimental as it may introduce complex loopbounds and
the computation overhead may not be compensated by the locality improvement. Secondly, tiling may
prevent the compiler from performing aggressive, low-level optimizations, as current production com-
pilers optimization heuristics are still very conservative, in particular when loop bounds are complex as
in polyhedraly tiled code.

The final number of tested versions is shown in Figure 8.4, in the#Tested column.

8.4 Experimental Results

Studies performed in Chapter 6 on the performance impact of selecting schedules at various levels high-
lighted the much higher impact of carefully selecting outer loops. Hence, the selection of the statement
interleaving at the outermost level captures the most significant difference in terms of locality and com-
munication. We choose to limit the recursive traversal of interleavings to the outer level only, and show
that we are still obtaining significant performance improvement and a wide range of transformed codes.
Nevertheless, when the number of candidates inF 1 is very small, typically because of several loop-
dependent dependences at the outer level, it is relevant to buildF 2 and further. One can choose to
enumerate the next dimension if there are 2 or less candidates at the current dimension, mostly to offer
freedom for the iterative search while still controlling the combinatorial nature of the recursive search.
Note that in the experiments presented in this paper we traverse exhaustively only F 1.

The automatic optimization and parallelization process has been implemented in POCC, thePoly-
hedral Compiler Collection, a complete source-to-source polyhedral compiler based on available free
software such as CLOOG, CLAN , CANDL , PIPLIB and POLYL IB. Specifically, the search space con-
struction has been implemented in the LETSEE optimizer and the transformations for tiling and paral-
lelization are computed by the PLUTO optimizer. In the generated programs, parallelization is obtained
by marking transformed loops with OpenMP pragmas. In addition, when compiling with ICC, intra-tile
parallel loops are moved to the innermost position and marked withivdep pragmas to facilitate compiler
auto-vectorization, when possible.

8.4.1 Experimental Setup

We experimented on three high-end machines: a 4-socket Intel hexa-core Xeon E7450 (Dunnington) at
2.4GHz with 64GB of memory (24 cores, 24 hardware threads), a 4-socket AMD quad-core Opteron
8380 (Shanghai) at 2.50GHz (16 cores, 16 hardware threads) with 64GB of memory, and an 2-socket
IBM dual-core Power5+ at 1.65GHz (4 cores, 8 hardware threads) with 16GB of memory. All sys-
tems were running Linux 2.6.x. We used Intel ICC 11.0 with options-fast -parallel -openmp re-
ferred to asicc-par, and IBM/XLC 10.1 compiled for Power5 with options-O3 -qhot=nosimd -qsmp
-qthreaded referred to asxlc-par.

We consider 8 benchmarks, typical from compute-intensive sequencesof algebra operations.atax,
bicg andgemver are compositions of BLAS operations [88],ludcmp solves simultaneous linear equations
by LU decomposition,advect3d is an advection kernel for weather modeling anddoitgen is an in-place
3D-2D matrix product.correl creates a correlation matrix, andvarcovar creates a variance-covariance
matrix, both are used in Principal Component Analysis in theStatLib library. Problem sizes are reported
in columnPb. Size of Figure 8.4.
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The time to compute the space, pick a candidate and compute a full transformationis negligible with
respect to the compilation and execution time of the tested versions. In our experiments, the full process
takes a few seconds for the smaller benchmarks, and up to about 2 minutes for correl on Xeon.

8.4.2 Performance Improvement

In Figure 8.5, we report for all benchmarks the speedup of our iterative technique (iter-xx) normalized to
the best single-threaded version produced by the native compiler (ICC for Intel and Opteron, XLC for
Power5+). We also compare the performance improvement obtained over maximal fusion as proposed
by Bondhugula [21] and over ICC/XLC with automatic parallelization (icc-par or xlc-par) in Figure 8.6.
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Figure 8.5: Speedup for Xeon, Opteron and Power5+ processors over best single-threaded version

Fordoitgen, correl andvarcovar, three compute-bound benchmarks, our technique exposes a program
with a significant parallel speedup of up to 112× on Opteron. Our optimization technique goes far
beyond parallelizing programs, and for these benchmarks locality and vectorization improvements were
achieved by our framework. Foradvect3d, atax, bicg, andgemver we also observe a significant speedup,
but this is limited by memory bandwidth as these benchmarks are memory-bound. Yet, we are able to
achieve a solid performance improvement for those benchmarks over the native compilers, of up to 3.8×
for atax on Xeon and 5× for advect3d on Opteron. Forludcmp, although parallelism was exposed, the
speedup remains limited as the program offers little opportunity for high-leveloptimizations. Yet, our
technique outperforms the native compiler, by a factor up to 2× on Xeon.

For Xeon and Opteron, the iterative process outperforms ICC with auto-parallelization, with a factor
between 1.2× for gemver on Intel to 15.3× for doitgen. For both of these kernels, we also compared with
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Figure 8.6: Performance improvement over maximal fusion, and over the thereference auto-parallelizing
compiler

an implementation using Intel Math Kernel Library (MKL) 10.0 and AMD Core Math Library (ACML)
4.1.0 for the Xeon and Opteron machines respectively, and we obtain a speedup of 1.5× to 3× over these
vendor libraries. Forvarcovar, our technique outperforms the native compiler by a factor up to 15×.
Although maximal fusion significantly improved performance, the best iteratively found fusion structure
provides a much better improvement, up to 1.75× better. Maximal fusion is also outperformed for all
but ludcmp. This highlights the power of the method to discover the right balance betweenparallelism
(both coarse-grain and fine-grain) and locality.

On Power5+, on all butadvect3d the iterative process outperforms XLC with auto-parallelization, by
a factor between 1.1× for atax to 21× for varcovar.

