UNIVERSITE bE PARIS-SUD 11
U.F.R. SCIENTIFIQUED’ORSAY

In Partial Fulfillment of the Requirements for the Degree of
DOCTOR OFPHILOSOPHY
Specialty: Computer Science

Louis-Noél POUCHET

Subject:

| TERATIVE OPTIMIZATION

IN THE

POLYHEDRAL MODEL

Thesis committee:

Dr. Cédric Bastoul Associate Professor at University of Paris-Sud

Dr. Albert Cohen Senior Research Scientist at INRIA Saclay lle1@daée

Pr. Paul Feautrier Emeritus Professor at Ecole Normale Superieure de Lyon
Dr. Richard Lethin Chief Executive Officer at Reservoir Labs Inc.

Pr. P. Sadayappan Professor at the Ohio State University

Dr. Marc Schoenauer Senior Research Scientist at INRIA Saclay {leatece

Acknowledgments

Writing the acknowledgment chapter of your thesis is one of the most antidipatenent of the pro-
duction of the manuscript. This is going to be your final pass on probatdyobthe most complex
document you will ever have to write on your own. And then, time flies, aslustou focus on the
technical content, the polishing, the integration of your reviewers’ sstgderevisions. And then, you
start a new job, a new life, thousands of kilometers away. And time goes @u.ydars have gone by,
leaving "To Be Done after graduation” as the only acknowledgment ahafoyeur dissertation...

Two years after. Yes. Let me look at the benefits: writing an acknowledgohepter two years after
graduation gives perspective to your thesis, its writing work effodllyenot that much in comparison
of the rest), and more importantly at the end gives you the opportunity to thask who really have
influenced yourself, your work, and as a consequence the life thagsafter that.

My first, and foremost, acknowledgment is dictated by both my brain and my; litsgoes to Albert,
it has to go to Albert. He proved to be an amazing Ph.D advisor: the one thgblet® what you want,
even if he thinks you are wrong (yes, mistakes are part of the learning$s). The one that believes in
you, even when you think your work is at best below average (yesh#gpens all the time). The one
that first reacts to your idea(s) by thinking "why is it right?" (yes, so maegyple instead think "why is
it wrong?"). The one that shows you the way, one of many, to condhitiadly correct and interesting
research without any self-interest or political consideration. Albetedif good minutes in a week can
have more impact than one useless hour every day, trust me. From tlssraavisee relationship was
born a fruitful work and personal relationship, that will last way beyéme current collaborations we
have. | owe you a lot.

My second acknowledgment is dedicated to Cédric. | was immensely luckyrtowith him, some-
one with whom | share so many points of interests in computer science, sosin@tay objectives about
what a fruitful research should be about. We both truly believe thatetéliy good software is required
to help disseminate any research effort, and helps other researchgsioio new problems. We both truly
believe a single good paper is better than five average ones. We bothelielyeldiving our passion and
sharing our ideas is more important than the money we can make out of it. Mjnopédyis that one day
my software will have as much impact as CLooG had for our community.

| would now like to depart from "advisors" acknowledgment and partitulmention two people,
well | should say two friends, Nicolas Vasilache and Uday Bondhugutdh Bave set a bar that has set
my expectation about a sucessful Ph.D. Uday has truly made grouakiigecontributions, providing
both theoretical and practical results that made our community able to deigleparformance opti-
mizations on a variety of programs. Yet we quickly started to work together tmieppon his results,
and he proved to be the definition of a true scientist: always interested in gntkitgs work better,
no matter who finds the solution, and always interested in disseminating thes tesine masses. Our
collaboration led to a few papers | am particularly proud of, his spirit vii@ayss there to motivate me
to reach better and more complete understanding of the problems at hanutHis work relationship
emerged a personal relationship that grew in Paris and then in NYC, thatlsdllast way beyond our
current collaborations. Nicolas is another example of a true scientist. Bleamapleting his Ph.D while

| was starting mine. While some could have focused on their own work, /@ spemany hours dis-
cussing with me his research and mine, always making the required abstisctioat | can understand
and participate. His ability to formulate problems, and his integrity in the conduesearch were the
starting points of my thesis work. Our numerous "coffee breaks" (I stilermber the explanation of
wavefront tile scheduling with you literally making steps on the tile floor in frdmdur building!) are
cheerful memories. Our joint experience at Reservoir was anothef grgour scientific talent.

Many thanks have to be given also to my Thesis defense committee, wheré @ 822000 miles
have been traveled just to attend the actual defense in Paris (well, inchagigedf!). | was truly honored
to have Paul Feautrier and P. Sadayappan as reviewers of my thagdigrdreed, if any need to, to be
an extremely open-minded reviewer, providing insightful and constrictiticism about my work. His
seminal works have deeply inspired my research, to the point of my tributedtiittay first two papers.
| am also very grateful to Saday for his hard work and important fegddlbba my thesis. But, two
years after, | am even more grateful for his supervision of my postadik. He is really an amazing
character, who is committed to his work to an extent that | have never seday,Shave you heard,
some people take breaks and go in "vacation"? Yes, it is a strange tovioeqe people actually don't
work for entire days in a row!). We have worked together on suchiatyaof topics that | can sincerely
call him responsible for my learning of high-performance computing asaeyhand | still feel | have
only scratched the surface of the research he is conducting. So maegtprhave emerged from our
collaboration that the next ten years may not be enough to just completevghave started. He is a
mentor in the true definition of the word. | also would like to give a special tedaolRichard Lethin,
who has accepted to travel from NYC for my defense. His company hasoed an amazing compiler,
that | was lucky enough to discover during a 4-month visit at Reservdis LRichard is the living proof
that one can live from polyhedral compilation research, and writinggsals on polyhedral compilation
has been made so much easier thanks to his contributions and commitment. | wallydike to thank
Marc Schoenauer to have accepted to lead my defense committee. | weiskyspappy to disseminate
our work in adaptive compilation to the community of machine learning research.