For the sake of completeness, we also provide the best performance in GFLOP/s for all our bench-
marks in Figure 8.7. Benchmarks are superscripted withd when the data type isdouble, and with f for
float.

advect3d f ataxd bicgd gemverd ludcmpd doitgend correl f varcovar f

Xeon E7450 (24 cores) 0.47 2.13 2.13 2.20 1.33 44.64 16.71 50.05
Opteron 8380 (16 cores) 0.53 1.42 1.70 2.66 0.75 31.25 11.14 33.36
Power5+ (4 cores) 0.34 1.16 1.15 1.42 0.48 10.41 7.16 14.30

Figure 8.7: Best Performance obtained, in GFLOP/s
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8.4.3 Performance Portability

Beyond absolute performance improvement, another motivating factor for iterative selection of fusion
structures is performance portability. Because of significant differences in design, in particular in SIMD
units’ performance and cache behavior, a transformation has to be tunedfor a specific machine. This
leads to a significant variation in performance across tested frameworks.

To illustrate this, we emphasize thegemver kernel shown in Figure 8.8.

for (i = 0; i < M; i++)
for (j = 0; j < M; j++)

S1 A[i][j] = A[i][j] + u1[i] * v1[j]
+ u2[i] * v2[j];

for (i = 0; i < M; i++)
for (j = 0; j < M; j++)

S2 x[i] = x[i] + beta * A[j][i] * y[j];
for (i = 0; i < M; i++)

S3 x[i] = x[i] + z[i];
for (i = 0; i<M; i++)

for (j = 0; j<M; j++)
S4 w[i] = w[i] + alpha * A[i][j] * x[j];

Figure 8.8:gemver original code

We show in Figure 8.9 the relative performance normalized with respect toicc-par of gemver, for
Intel and Opteron. The version index is plotted on thex axis, 1 is max-fuse and 8 is maximal distribution.

Figure 8.9: Performance variability forgemver

For Xeon, the best version is 4, corresponding to the fusion structure inFigure 8.10. It performs 10%
better than version 2 — version 2 corresponds to the fusion structure where S1, S2 andS3 are fused,
andS4 is in the next loop nest — which is the optimal fusion for Opteron. And for theOpteron, version
4 performs 20% slower than 2. Note that ongemver the performance distribution for Power5+ is very
similar as for Xeon.

Performance variation is also exhibited by maximal fusion results over the three architectures. For
ludcmp, while it is the best performing one on Xeon and Opteron, it is not on Power5+. Such a pattern
can also be observed fordoitgen.

The trade-off between coarse-grain parallelization and vectorization is very difficult to capture, as it
also depends on the capability of the back-end compiler to perform vectorization. One has to capture the
interplay between distinct optimization passes, something missing in present daycompilers. Moreover,
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for (i = 0; i < M; i++)
for (j = 0; j < M; j++) {

S1 A[i][j] = A[i][j] + u1[i] * v1[j]
+ u2[i] * v2[j];

S2 x[j] = x[j] + beta * A[i][j] * y[i];
}
for (i = 0; i < M; i++)

S3 x[i] = x[i] + z[i];
for (i = 0; i<M; i++)

for (j = 0; j<M; j++)
S4 w[i] = w[i] + alpha * A[i][j] * x[j];

Figure 8.10: Optimal fusion forgemver on Xeon

accurate profitability models have to be relied upon, and their design remains amajor challenge for com-
piler designers. Tuning the trade-off between fusion and distribution is a relevant technique to address
the performance portability issue. Our technique is able to automatically adapt tothe target framework,
and successfully discovers the optimal fusion structure, whatever the specifics of the program, compiler
and architecture.

8.5 Related Work

Several heuristics for loop fusion and tiling have been proposed for theconstruction of loop-nest optimiz-
ers [124, 68, 115, 95]. Those heuristics have also been revisited in thecontext of complex architectures
with non-uniform memory hierarchies and heterogeneous computing resources [100]. The polyhedral
model is complementary to those efforts, opening many more opportunities for the construction of loop
nest optimizers and parallelizing compilers. It is currently being integrated in production compilers,
including GCC and IBM XL.

The tiling hyperplane method has proved to be very effective in integrating loop tiling into polyhedral
transformation sequences [60, 99]. However, the state-of-the-art model-driven technique proposed by
Bondhugula et al. [20, 21] lacks a portable heuristic to select good loop fusion structures. But despite the
weaknesses of its target-independent optimization model, it does identify interesting parallelism-locality
trade-offs. It is also unable to compute an enabling schedule for fusion inthe presence of parametric
dependences. The techniques presented in this chapter inherits from theTiling hyperplane benefits, and
removes the limitations of Bondhugula’s approach.

Powerful semi-automatic polyhedral frameworks have been designed asbuilding blocks for com-
piler construction or (auto-tuned) library generation systems [64, 30, 51, 24, 108]. They capture fusion
structures, but neither do they define automatic iteration schemes nor do theyintegrate a model-based
heuristic to construct profitable parallelization and tiling strategies.

Iterative compilation has proved its efficiency in providing solid performance improvements over a
broad range of architectures and transformations [18, 107, 3, 82, 95, 44, 119, 100]. However, none of
the previous works achieved the expressiveness and application of complex transformation sequences
presented in this chapter, along with a focused search on semantics-preserving candidates only.
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Chapter 9

Future Work on Machine Learning
Assisted Optimization

9.1 Introduction

For the past decade, compiler designers have looked for automated techniques to improve the quality and
portability of the optimization heuristics implemented in compilers [23, 107, 110, 3].Machine learning
based approaches have been popularized in recent years, and arise as research projects in production
compilers such as GCC. Fursin and the UNIDAPT group deployed iterativeas well as collective opti-
mization frameworks into GCC, to allow the compiler benefiting from the results of previous off-site
compilation processes [49, 47, 50]. Building auto-tuning compilers is a promising direction to increase
the productivity of compiler writers, and the quality of the generated code.

Many learning-based compiler techniques typically aim at performing a classification of the search
space. A relevant application is to validate and even refine the subspace partitioning technique we have
described in Chapter 6, but more standard is the application to the decision ofapplying a dedicated
optimization heuristic or not. Yet the ultimate objective of machine learning assistedcompilation is
given a new program, to determine which optimization should be applied on it.In this spirit, we aim
at going further and rely on supervised learning techniques to infer adecisionbased on the previous
samples that have been seen during the training phase.

Previous work poorly addressed the problem of using machine learning toselect an affine transfor-
mation for the program. It was at best limited to improve the search efficiency,with Genetic Algorithms
for instance (see Nisbet for a basic approach [87] or Chapter 7 for asemantics-preserving one). Part
of the reason can be found in the increased complexity of selectingfine-grain optimizations. To bene-
fit from the polyhedral representation, one has to consider building a (possibly partial) transformation
for each statements. This makes the problem more complicated than withcoarse-grain optimizations,
where the task of the process is to select a transformation to apply to the full program. For such cases,
the standard output of the algorithm is a sequence of transformations (e.g.,"tile + unroll") which is
blindly transmitted to a black-box which then decides the application of the sequence. Problems such as
semantics-preservation are not taken into account by the transformation selection process, and it is not
possible to finely tune on which specific locations this transformation is applied.

We propose in this chapter to present some of the key ideas to achieve an automatic, learning-based
fine-grain auto-tuner. Since we rely on the polyhedral program representation to abstract away the syn-
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tactic limitations of a standard representation, this leads to a significantly more precise and powerful
optimization framework. This also leads to new challenges which must be tackled. To harness the power
of polyhedral optimization for machine-learning assisted compilation, it is required to revisit the main
building blocks and adapt them. We start in Section 9.2 by presenting numerous indicators which can
be used to relate programs. We rely on the algebraic nature of the polyhedral representation to devise
newprogram featureswhich are decoupled from the standard syntactic ones. Another major problem for
a learning process is the knowledge representation, that is, how the information to be generated by the
model is stored. We highlight in Section 9.3 the limits of a syntactic-based representation of transfor-
mations, and we present a generalized approach to model program optimization. Any off-line learning
framework requires a training phase on a substantial and representative set of benchmarks. We build on
the framework presented in this thesis to present in Section 9.4 a technique to generate a very large set
of input programs. Finally, we gather all these ideas to give an abstract picture of the functioning of a
machine learning process to build fine-grain optimizations in Section 9.5.

9.2 Computing Polyhedral Program Features

Program features are a convenient mean to describe a program with a fixed set of values. For compiler-
based machine learning, it requires programs to be represented as a setof features that serve as inputs to
a machine learning tool. Since the first experiments of ML in compilation, it has been required to model
any input program in a normalized fashion with a fixed-length set of program features. Recent work
shows it is a promising direction to automatically detect these features [75], yet we focus here to the task
of exhibiting relevant features based on the polyhedral representation.

9.2.1 A Grain for Each Goal

Depending on the application for the learning process, different grainsof features are relevant. Consider
for instance the task of learning an unrolling heuristic. Unrolling happens at the loop level, so features
of interest are defined at the granularity of the loop: information such asloop nest depthis meaningful
[106]. Consider now the problem of deciding a sequence of optimizations for a full program part. The
same feature cannot be reused as-is: one can expect several loop nests, and representatives likemaximal
loop nest depthor average loop nest depthmust be used to keep a fixed number of features.

As we address the problem of the optimization of static control parts, it is needed to exhibit coarse-
grain features which are normalized on the full program part. Although thisintuitively contradicts our
goal of performing fine-grain optimization, we show in Section 9.3 that the representation of transfor-
mation we select does not suffer from this limitation. Moreover, we presentin the following section that
abstract polyhedral features can provide an efficient characterization of the program without resorting to
the finest syntactic features.

9.2.2 Some Standard Syntactic Features

Some standard syntactic features remain a very good discriminant for the program. They enable a fast
classification of the input programs into major categories. We do not aim hereto present an exhaustive
list of syntactic features. Instead, we give an intuition of the elementary ones and left to the designer the
task of building composite features and to evaluate the variance of those on the training set. Let us note
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that a valid technique to determine which features are relevant for the learning model is to compute a
very rich set of features for all the programs in the training set, and eliminatethe useless ones for instance
with Principal Component Analysis.

An overview of some syntactic features is shown in Figure 9.1. It is left to thereader to complete
it to a more extensive list, but we believe it is enough to give a good intuition of the kind of syntactic
features that can be extracted from the program.

# of loops # of outer loops # of branches
# of arrays read # of arrays written # of scalars read

# of scalars written # of statements # of operations
# of FP instructions max loop depth avg. loop depth

avg. stmts / outer loop avg. loops / outer loop avg. inst. / stmt

Figure 9.1: Some syntactic program features

9.2.3 Polyhedral Features

The polyhedral program representation abstracts away the actual computation which is performed by the
statements. Instead, the program is described as a set of dependencesbetween each executed instance
of the statements. Syntactic features are required to get information about the actual computation which
is performed — think for instance to Floating Point instructions in the program. On the other hand, this
algebraic representation gives the finest information aboutprogram data dependenceswhich actually
dictates how the program can be transformed. We propose to extract two categories of features. The first
involves metrics about the dependences themselves, the second metrics about transformations which can
be done on the program.

Dependences The polyhedral dependence graph (PDG for short) is a unique characterization of the
program restructuring possibilities. In other words, if two different programs have the same PDG, then
exactly the same transformations can be performed on them. We propose a series of metrics to repre-
sent the PDG. We are typically interested in having synthetic information on dependent iterations. We
heavily rely on the possibility of computing the volume of polyhedra [9] to computethe actual number
of instances in dependence for a given dependence polyhedron. Inorder to have normalized measures,
we will store a ratio between the statement iterations and the statement iterations in dependence. For
instance, for theMatVect kernel, dependence polyhedronD 1

R,S has a representative of 2:dim(D 1
R,S) = 2,

and the minimal loop depth ofR andS is 1. Note that in the case of parametric loop bounds, an enu-
merator for the volume of a polyhedron can be computed as an Ehrhart quasi-polynomial in the form of
the parameters [28, 102, 117]. For this case, using the normalization will in general allow removing the
parameters from the picture: we simply keep the maximal degree of the polynomial and compare it with
the loop depth.