| want to conclude this acknowledgment chapter by thanking all the peagilegm proud to consider
as my friends. They have been a constant support, they accepted emcapsy moods, my failures,
and they all believed in me to an extent that is beyond common sense. | amamhbdcause of them.
Caro, Greg, Vincent, David, Seb, Jerome, Steph, Charlotte, AureleCaad all others: you owe a piece
of this work. And | am saving the best for the end: this work is literally thalpod of the product of my
Mother Martine and my Father André, without their thorough education dwite@ | would simply not
be writing those words. They deserve so much tribute that words aréeuioadven start to express how
grateful I am to them. Thank You.

This thesis is dedicated tdulie ma filleule, Paul, Camille, Cdme mon filleul, Lou-Anne, Titouan,
Manon ma doudou (etfilleule), Louis and Zdday this little piece of work inspire the young generation
to commit to the Research effort.

Contents

1 Introduction 11
| Optimization Framework 17
2 Polyhedral Program Optimization 19
2.1 ThinkinginPolyhedra 19
2.2 Polyhedral Program Representation 20
2.2.1 Mathematical Background Snapshot 20

222 StaticControlParts e

223 Statements e e

224 lterationDomains.

2.25 AccessFuNnctions e 5

226 Schedules e
2.3 Polyhedral Program Transformations 27
2.3.1 One-Dimensional Schedules 27

2.3.2 Multidimensional Schedules L
2.4 Program Semantics Extraction e 29
2.4.1 DataDependence Representation 30

2.4.2 Building Legal Transformations 31
25 Code Generation 31

2.6 SUMMANY e e e
3 Semantics-Preserving Full Optimization Spaces 35
3.1 Semantics-Preserving Affine Transformations 35
3.1.1 Program Dependences e e e 36
3.1.2 Convex Set of One-Dimensional Schedules 36
3.1.3 Generalization to Multidimensional Schedules 8.

3.14 RelatedWork
3.2 Semantics-Preserving Statement Interleavings 41
3.2.1 Encoding Statement Interleaving L. 42
3.2.2 Affine Encoding of Total Preorders 47
3.2.3 Pruning for Semantics Preservation 50

3.24 RelatedWork

21
23
24
25

28

33

41

CONTENTS

4 Computing on Large Polyhedral Sets

4.1
4.2

4.3

4.4

4.5

Computing on High-Dimensionality Polyhedra
Existing Techniques for Polyhedral Manipulation
4.2.1 Manipulation of Presburger Formulas
4.2.2 Dual and Double-description of Polyhedra.
4.2.3 Number Decision Diagrams
Polyhedral Operations on the Implicit Representation
4.3.1 Required Polyhedral Operations
4.3.2 Redundancy Elimination

Efficient Dynamic Polytope Scanning
4.4.1 The Dynamic Scanning Problem
4.4.2 Scanning Points Using Projections
Fourier-Motzkin Projection Algorithm
45.1 The Genuine Algorithm

452 Knownlssues

4.5.3 Redundancy-Aware Fourier-Motzkin Elimination
454 SomeRelatedWorks oL

Constructing Program Optimizations

Building Practical Search Spaces

51

5.2

5.3

Introduction

5.1.1 The Trade-Off Between Expressiveness and Practicality

5.1.2 Different Goals, Different Approaches
Search Space Construction
5.2.1 One-Dimensional Schedules
5.2.2 Generalization to Multidimensional Schedules
5.2.3 Scanning the Search Space Polytopes
RelatedWork

Performance Distribution of Affine Schedules

6.1

6.2

Scanning the Optimization SearchSpace
6.1.1 ExperimentalSetup
6.1.2 Exhaustive Space Scanning
6.1.3 Intricacy of the Best Program Version
6.1.4 The Compiler as an Element of the Target Platform
6.1.5 On the Influence of CompilerOptions
6.1.6 Performance Distribution
Extensive Study of Performance Distribution
6.2.1 Experimental Protocol
6.2.2 Study of thelct Benchmark
6.2.3 Evaluation of Highly Constrained Benchmarks
6.2.4 Addressing the GeneralizationlIssue