We propose the following metrics.

• number of dependence polyhedra (total, and for each dependence kind: read-after-read, read-after-
write, write-after-read and write-after-write);

• average number of dependence per statement (for all kinds of dependences);

• average number of dependence per outer loop (for all kinds of dependences);
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• maximal, average and minimal dependence ratio (as presented above) for the program.

Program Transformation We also propose to provide the learning model with metrics about the pos-
sibilities to transform the program. One of the main benefit of the polyhedral representation is to allow
computing beforehand, via the expression of an affine schedule for theprogram, if the program can be
tiled, parallelized or simdized for instance. To compute the existence of such transformations, we propose
to use the state-of-the-art algorithm for tiling and parallelization in the polyhedral model: Bondhugula’s
Tiling Hyperplane method [20, 21]. We also propose to use the framework presented in Chapter 3 and
Chapter 8 to evaluate the possibilities of fusion and distribution for the program. We believe this informa-
tion about how the program can be restructured is a critical metric to classifythe programs. Intuitively,
we can roughly partition programs into the sequential and parallel classes,and it is useless for the learn-
ing model to learn how to do this partitioning. We propose to go even further, and to investigate more
categories, as described in the following.

• Maximal number of fusable statements / total number of statements

• Maximal number of distributable statements / total number of statements

• Maximal number of statements under tiled loops / total number of statements

• Maximal number of statements under parallel tiled loops / total number of statements

• Maximal tiling depth

• Maximal number of coarse-grain parallel outer loops

• Maximal number of fine-grain parallel inner loops

9.3 Knowledge Representation

The polyhedral optimization search space encompasses arbitrarily complexsequences of transforma-
tions, this is the most complete approach in terms of expressiveness. A benefit is the increasing porta-
bility of the approach: as the largest set of transformations is considered, it is expected that the best
transformation whatever the architecture lies in the space. But the downsideof this expressiveness is the
modeling of the transformation itself. Considering an optimization which was effective for a program
in the training set, one wants to apply it on a new program which has similar features. This problem of
optimization knowledge representation is not trivial in the polyhedral representation.

When considering a sequence-based representation, the information about the optimization is stored
as a fixed-length vector of transformation primitives. Using a scheduling matrix makes more difficult the
task of representing an optimization in uniform way.

1. Given a schedule, it is not possible to apply it as-is on another program. The schedule dimensions
are different between two programs that do not share the same number ofstatements, loops per
statements, and global parameters.

2. Converting a schedule back to a complete sequence of primitives is irrelevant. The equivalent se-
quence is of arbitrary length, and polluted with complementary transformationsfor legality which
introduces a cumbersome noise in the learning space.
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It is required to devise a mechanism to store the transformation associated witha program version
such that the learning model can use this information to decide how to optimize another program. Two
directions can be followed, the first based on modeling transformation primitives, and the second by
relying on the optimization characteristics.

9.3.1 Dominant Transformation Extraction

The first and most intuitive approach is to extract a sequence-based representation from the affine sched-
ule, but by distinguishing performance-related transformations from semantics-related ones. In Chapter 6
we have shown that a relevant subspace decomposition gives the lowestpriority to shifting and peeling.
Hence one can focus on rebuilding a sequence from the schedule based only on loop interchange, loop
fusion / distribution, loop skewing and loop tiling (with tiling depth). These primitives would be defined
in an abstract way and not for a pair of statements: for instance one can have f use(R,S), tile(R,S) in
the generated program, those would be abstracted asf use, tile. Such an approach has been tested in the
larger context of multidimensional (including illegal) affine schedules by Long et al. [80, 82].

When considering the problem from the knowledge representation point of view, it is in essence a
very fragile approach. We are trying to learn how to fix the program instead of learning what we need to
fix. Consider this naive analogy: should we learn that on a desert islandwe have to scratch matches to
survive, or learn that we need to make a fire? Because if we don’t havematches but only a lighter, should
we irrevocably die?

Returning to a compilation language, consider the almost naive example in Figure 9.2. It is two
matrix multiply programs, one written in the standard way and the other with an optimized loop order.
Consider we are learning on a SIMD-capable single-core machine. Say for instance that training on
the first example we learn thatinterchange(i,k) is the good transformation. If the model is asked to
optimize the second program, it will also applyinterchange(i,k) but the transformation will break the
performance. But if we had learned that given such a program,enable SIMDwas the correct way to
optimize it then we would have efficiently transformed the second candidate too, by simply not changing
the loop order.

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)

for (k = 0; k < N; ++k)
R C[i][j] += A[i][k] * B[k][j];

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)

for (k = 0; k < N; ++k)
R C[k][j] += A[k][i] * B[i][j];

(a) Standard matrix-multiply (b) Optimized matrix-multiply

Figure 9.2: Two matrix-multiply kernels

The efficiency of the sequence-based approach lies in the statistic probability to encounter only pro-
grams that are extremely close to the ones encountered during the training phase. Thespecificityof a
primitive sequence is very high in the context of fine-grain optimization. One must be able to adapt the
sequence to the new program. This leads to critical decision problems such as which transformation
to adapt, and to which extent. Going back to the previous example, the process has to decide to select
another interchange (which one?) or another transformation to optimize the program. Building such a
process is an open problem up to date. The other possibility is to provide a training set rich enough to
cover almost all cases, this is obviously unrealistic when considering all loop transformations together.
This motivates the proposal of another technique to model knowledge about transformation.
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9.3.2 Optimized Program Abstract Characteristics

Another approach is to consider several metrics that can be statically computed on the schedule resulting
in the best optimization. The knowledge is then represented as the distance between the value for this
metric, computed from the optimizing schedule, and the optimal value that is only program-dependent.
The task of the learning model is to determine how metrics must be prioritized, andhow they should be
maximized with respect to the theoretical optimal for the program.