53

......... 53

54

......... 54

54

.......... 55

.......... 57

.......... 61

.......... 65

.......... 85

CONTENTS 9

7 Efficient Dynamic Scanning of the Search Space 99
7.1 Introduction L e 99
7.2 Heuristic Search for One-Dimensional Schedules 99
7.2.1 DecouplingHeuristic e 99
7.2.2 DISCUSSION e 100
7.3 Heuristic Search for Multidimensional Schedules 101
7.3.1 Schedule Completion Algorithm 101
7.3.2 A Multidimensional Decoupling Heuristic 210
7.3.3 Experimentson AMD Athlon 104
7.3.4 Extensive ExperimentalResults 105
7.4 Evolutionary Traversal ofthe Polytope 107
7.4.1 GeneticOperatorsDesign 07 1
7.4.2 ExperimentalResults e 910
8 Iterative Selection of Multidimensional Interleavings 113
8.1 Introduction 113
8.2 Problem Statement 114
8.2.1 Motivating Example 114
8.2.2 Challenges and Overview of the Technique 115
8.3 Optimizing for Locality and Parallelism 115
8.3.1 Additional Constraintsonthe Schedules 116
8.3.2 Computation of the Set of Interleavings 118
8.3.3 Optimization Algorithm 120
8.3.4 SearchSpace Statistics 23. 1
8.4 Experimental Results e 124
8.4.1 ExperimentalSetup 412
8.4.2 Performance Improvement 125
8.4.3 Performance Portability 712
8.5 RelatedWork e 128
9 Future Work on Machine Learning Assisted Optimization 129
9.1 Introduction e 129
9.2 Computing Polyhedral Program Features 130
9.21 AGrainforEachGoal 301
9.2.2 Some Standard Syntactic Features 130.
9.2.3 PolyhedralFeatures e 131
9.3 Knowledge Representation e 132
9.3.1 Dominant Transformation Extraction 331
9.3.2 Optimized Program Abstract Characteristics. 134
9.4 Training Set and Performance Metrics waa .. 134
9.4.1 StartingBenchmarks 513
9.4.2 A Potentially infinite Set of Training Benchmarks 135
9.4.3 Performance Metrics 351
9.5 Putting It All Together 136
9.5.1 TrainingPhase 6 13
9.5.2 CompilingaNewProgram 137

10 Conclusions 139

10 CONTENTS

A Correctness Proof for o 143
Personal Bibliography 147

Bibliography 149

11

Chapter 1

Introduction

Compilation Issues on Modern Architectures

The task of compiling a program refers to the process of translating ahdaprce code, which is usually
written in a human-readable form, into a target language, which is usually Emeagpecific form. The
most standard application of compilation is to translate a source code into g baut, that is a program
that can be executed by the machine. Compiling a program has becomeaasingly difficult challenge
with the evolution of computers and computing needs as well. In particularrdigegmmer expects the
compiler to produceffectivecodes on a wide variety of machines, making the most of their theoretical
performance.

For decades it was thought that Moore’s law on transistor density wtgddranslate into increasing
the processor operating speed. Hence more transistors was ofterategbwith a faster execution time
for the same program, with little or no additional effort to be done in the compiteht upgraded chip.
This era has come to an end, mostly because of dramatic thermal dissipates i&sua consequence,
the increase in the number of transistors now translates into more and motiefiahunits operating at
the same speed as five years ago.

With the emergence of specific and duplicated functional units started tre: dfgoarallelism in
modern machine. Instruction-Level Parallelism is exploited in most proressal increasingly com-
plex mechanisms to manage it on the hardware has been a source for afigiidormance. On the
software side, the compiler is asked to automatically adaptaosformthe input program to best fit
the target architecture features, in particular for Single-InstructioitiierData programs. Moreover,
nowadays a full processor core is replicated on the same chip, and thepréad adoption of multi-
core processors and massively parallel hardware acceleratodsj@Bw urge production compilers to
provide (automatic) coarse-grain parallelization capabilities as well.

Considering that most of the computational power is spent in loops oveaihe set of instructions,
it is of high priority to efficiently map such loops on the target machines. Higatll®op optimiza-
tions are necessary to achieve good performance over a wide varigtgagfssors. Their performance
impact can be significant because they involve in-depth program tramstions that aim to sustain a
balanced workload over the computational, storage, and communicatiamgesof the target architec-
ture. Therefore, it is mandatory that the compiler accurately models thé saohétecture as well as the
effects of complex code restructuring.

12 1. INTRODUCTION

However, most modern optimizing compilers use simplistic performance modelsiisiaact away
many of the complexities of modern architectures. They also rely on indeagpendence analysis, and
lack a framework to model complex interactions of transformation sequembesefore they typically
uncover only a fraction of the peak performance available on many apptisa An ideal compiler is
asked to achievperformance portablever an increasingly larger and heterogeneous set of architectures.
For a given (multi-)processor architecture, the compiler attempts to map thergnain of independent
computation and the proper data locality to a complex hierarchy of memory, ¢om@und intercon-
nection resources. Despite five decades of intense research aidpmeent, it remains a challenging
task for compiler designers and a frustrating experience for the progeas of high-performance ap-
plications. The performance gap between expert-written code and autarpétiuzation (including
parallelization) of simple numerical kernelsigdeningwith every hardware generation.

Iterative Compilation

In recent years, feedback-directed iterative optimization has beconoengsing direction to harness the
full potential of future and emerging processors with modern compilergatite compilation consists
in testing different optimization possibilities for a given input program, ususllperforming the trans-
formation and evaluating its impact by executing the optimized program on tret taeghine. Building
on operation research, statistical analysis and artificial intelligence, vierggitimization generalizes
profile-directed approach to integrate precise feedback from the rubgmavior of the program into
optimization algorithms. Through the many encouraging results that havephbéshed in this area, it
has become apparent that achieving better performance with iterativégeel depends on two major
challenges.

1. Search space expressivenesk achieve good performance with iterative techniques that are
portable over a variety of architectures, it is essential for the transfammsaearch space to be
expressive enough to let the optimizations target a good usage of all imparthitecture com-
ponents and address all dominant performance anomalies.

2. Search space traversalt is also important to construct search algorithms (analytical, statistical,
empirical) and acceleration heuristics (performance models, machine gathat effectively
traverse the search space by exploiting its static and dynamic characteristics

Complex compositions of loop transformations are needed to make an effaséwof modern hard-
ware. Using the polyhedral compilation framework, it is possible to exghese complex transforma-
tions into an algebraic formalism, exposing a rich structure and leveragomgstsults in linear algebra.
Unlike most other transformation frameworks, the polyhedral model alloassing on the properties
of theresultof an arbitrarily complex sequence of transformations, without the bustleomposing the
properties of individual loop transformations to build the sequence. dderewith polyhedral compi-
lation it is possible to design the loop nest optimization flow as a serieptahization-space pruning
steps, rather than as a series of incremental optimization steps. Building aethisur work is the first
to simultaneously address the two aforementioned challenges.

Part of the reason for the failure of optimizing compilers to match the perfarenahhand-written
implementations can be found in the way loop nest optimizers attempt to break bz gidimization
problem down to simpler sub-problems. Classical optimizers walk a singlegmaansformation path,

1. INTRODUCTION 13

each step resulting from the resolution of a complex decision problem. Vg®sgdao modesets of
candidate program transformations as convex polyheiti@ementally pruning those polyhedra and de-
ferring irrevocable decisions until it is guaranteed that we will not miss awitapt exploration branch
leading to a much more profitable program transformation. Candidate pndgaasformations repre-
sent arbitrarily complex sequences of loop transformationdiked lengtifashion — that is, as a point
in a polyhedron. Polyhedron pruning involves the insertion of additioffialainequalities, embedding
semantics-preservation, transformation unigueness, target-speciionpence modeling and heuristic
simplifications. The symbolic pruning approach may at some point becometattiacfor algorithmic
complexity or non-linearity reasons. Only at such a point, an irrevocauision has to be taken: it typ-
ically takes the form of the instantiation of several coefficients of the matdegsing the composition
of program transformations being constructed.

We present in this thesis all required blocks to achieve the design ancggealof a scalable, au-
tomatic and portable process for program optimization, based on the podypeagram representation.
We now summarize our main contributions.

Contributions

Convex characterization of semantics-preserving transfonations

A program transformation must preserve the semantics of the progranpolyteedral program repre-
sentation defines it with the finest granularity: each executed instanceyoitactic statement is con-
sidered apart. One of the most powerful feature of this representatiba &bility to express a unique
convex set of all semantics-preserving transformations, as showmadilathe. As a starting point for
the optimization space construction, we present in Chaptec@aex, polyhedral characterization of
all legal multidimensional affine schedules for a prograsith bounded scheduling coefficients. Build-
ing on Feautrier and Vasilache results, we provide the optimization framemittkhe most tractable

expression of this set known to date.

Focusing on a subset of transformations such as loop fusion and Idopudien is of critical interest
for the purpose of parallelization and memory behavior improvement. Yedatixtg the convex subset
of all legal compositions of these two transformations cannot be done inightforward fashion from
the set of legal multidimensional schedules. We propose, for the first timaffiae encoding of all
legal multidimensional statement interleavinfgs a program in Chapter 3. To achieve the modeling
of this space, we first show the equivalence of the one-dimensionalepnowvith the modeling of total
preorders. We then present the first affine characterization of thoé gty distinct total preorders before
generalizing to multi-dimensional interleavings. We finally present an algotithefficiently prune this
set of all the interleavings that do not preserve the semantics.

Iterative compilation in the space of affine schedules

Feedback-directed and iterative optimizations have become essenti@eefe the fight of optimizing
compilers to stay competitive with hand-optimized code: they freshen the staticiaion flow with
dynamic properties, adapt to complex architecture behaviors, and ceatpdar the inaccurate single-
shot of model-based heuristics. Whether a single application (for clieatitsictive optimization) or a
reference benchmark suite (for in-house compiler tuning) is consigiéretyo main trends are:

14 1. INTRODUCTION

e tuning or specializing an individual heuristic, adapting the profitability orisies model of a
given transformation;

e tuning or specializing the selection and parameterization of existing (blackebmpiler phases.

This thesis takes a more offensive position in this fight. To avoid diminishingn®tin tuning
individual phases or combinations of those, we collapse multiple optimizaticsephato a single, un-
conventional, iterative search algorithm. By construction, the seardespee explore encompassais
legal program transformationi a particular class. Technically, we consider (1) the whole class of loop
nest transformations that can be modeledrass-dimensional schedulg®) a relevant subset of the class
of transformations that can be modeledhadtidimensional scheduleand (3) the subset of athultidi-
mensional statement interleavindise broadest class of loop fusion and distribution combinations.

This results in a significant leap in model and search space complexity cednjoestate-of-the-art
applications of iterative optimization. Our approach is experimentally validatadsoftware platform
we have built especially for this purpodeetSeethe Legal Transformation Space Explorator, is the first
complete platform for iterative compilation in the polyhedral model. It is integrit® the full-flavored
iterative and model-driven compiler we have built during this th€si€C the Polyhedral Compiler
Collection. We present in Part Il of this thesis the optimization search smastraction and traversal
algorithms, as well as the associated experimental results.

Scalable techniques for polytope projection and dynamic saning

One cornerstone of iterative program optimization in the polyhedral modkkisbility to efficiently
build and traverse search spaces represented as polyhedraeinoorelach scalability on large program
parts, it is required to move forward in two directions: provide scalable omimoiz algorithms, and
provide scalable techniques to traverse polyhedral sets. The FMotekin elimination algorithm is
often thought of as not suitable for large problem solving, as its majorldrelvis to generate a high
number of redundant constraints during the projection steps. This pndiae particularly been observed
for the task of generating a code scanning a polyhedron. We contthidichisconception by proposing
in Chapter 4 a slightly modified version of this algorithm, which scales up to theéreda of dimensions
of the problems considered in this thesis. We leverage Le Fur's result®senira redundancy-less
implementation, allowing to reshape the largest convex sets in a form suitaldgrfamic scanning.
Eventually we present a linear-time scanning technique which operatee ogsthiting polyhedron. All
these results are implemented in the free softvrre a library for polyhedral operations based on the
Fourier-Motzkin projection algorithm.