• Parallelism. Both coarse-grain and fine-grain parallelism may be extracted on a program. But
depending on the program and on the target machine, the best performance does not necessarily
come with the exploitation of the maximal degree of parallelism available in the input program. For
instance, the transformation required to extract parallelism may exhibit too much control overhead
and thus not be beneficial for performance. This situation typically occurs on loops with few
iterations or non-uniform dependence patterns. The model can learn, given the maximal degree of
parallelism for the program, what is the profitable amount of parallelism to extract.

• Memory. Several metrics do exist to characterize the memory behavior of a program.Locality
of the memory accesses can be monitored, on a per-access basis. Furthermore, the frequency of
an access can be computed thus leading to a precise characterization of theimportance of the
memory optimization. Consider for instance maximizing locality. Excessive fusionmay interfere
with hardware prefetching: processors have a limited number of hardware prefetch streams. In
addition, after fusion, too many data spaces end up using the same cache, reducing the effective
cache capacity of each statement, conflict misses are also likely to increase.The model can learn,
on a per-access basis, to which extent locality was maximized for it – with respect to the best
locality that can be achieved.

Instead of relying on complex and often inaccurate machine models, we propose to take the reverse
approach and learn the machine characteristics in practice from the best performing schedules for a pro-
gram. We also propose to link this information to the input program by abstracting away the connection
to the schedule coefficients. The information stored is no longerwhich coefficients valuesare giving
good performance, buthow to compute coefficients valuesto efficiently optimize the program.

To complement such an approach, it is interesting to test also for several candidates in the subspaces
corresponding to the different values for each metric. The goal is to determine for the input program if
a given metric is representative of the program performance. This helpsto order the importance of the
metrics on the target machine.

We build on the framework presented in this thesis to present in Section 9.4 a technique to generate
a very large set of input programs.

9.4 Training Set and Performance Metrics

To guarantee the efficiency of a learning-based approach it is required to train the model on a representa-
tive and large set of benchmarks. The training phase consists in runningthe iterative compilation process
on several candidate programs, to determine which optimization(s) performsbest for it. The information
about the performance of a given transformation is analyzed by the learning model to successively re-
fine its decision mechanism about program optimization. Although several previous works use standard
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benchmark suites [107, 3], we require to learn on static control programparts. We propose to decouple
the quest of a benchmark suite into two steps.

9.4.1 Starting Benchmarks

We use as a starting basis the set of kernels and programs that have a purely static control part in the
hot spot(s) of the code. Many of them have been used all along this thesis, in particular in Chapter??
to Chapter 8 and span most of the standard patterns in extended linear algebra. The reader may refer
to Figure 5.5, Figure 5.8 and Figure 8.4 to get information about around 30 benchmarks fitting the
requirements of static control parts. Note that all benchmarks (exceptradar) are publicly available in
the distribution of the PoCC compiler.

In addition, it is required to gather programs that have not been explicitly dealt with in this thesis but
represent a significant source of interest for the high performance community. These are typically stencil
computations [21] and signal processing codes. We believe the community ofpolyhedral compilation is
crucially missing a coherent and shared set of benchmarks. It is a short term planned effort to provide
such a suite, which would enable a fair comparison of the optimization algorithms and would be a starting
training set for learning algorithms.

9.4.2 A Potentially infinite Set of Training Benchmarks

We have presented in this thesis algorithms and tools to build and traverse verylarge and expressive
optimization spaces. These algorithms can also be used to generate new input benchmarks. As for each
candidate version another syntactic code may be generated, starting fromthe collection of benchmarks
presented above a potentially infinite collection of programs can be produced. For each input bench-
mark, thousands of versions can be generated by applying arbitrary legal transformations on them. The
syntactic code which is produced is then brought back to a polyhedral representation, creating another
benchmark.

The advantages of this technique are twofold. First, as we consider several transformations of the
input program, a validating result for the training process is to obtain a performance similar to the op-
timized original one on all its variations. Second, the variability of the generated versions is extremely
large. We can create arbitrarily complex problems in the input code, increasing the challenge for the
optimization algorithms. As we use several times a program doing the same computation, only written
in a different way, there is a risk of over-fitting for the learning algorithm. Standard techniques such as
cross-validation are mandatory.

9.4.3 Performance Metrics

To gather information about the performance of a given optimization, several metrics should be consid-
ered. Depending on the target architecture they may not be prioritized the same way. For instance, in
high-performance computing the dominant metrics are execution time and powerconsumption, but in
embedded computing code size may be critical. We propose the following metrics.

• Execution time.Total number of cycles per core, total execution time for the program.
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• Memory behavior.Number of cache hit / cache miss, for each layer of the memory hierarchy,and
for instruction and data caches. Translation Lookaside Buffer (TLB) hit / miss is also a relevant
metric.

• Parallelism. Number of coarse-grain parallel loops and number of vectorizable loops. For each
parallel loop the number of iterations that can be run in parallel should be reported.

• Code size.Size of the program, in its compiled form.

Several techniques do exist to collect dynamic information about the program execution. In this thesis
we have used the Performance Application Programming Interface (PAPI)library1 which has proved to
provide precise information based on performance counters available directly on the chip. For the static
characteristics such as parallelism one can simply inspect the syntactic transformed code and apply a
parallelism detection step based on the dependence graph, on each loop.It is worth noting that not
all production compilers support annotations about dependence information, and so may not be able to
parallelize a loop that is indeed detected and annotated as parallel in the output syntactic program. At the
time of writing of this thesis, the practical user is encouraged to perform coarse-grain parallelization via
OpenMP pragmas for instance, and to carefully monitor if the compiler was ableto detect SIMD loops
exposed in the program.

9.5 Putting It All Together

To build an efficient auto-tuned compiler we rely on an initial training stage, during which we make a
chosen model learn how to optimize programs. We glue in Section 9.5.1 the blocksdepicted previously
and outline the procedure to train the model. Once the model is trained — or equivalently once the
compiler has finished to install — the compiler is ready for use. When asked to compile a new program,
an optimization for it has to be computed. We outline this process in Section 9.5.2.