Performance Distribution of Affine Schedules

Although numerous previous work used the polyhedral framework to atargpprogram optimization,
none provided quantitative experiments about the performance distritmfttbe different possibilities
to transform a program. In Chapter 6 we propose to study and chazadtee performance distribution
of a search space of affine schedules by means of statistical analyfsésrefults, over an extensive set
of program versions

We report the static and dynamic characteristics of a vast quantity ofgrogersions, attempting
to capture the largest amount of information about the performance digiritaf affine schedules. As

1. INTRODUCTION 15

a consequence of this study we experimentally validasel@space partitionindpased on the relative
impact on performance of classes of coefficients. To the best of @wlkdge, this is the first time such
a characterization is performed and experimentally validated.

Heuristic Traversal

We build upon the results of Chapter 6 to motivate the design of severastiearechanisms to traverse
the search spaces, these are presented in Chapter 7. First wet prdsenupling heuristic tailored to
the exploration of one-dimensional schedules. This heuristic is able tovdisttee wall-clock optimal
schedule in our experiments, and is able to systematically outperform the natiwiler. For instance
on MatrixMultiply the process outperforms ICC by6on anAMD At hl on 3700+ in less than 20 runs.
We then extend this result to the case of multidimensional schedules, andevalistiapproach on three
architectures, including the VLIW STMicroelectroni8231 processor and th&D Aul500 processor.
In average, our iterative process is able to outperform the native carbpile8% for theST231 processor,
over the highly optimized ST200cc compiler. Performance improvements of 8p%oin average are
obtained for the other evaluated single-core processors. To furtheovmghe speed of the traversal
and reduce the number of candidates to test for, we propose a Genaifitiityapproach. We design
the first generic operators tailored to preserve the semantics of thepragrmile exploring a rich set of
loop transformations. To the best of our knowledge, this is the first time #radtg operators closed
under affine constraints are developed. We experimentally obsentdaitterger benchmarks, the GA
performs 246x better in average than the decoupling heuristic and up toliditer.

Iterative selection of multidimensional statement intereavings

The selection of a profitable combination of loop transformations is a hardinatohal problem. We
propose in Chapter 8 to explore an iterative approach that is based sel¢iotion of multidimensional
statement interleaving, modeling generalized forms of loop fusion and disbribup to enabling affine
transformations. This subspace focuses the search on the most digficultf the problem: it mod-
els transformations that have a significant impact on the overall perfeaenmasolated from enabling
transformations for which effective heuristics exist. We propose dipghoptimization algorithm to ex-
plore the pruned search space polyhedron, while heuristically buildingfiggble, semantics-preserving
enabling transformation.

Compared to the state-of-the-art in loop fusion, we consider arbitrarityptex sequences of en-
abling transformations, in a multidimensional setting. This generalization of legiprf is calledus-
ability and results in a dramatic broadening of the expressiveness of the optilvizenodel candidate
statement interleavings for fusability as total preorders, and we redageablem of deciding the fus-
ability of statements to the existence of compatible pairwise loop permutations. |gawittams are
applied to relevant benchmarks, demonstrating good scalability and steofogrpance improvements
over state-of-the-art multi-core architectures and compilers. We expaehen three high-end ma-
chines ranging from 4 to 24 cores. Our approach systematically outpesfibe best auto-parallelizing
compilers Intel ICC and IBM XL, by a factor up to ¥5in our experiments. Compared to the other itera-
tive search techniques presented in this thesis, this approach doesumbh single-threaded programs:
automatic and aggressive coarse-grain parallelization is achievedsttaalgeneralized and improved
version of Bondhugula’s algorithm for tiling hyperplane computation.

16 1. INTRODUCTION

Openings on machine learning assisted compilation

For the past decade, compiler designers have looked for automatedjtezhio improve the quality
and portability of the optimization heuristics implemented in compilers. They naturalketbtowards

machine learningprocesses, mainly to improve the search speed for iterative compilatioasgges;

and to improve the performance of a dedicated optimization heuristic. Forcaisels, the main idea
is to build automated processes to help computing a good optimization based esuhef previous

compilations. We present in Chapter 9 some critical remarks about how ploéffempilation can be
harnessed by a machine learning oriented compiler. We describe the rnitioat steps and give key
observations on how to reshape the process according to the polyt@astraints.

17

Part |

Optimization Framework

19

Chapter 2

Polyhedral Program Optimization

"All parts should go together without forcing. You must re-
member that the parts you are reassembling were disassem-
bled by you. Therefore, if you can't get them together again,
there must be a reason. By all means, do not use a hammer."