9.5.1 Training Phase

During the training phase, the goal is to learn how to characterize the importance of abstract metrics such
as parallelism and locality on the program performance. To achieve this objective, we propose to test a
wide spectrum of transformations for each input program. The following procedure depicts the process
for a given input training program:

1. compute the vector of optimal valuesOV for the abstract metrics selected to represent the program
(parallelism and locality metrics);

2. pick a semantics-preserving transformation for the program;

3. compute the vector of abstract metrics valuesTV for the transformed program;

4. run the transformed code on the target machine, collect its performance;

5. feed the learning model withOV, TV and the performance.

1http://icl.cs.utk.edu/papi
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The model is expected to learn, for this particular program, how critical it is toexhibit parallelism
(both inner and outer level), and how critical it is to improve the program locality. For instance, if an
equivalent quantity of schedules with poor and good locality gives a verygood performance, then it is
determined that locality improvement does not drive the choice of the optimization.

As the metrics are defined for the training phase at the finest granularity (for instance, on a per mem-
ory access basis), the information must be generalized to program-independent metrics. Considering a
program with 4 loops, the model would decide for instance that it is of high importance to simdize loops
1 and 3, while the four loop nests are simdizable (optimum is then 4). This generalization is an open
problem, but one care-free solution to evaluate is to simply consider the average value of each individual
metrics, here that half of the loops should be simdized.

The process is repeated for each training program, using of course standard cross-validation tech-
niques as well as feeding with randomly transformed versions of the initial set of benchmarks, as ex-
plained above.

This proposal of training process can be very long. We believe that time constraints for this learning
phase are not relevant at this stage. Hence, we consider we may test for an almost unlimited number of
candidate transformations for a given program. It is expected that tuningthis stage is a critical matter to
reduce the training time, but it is left as a future work to investigate the solutionsto do so.

9.5.2 Compiling a New Program

The final step is to build a transformation for a new program. So far, we have described in a very abstract
way how the information is stored and used to optimize a new program. We now detail this procedure
with an example.

Consider again the example of Figure 9.2, where we have learned on the standard matrix multiply
code (left), and the compiler is now asked to compile the optimized one (right). Remember we are using a
SIMD-capable single-core machine. The syntactic and polyhedral features of the program are computed
as described in Section 9.2, and the model correlates the new program with the standard matrix-multiply.
During the training phase, it has been determined that SIMD is critical (all statements must be simdized
to get good performance, the metrics value is 1), coarse-grain parallelismdoes not impact performance
(metrics value is 0).

Now to compute the transformation for the new program, one can proceed asfollows. We first
build the set of all legal affine multidimensional schedules for the program. We then refine the set with
additional constraints, such as inner-most parallelism in this case. In the general case, this leaves us with
a large family of candidate transformations that respects the criteria. Two options can be followed. First,
one can resort to iterative compilation in the subset of computed transformations. As we have pruned
the space and isolated a subspace of potentially good transformations, it is expected that such a process
can converge quickly towards a good performing one. The other possibility is to resort to additional cost
functions to instantiate the schedule coefficients, as proposed in Chapter 8.

Clearly, the decision process of performing the final section of the schedule is another open problem,
which is of critical importance. For instance, what happens if we can only vectorize statements 1 and
3, or 2 and 4, which one do we select? As a future work of this thesis we wishto investigate the
implementation and evaluation of the framework proposed in this chapter. We acknowledge that many
open problems remain to be solved, in particular the process of computing a transformation for a new
program deserves significant research to attain a high efficiency in the general case. Still we believe we
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have provided some significant blocks for machine-learning assisted compilation, and as a starter this
infrastructure can be used to speed the iterative compilation process.
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Chapter 10

Conclusions

From the age of punched tape computers to present-day power efficientmulti-core heterogeneous plat-
forms, a dominant task has been to use the computational resources efficiently. This task, initially re-
sorting to programmers, is progressively relying more and more onoptimizing compilers. For decades,
chip architects have used the most advanced ideas to beat the memory wall, but they are now facing
hard the power wall. As a consequence chips are going multi-core, requiring compilers to automati-
cally parallelize sequential legacy applications. But another problematic consequence of the increased
chip complexity is the performance gap between standard compiler output andthe machine’s theoretical
capabilities.

Present day compilers usually fail to model the complex interplay between different optimizations
and their effect on all the different processor architectural components. Also, the complexity of current
hardware has made it impossible for compilers to accurately model architectures analytically. Thus,
empirical search has become a valid alternative to achieve portable high performance on most modern
architectures.

Iterative compilation consists in successively testing for different candidate optimizations on the
target machine, measuring their actual performance instead of relying on often inaccurate performance
models. Most iterative compilation techniques target compiler optimization flags, parameters, decision
heuristics, or phase ordering. We take a more aggressive stand, aiming for the construction and tuning of
complex sequences of transformations.

We observe that previous iterative compilation processes have been limited by the expressiveness
of the transformation framework they use. In most related work the key contribution lies in the design
and analysis of efficient search techniques, more than in the quest for aunified framework for program
optimization. The search space is usually made of fixed-length sequences of the optimization primitives
offered by the native compiler (for instance, loop unroll, loop tiling, loop interchange). Several problems
are encountered by such approaches.

• Legality of the sequence.Some generated sequences may not respect the program semantics, and
thus not be applied. And since limiting to always legal transformations is dramatically reducing
the optimization range, it is no better solution.

• Uniqueness of the sequence.Some sequences may lead to identical code due to the commutativity
and associativity properties of several loop transformations. Boundingthe size of the sequence
does not help.
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• Applicability of the sequence.Given a sequence of transformation that is not semantics-preserving,
one may in many situation be able to compute a series of complementary transformations to make
the considered sequence legal. Most existing techniques miss the ability and expressiveness of the
polyhedral representation to be able to compute such complementary sequences.

We present in this thesis a unified search space where all those critical problems are solved. The
polyhedral program representation is the most powerful tool to model arbitrarily complex loop transfor-
mations into a single search space. In addition, we propose to use anall-in-one approachfor the search
space construction, to significantly help any search process to focus onrelevant candidates only. For a
given search space, we guarantee as a property for all candidates that (1) they each preserve the program
semantics; (2) they each lead to distinct transformed programs; and (3) expressiveness is maximized by
considering all combinations of transformations in a given category.