—IBM Manual, 1925

2.1 Thinking in Polyhedra

Most compiler internal representations match the inductive semantics of itwpgpeograms (syntax
tree, call tree, control-flow graph, SSA). In such reduced reptatens of the dynamic execution trace,
a statement of a high-level program occurs only once, even if it is ¢x@guany times (e.g., when
enclosed within a loop). Representing a program this way is not conidareaggressive optimizations
which often need to consider a representation granularity at the leveginaimtic statement instances
For example, complex transformations like loop interchange, fusion or tiliegade on the execution
order of statement instances [126]. Due to compilation-time constraints and kacthof an adequate
algebraic representation of the semantics of loop nests, traditional (mativié¢ compilers are unable
to adapt the schedule of statement instances of a program to best exphaitkiitecture resources. For
example, compilers can typically not apply any transformation if data depeadeare non-uniform
(unimodular transformations, tiling), if the loop trip counts differ (fusion¥imnply because profitability
is too unpredictable. As a simple illustration, consider Birgy-Roberts edge detection filter shown in
Figure 2.1. While it is straightforward to detect a high level of data reusedam the two loop nests,
none of the compilers we considered — Open64 4.0, ICC 10.0, PathScal&G@ 4.2.0 — were
able to apply loop fusion for a potentially 50% cache miss reduction whegsagi@not fit in the data
cache (plus additional scalar promotion and instruction-level-parallelismoireprents). Indeed, this
apparently simple transformation actually requires a non-trivial composifidvo-dimensional) loop
shifting, fusion and peeling.

To build complex loop transformations, an alternative is to represent garegyin thepolyhedral
model It is a flexible and expressive representation for loop nests with statigagljictable control
flow. The polyhedral model captures control-flow and data-flow withethireear algebraic structures,
described in the following sections. Such loop nests amenable to algelpeéseatation are called

20 2. POLYHEDRAL PROGRAM OPTIMIZATION

static control partSCoP) [39, 51].

Polyhedral program optimization is a three stage process. First, theapragranalyzed to extract
its polyhedral representation, including dependence information amdapattern. This is the subject
of Section 2.2. Following Section 2.3 and Section 2.4 present the secoraf p@ghedral program op-
timization, which is to pick a transformation for the program. Such a transformagiptures in a single
step what may typically correspond to a sequence of several tens adaéxtiop transformations [51].
It takes the form of a carefully crafted affine schedule, together wittiqoal) iteration domain or array
subscript transformations. Finally, syntactic code is generated batktfre polyhedral representation
on which the optimization has been applied, as discussed in Section 2.5.

/+* Ring blur filter */
for (i=1;i<lg-1;i++)
for (j=1;j<wt-1;j++)
R Ring[i][j1=(Imy[i-1][j-1]+ngli-1][j]+ ngli-1][j+1]+
Img[i][j+1] + Imgli]{j-1] +
Pgli+1] [- 1] +Ingli +1] []+ mg[i +1] [+1])/8;

/+ Roberts edge detection filter =/
for (i=1;i<lg-2;i++)
for (j =2;j<wt-1;j++)
P Img[i][j]=abs(Ring[i][j]-Ring[i+1][j-1])+
abs(Ring[i+1][j]-Ring[i][j-1]);

Figure 2.1:Ring-Roberts edge detection for noisy images

2.2 Polyhedral Program Representation

The polyhedral model takes its origin in the work of Karp, Miller and Winagi@ the automatic map-
ping of systems of uniform recurrence equations [62]. Later work rat&#t by systolic arrays general-
ized to systems of linear and affine recurrence equations [97, 128§ ®alith the connection to standard
imperative programs [39, 41]. Although more recent work tries to unléfashpower of polyhedral
optimization by broadening the applicability of the techniques [56, 17], we stitkis section to the
presentation of a more “standard” polyhedral framework operatingatit €ontrol parts. In the follow-
ing we first recall some of the key concepts of polyhedral theory,rbatefining the elements used to
represent a program into the polyhedral framework.

2.2.1 Mathematical Background Snapshot

Polyhedral optimization is a vast research topic, and providing an exégnsckground on the subject is
clearly out of the scope of this thesis. Instead, we will recall on a nedddar basis the key definitions
and results of polyhedral theory, and refer the reader to a more adalescription from other works.

As a starting point of polyhedral optimization, we define the concept afeaftinctions and polyhe-
dron, the two fundamental bricks of program representation in the padigtheodel.

Definition 2.1 (Affine function) A function f: K™ — K" is affine if there exists a vectbre K" and a
matrix Ae K™" such that:
vRe K™ f(X)=AX+Db

2.2. POLYHEDRAL PROGRAM REPRESENTATION 21

Definition 2.2 (Affine hyperplane) An affine hyperplane is an m1 dimensional affine sub-space of an
m dimensional space.

Definition 2.3 (Polyhedron) A set? € K™ is a polyhedron if there exists a system of a finite number of
inequalities X < b such that:
?={XeK™|AX<b}

Definition 2.4 (Parametric polyhedron) Givenri the vector of symbolic parametersjs a parametric
polyhedron if it is defined by:
P ={Xe K" | AX< Bfi+b}

Definition 2.5 (Polytope) A polytope is a bounded polyhedron.

The reader may refer to Schrijver's work [101] for an extensivedeson of polyhedral theory, and
is encouraged to navigate through Feautrier’'s pioneering work alfficieet solutions for automatic
parallelization of static-control programs [41, 42].

2.2.2 Static Control Parts

The polyhedral representation models a widely used subclass of pregaledStatic Control Parts
(SCoP). A SCoP is a maximal set of consecutive instructions such that:

e the only allowed control structures are the loops and theéf conditionals,

¢ loop bounds and conditionals are affine functions of the surroundinmitemators and the global
parameters.

It is worth noting that many scientific codes respect the SCoP and statiemegeconditions, at least
on hot spots of the code. A survey of Girbal et al. highlights the highqgatam of SCoP in these codes
[51]. An empirical well-known observation is that 80% of the processor tsspent on less than 20%
of the code, yielding the need to aggressively optimize these code segifieese. segments are most of
the time in loop nests, and we refer to thenkamels The polyhedral model was first aimed at modeling
these kernels (under the SCoP and static reference conditions), amdlitetio perform transformations
(meaning changing the execution order but keep the output order) sm kbenels.

At first glance the definition of a SCoP may seem restrictive, but manyramugywhich does not
respect those conditions directly can thus be expressed as SCoP®-popessing stage (typically
inside a compiler architecture) can ease the automatic raising of SCoPs.

Pre-processing for SCoPs Constant propagatiois the process of substituting a symbolic constant by
its value. As the affine condition forbids to multiply a parameter with for instanciéegator, one can
resort to substituting the constant parameter by its value as shown in Figuré&/@ assume that con-
stant folding (the process of statically compute the value of a constantifs@rithmetic expression) is
systematically performed. Let us mention that constant propagation shotule performed in a sys-
tematic fashion, only when it enables SCoP formation. This observationgédasin the mathematical
complexity of the algorithms used in polyhedral compilation: scalar loop boungdrargslate into very

22 2. POLYHEDRAL PROGRAM OPTIMIZATION

large coefficients during system resolution, significantly exceeding thelata Integer representation.
One has then to resort to large number arithmetic libraries such as GMP, thatgndicantly increase
the compilation time.

n=10 * 2 - - -
T) for (i =1; i <M ++)
f\orfo(rl(j_ i’n|*<i:\dj+:|31 £ M) for (=207 13] < 20" M +4)
A =0 LA =20t
Original Program Polyhedral-friendly Equivalent Program

Figure 2.2: Constant Propagation

Loop normalizations also very useful when considering non-unit loop stride. Althoughrdthene-
works such as the-polyhedral model directly supports such loop strides [57] by relyindndeger
Lattices to represent programs, a simple loop normalization step can enabdptégentation of such
programs as shown in Figure 2.3. We also perform another loop normatizttep, to make loops
0-normalizedas non-negative iteration spaces simplify the design of optimization algorithms.

for (i =1, 1 <M ++) for (i =0; i <M- 1; ++)
| for (j =i] <N j+=2) | for (j =1i;] <(Nt1) [2, +4)
CLATT =0 g || AT [28] = (i4D) %24

Original Program Polyhedral-friendly Equivalent Program

Figure 2.3: Loop Normalization

Another pre-processing stageWHILE-loop DO-loop conversignwhich can be associated with
induction variable detection [4]. Figure 2.4 gives an example of suchwaecsinn, which is implemented
in the GRAPHITE framework.

A[(I<M{ for (i
i

i+ 1 | ATl

1, i <M ++)
0;

||—m|4_

i
wh
\
|
}

Original Program Polyhedral-friendly Equivalent Program

Figure 2.4: WHILE-loop DO-loop conversion

Finally, let us mentiorinduction variable substitutiof4] which has proved to be very useful to
normalize access patterns in an affine form. An example is shown in Figure 2.5

Several other pre-processing stages can enable the formation osSQaf® us mentiorinlin-
ing, goto/break removalpointer substitutioramong many others. The reader may refer to Allen and
Kennedy'’s work for details on them [4].

Static representation of non-static control flow Recent work led by Mohamed-Walid Benabderrah-
mane have shown that the limitation to static control-flow is mainly artificial [17]. Careresort to

2.2. POLYHEDRAL PROGRAM REPRESENTATION 23

ind = 0;
for (i =1; i< 100; ++i - — - -
“or (] 21,1 < 100,) or i =L e a0) |
| ind =ind +2; | fora[(zjoo_*iliz*]' -<zolo(;0¥ +a+[]2)oo*i +2%]-200] + b[j]:
i =i o Cofi] 2 a0 1 ! i
cli] = alind]; }
}
Original Program Polyhedral-friendly Equivalent Program

Figure 2.5: Induction Variable Substitution

converting control-flow dependences into data dependences, togathe@onservative affine approxi-
mations of the iteration spaces to model almost any program with a polyhefdrakeatation. While

we do not explicitly leverage this extended representation in this trekiechniques described in this
manuscript are fully compatible with.itin other words, a polyhedral representation can be extracted
from arbitrary programs and the optimization techniques presented in this #pgdied seamlessly on
those programs.

A complete description of static control parts was given by Xue [128] apd #pplicability to
compute intensive, scientific or embedded applications have been ertgriiscussed by Girbal et al.
and Palkowt [51, 89]. Frameworks to highlight SCoPs in general programs anditactXoth iteration
domains and subscript functions already exist or are in active devetdgmeompiler platforms like
WRAP-IT/URUK for Open64 [51], Graphite for GCC [90], IBM XL/C corier, the ROSE Compiler,
R-Stream from Reservoir Labs, and in the prototype compilers PoCC amybl

2.2.3 Statements

A polyhedral statemeris the atomic block for polyhedral representation. To each statement isi-asso
ated an iteration domain, a set of access functions and a schedule ilesldetine following. Note that

a disconnection may exist between a statement in the input source codestateinaent in the polyhe-
dral representation. Several passes of the compiler that occuelgdtyhedral extraction, such as for
instance inlining and SSA conversion, may change the internal progesentation.