We presented in Chapter 3 aconvex representation of the set of all, legal and distinct multidimen-
sional scheduleswith bounded coefficients, as a starting block for the search space construction. By
encompassing all possible affine loop transformations into a single loop optimization step, we have dra-
matically extended the expressiveness compared to standard iterative compilation approaches. Loop
fusion and loop distribution are two key transformations which application should be considered out of
the other complementary transformations — those transformations required to actually fuse or distribute
statements, such as skewing and peeling. We have contributed in Chapter 3 an affine representation of the
set ofall, legal and distinct multidimensional statement interleavings. This generalization of loop fusion,
called fusability, results in a dramatic broadening of the expressiveness (hence of expected effectiveness)
of the optimizer.

Several other building blocks for the design of a robust and portable iterative compilation process are
required. A critical concern is scalability, in other words, the ability of the iterative process to effectively
converge towards a good solution. In this spirit, we focused on providingall the required mechanisms
for an efficient search space construction and traversal.

We presented in Chapter 5 efficient techniques to build search spaces ofmultidimensional schedules.
We have addressed the problem ofbuilding practical search spaces, navigating the trade-off between
expressiveness and optimality of the solution versus tractability of the spaceconstruction and its traversal.
To assess the relevance of our approach, we have extensively evaluated theperformance distribution
of affine multi-dimensional schedulescontained in this space in Chapter 6. We evaluated numerous
programs on distinct architectures typical from desktop and embedded processors (x86, VLIW, MIPS32)
and concluded key observations on the performance distribution. We have experimentally validated a
partitioning of the space of affine schedules, byordering the performance impact of several classes of
schedule coefficients.

We proposed several heuristics to enumerate only these high-potential subspaces in the set of affine
schedules, to discover efficient program transformations in Chapter 7.We have provided aschedule com-
pletion mechanismleveraging the static and dynamic characteristics of the search space, enabling to com-
plete or correct any partial schedule to make it lie in the space of legal transformations. We contributed a
heuristic to discover thewall-clock optimal schedulefor the case of one-dimensional schedules, and ex-
tended this work to the case of multidimensional schedules. To further improvescalability on the largest
search spaces, we contributed thefirst genetic operators for loop transformations which are closed under
semantics-preservation. We provided experimental evidence of the efficiency of the iterative process in
optimizing programs, by testing on three different single-core architectures. Our processes systemati-
cally outperform the native compilers, including Intel ICC, whatever the target architecture by up to an
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order of magnitude faster.

Tiling (or blocking) is a crucial loop transformation for parallelism and locality. The downside is that
it is not an affine transformation, as it requires to alter the polyhedral representation to be performed. It is
known that tiling is legal if loops are permutable, and efficient algorithms for parallelism via tiling in the
polyhedral model have recently been proposed by Bondhugula. We extended his approach in Chapter 8
by allowing for aniterative search of multidimensional statement interleavings. We have tackled the
main limitation of this model-driven approach, by offering the optimizer the possibility to adapt for
any architecture the fusion structure of the program. Furthermore, we have removed the applicability
constraints of this technique, by enabling the discovery of permutable loopsin the presence of parametric
dependences. As a result, parallel tiled optimized code is produced, and our experiments on three high-
end modern multi-core machines (8, 16 and 24 hardware threads) concluded improvements of up totwo
orders of magnitude faster programswhen compared to the native auto-parallelizing compilers or the
initial model-driven approach.

The last building block for the design of an efficient iterative optimizer in the polyhedral model
relates to the manipulation of large polyhedra. As we have designed searchspaces as convex sets, we
face the problem of scanning polytopes of high dimensionality, orders of magnitude larger than those
manipulated by other polyhedral frameworks. To reach scalability, we have exhibited the key properties
required on the space to enable the design of alinear-time scanning procedureof the search space. We
have motivated the chosen representation for these polyhedra, and builtsimplification mechanisms to
perform aredundancy-less projection with the Fourier-Motzkin algorithm. Our experiments showed that
redundancy was the dominant bottleneck of this algorithm, and with a redundancy control is a scalable
technique to perform polyhedral projection on our problem instances.

We have gathered all the theoretical and practical contributions of this thesis into a set of software
applications dedicated to polyhedral compilation. During this thesis we have developedFM, the Fourier-
Motzkin Library to enable the manipulation of high-dimensionality polyhedra. All search space con-
struction and traversal techniques have been implemented inLetSee, the Legal Transformation Space
Explorator. To easily use and evaluate these tools, we also developedPoCC, the Polyhedral Compiler
Collection, which offers a full source-to-source iterative compiler in the polyhedral model. All these
tools are freely available for download and are already used by several other research projects.

As a result, we have designed, implemented and evaluated amachine-independent optimizer com-
puting machine-dependent optimizations. Still, there exists numerous possible improvements for our
techniques. Specifically, we identify the following sources for improvement.

• Knowledge transfer.In the processes we have designed, no knowledge is extracted to help the
compilation of another program. Each time the iterative process completes, the optimization in-
formation coming from this compilation is lost.

• Iterative search.The search process may require numerous runs before converging.An ultimate
goal is to reduce to the minimum the number of runs. And an alternative is to evaluate the po-
tential of substituting the program execution step with an off-line trained modelfor performance
evaluation.

• Scalability. We experimentally observed that the complexity of the search process is connected
with the number of polyhedral statements in the program. As the size of the program increases, so
does the compilation time.
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The scalability issue is directly connected to the iterative search processingtime. If we can exhibit
techniques to control the iterative search to operate successfully on a fixed and small number of runs
(say, at most 10 runs and at best 0), then scalability wouldde factobe achieved too. In Chapter 9 we
presented novel ideas toharness the power of polyhedral optimization in a machine learning assisted
compiler. We believe that the knowledge transfer, the iterative search and the scalability issues can all
be solved within a single approach for optimization based on machine learning.We provided numerous
ideas to reach this goal, and a short term objective is to build upon these concepts to design an even more
effective compiler for the current and upcoming chip generations.
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Appendix A

Correctness Proof forO

We restate the expression ofO , the affine set of all, distinct total preorders ofn elements. For 1≤ i <
n, i < j ≤ n, O is:
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Variables are binary
0≤ ei, j ≤ 1
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}

Relaxed mutual exclusion

∀k∈] j,n] ei, j +ei,k ≤ 1+ej,k
}

Basic transitivity one
ei, j +ej,k ≤ 1+ei,k
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Basic transitivity onp
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Complex transitivity onp andeei, j + p j,k ≤ 1+ pi,k
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}

Complex transivity onsandp

We want to prove thatthe setO contains one and only one point per distinct total preorder of n
elements.

Proof. We first prove thatO contains all and only total preorders, before proving the uniqueness of
preorders inO .

From the encoding throughs, p ande variables chosen, at least all total preorders are represented in
the initial set







0≤ pi, j ≤ 1
0≤ ei, j ≤ 1
0≤ si, j ≤ 1
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
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This is because all possible combinations for elementsi, j can be represented (i < j, i > j or i = j) with
the proposed representation. We now show that the successive constraints added to prune the set remove
all points that are not a valid total preorder. To prove so, we rely on the fact that a total preorder relation
is a relation which is total, transitive and symetric. Hence, we prove that our constraints are sufficient to
guarantee to preserve the totality, the transitivity and the reflexivity of the relation.
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Totality: Givenx, y two elements of a setSof nelements on which the total preorder relation is defined.
Without any loss of generality and for the rest of the proof, we assume that S is the set of consecutive
integers from 1 ton. Givena, b their position identifier as specified by the preorder. Totality gives:

a� b ∨ b� a

Eithera< b, a= b, b< a or b= a which is equivalent toa= b. This is guaranteed by the relaxed mutual
exclusion inequality.

Transitivity: Givenx, y, z three elements anda, b, c their respective partition identifier. Transitivity
gives:

a� b ∧ b� c ⇒ a� c

That is, one of the following configuration must occur:

1. a< b ∧ b< c ⇒ a< c

2. a< b ∧ b= c ⇒ a< c

3. a= b ∧ b< c ⇒ a< c

4. a= b ∧ c< b ⇒ c< a

5. a= b ∧ b= c ⇒ a= c

6. b< a ∧ c< b ⇒ c< a

7. b< a ∧ b= c ⇒ c< a

Converting 1. into our encoding gives:

px,y ∧ py,z ⇒ px,z (A.1)

To generalize this constraint to then possible elements, we must then consider the different possible
values forx, y, z: we can havex< y or x> y, x< z or x> z, andy< z or z< y. We start by focusing
only on the case wherex< y< z. (A.1) is written:

∀ 1≤ i < k< j ≤ n, pi,k ∧ pk, j ⇒ pi, j (A.2)

This equation can be converted in an affine form in a deterministic fashion (one can use a Boolean table
to ensure the constraint defines an equivalent logic as the implication), andonce converted in an affine
form corresponds to the basic transitivity ofp coefficients inequalities shown in the definition ofO .

Converting 5. into our encoding gives:

ex,y ∧ ey,z ⇒ ex,z (A.3)

For this case, ifx< y< z, then (A.3) is written:

∀1≤ i < j < k≤ n, ei, j ∧ ej,k ⇒ ei,k, (A.4)
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If y< x< z, then (A.3) is written:

∀1≤ i < j < k≤ n, ei, j ∧ ei,k ⇒ ej,k, (A.5)

These equations once converted in an affine form correspond to the basic transitivity ofecoefficients.

Converting 3. into our encoding gives:

ex,y ∧ py,z ⇒ px,z (A.6)

If x< y< z, then (A.6) is written:

∀1≤ i < j < k≤ n, ei, j ∧ pi,k ⇒ p j,k, (A.7)

If y< x< z, then (A.6) is written:

∀1≤ i < j < k≤ n, ei, j ∧ p j,k ⇒ pi,k, (A.8)

Converting 2. into our encoding gives:

ey,z ∧ px,y ⇒ px,z (A.9)

If x< z< y, then (A.9) is written:

∀1≤ i < k< j ≤ n, ek, j ∧ pi,k ⇒ pi, j , (A.10)

Equations (A.7), (A.8) and (A.10) correspond to the complex transitivity constraints on thep and e
variables.

Converting 6. into our encoding gives:

sx,z ∧ py,z ⇒ sx,y (A.11)

If x< y< z, then (A.11) is written (thanks to the substitution coming from the mutual exclusionequation):

∀1≤ i < j < k≤ n, ¬ei, j ∧ ¬pi, j ∧ p j,k ⇒¬pi,k ∧ ¬ei,k, (A.12)

This equations corresponds to the complex transitivity constraints on thep ands variables.

Several cases have not been explicitely addressed, because they are either equivalent to the above-
mentionned affine constraints, or non-contributing to the pruning of the space. Their enumeration and
computing their equivalence with the presented cases is left to the motivated reader.

All necessary conditions for transitivity have been enforced inO .

Reflexivity: Reflexivity is trivially satisfied in our encoding.

This concludes proving that all points inO is a total preorder, and that all total preorders are inO .

We must now prove that there is only one point inO per distinct total preorder.
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Uniqueness: To prove so, we show there exists a bijectionf : P → O between the set of distinct total
preordersP andO .

We first prove that it is not possible that two distinct preorders are represented by the same point in
O . Suppose there exists two distinct total preordersp1 andp2 such that

f (p1) = f (p2) ∧ p1 6= p2

By construction of the encoding, two distinct preorders result in at leastone modification of a variable
(ei, j and/orpi, j ) used to encode the preorder. Hence we must have:

f (p1) = f (p2) ⇒ p1 = p2

which is a contradiction.

To show that it is not possible to have two distinct points inO representing the same total preorder,
we again rely on our encoding definition. This concludes the proof of Lemma3.6.
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