We formally define a polyhedral statement as follows.
Definition 2.6 (Polyhedral statement) A polyhedral statement is a program instruction that is:

e not ani f conditional statement with an affine condition

not af or loop statement with affine loop bounds

having only affine subscript expressions for array accesses

not generating control-flow side effects

As a concrete example, consider the program of Figure 2.6. Statdneritains a data-dependent
conditional, but can still be modeled in the representation by consideringaitsagyle statement: no
side-effect do exist with other statements. Similarly for statertenthe function callsqrt does not
have any side-effect on data and control flows.

24 2. POLYHEDRAL PROGRAM OPTIMIZATION

for (i =0; i <N i++)
| for (j =0;] <N j++) {

R || AT = ATLT + ufi]*v]j]
\ \ if (N-1 >2)

s | J Aillil -= 2

T r‘es = AJO][0] == 0 ? ul[i] : vi[j];

U dres = sqgrt(res);

Figure 2.6: A Complex Program Example

Several techniques can be used to increase or decrease the nurpblhefiral statements in the
representation. Single assignment and three-address code comigpsially increase the freedom to
schedule each instruction, by assigning to each of them a differendideheNevertheless, due to the
complexity of the mathematical operations, one typically wishes to reduce theenwhpolyhedral
statements. Macro-block formation is a simple process increasing the scalabtlitg optimization
algorithms, in particular when starting from a three-address code. Yeatesign of an efficient and
systematic block formation heuristic, that correctly balances the schedddoim (e.g., parallelism
opportunities) versus the reduction of the number of statements, has stilidevised and is left as a
future work of this thesis.

2.2.4 lteration Domains

Iteration domains capture the dynamic instances of all statements — all posails wf surrounding
loop iterators — through a set of affine inequalities. For example, stateRiarfigure 2.1 is executed
for every value of the pair of surrounding loop counters, calledtdration vector the iteration vector
of statemenRis Xg = (i, j). Hence, the iteration domain &is defined by its enclosing loop bounds:

pr=1{i,j|1<i<lg—1A1<j<wt—1}

which forms a polyhedron (a space bounded by inequalities, dyerplanesor faceg. To model
iteration domains whose size are known only symbolically at compile-time, wet iesparametric
polyhedra. Program constants which are unknown at compile-time aredrgofi@l parameterand the
parameters vector is notéd For instance for thRing-Roberts examplelg andwt are global parameters
andDr is a parametric form ofi = (Ig wt).

Each integral point inside this polyhedron corresponds to exactly ceaugan of statemerR, and
its coordinates img matches the values of the loop iterators at the execution of this instance. Tdés mo
let the compiler manipulate statement execution and iteration ordering at the macisedevel.

In the remainder of this thesis, we use matrix form in homogeneous coorsltoatepress polyhedra.
For instance, for the iteration domainRfis written:

1 0 1 1 0 0 0 -1 ;
1 0| (i g-1| | -1 o 1 o0 -1 ,
PR 01 <J>*‘ 1 [T o 1 0 o-1[[|8]=°
0 -1 wt—1 0 -1 0 1 -1

=

2.2. POLYHEDRAL PROGRAM REPRESENTATION 25

2.2.5 Access Functions

Access functionsapture the data locations on which a statement operates. In static contsphpEmory
accesses are performed through array references (a variabtg eiarticular case of an array). We
restrict ourselves to subscripts of the form of affine expressionsdwhay depend on surrounding loop
counters (e.g.i and j for statemeniR) and global parameters (e.g., Ilg and wt in Figure 2.1). Each
subscript function is linked to an array that represents a read or a we#ss For instance, the subscript
function for the read referendeg[i- 1] [j] of statemenRis simplyl ng[f(Xg)] with:

i
(=5 3 o): j|=i-10

Other kinds of array references (that is, non-affine ones) have todaleled conservatively by their
affine hull. Pointer arithmetic is forbidden — except when translated byragorestructuring pass to
array-based references [45] — and function calls have to be eitheedntin checked for the lack of
side-effect.

2.2.6 Schedules

Iteration domains define exactly the set of dynamic instances for each statéioevever, this algebraic
structure does not describe the order in which each instance has teteesk with respect to other
instances. Of course, we do not want to rely on the inductive semantioe s€quence and loop iteration
for this purpose, as it would break the algebraic reasoning about kstp.n

A convenient way to express the execution order is to give each instanegecution date. It is
obviously impractical to define all of them one by one since the number ohicessanay be either very
large or unknown at compile time. An appropriate solution is to define, fdr sitement, acheduling
function that specifies the execution date for each instance of a condisg statement. For tractability
reasons, we restrict these functions to be affine (relaxation of thisraarisnay exist [8], but challenges
the code generation step [10]).

A schedule is a function which associates a logical execution date (a timedtaegzh execution of
a given statement. In the target program, statement instances will be ekacateding to the increasing
order of these execution dates. Two instances (possibly associatedstiithtdstatements) with the same
timestamp can be run in parallel. This date can be either a scalar (we will talk abewimensional
schedules), or a vector (multidimensional schedules).

Definition 2.7 (Affine schedule) Given a statement S, a p-dimensional affine sche@(les an affine
form on the outer loop iteratorgs and the global parameters. It is written:

Xs
O5Re) =Ts| fi |, Tse KPxdim+dimi+1
1

Early work often required the affine schedule to be unimodular or at ieesttible [6, 78, 98],
mainly due to code generation limitations [10]. Other work such as Feautn@vis used non-negative
scheduling coefficients in order to design minimization functions on the stehéatancy [41]. Others

26 2. POLYHEDRAL PROGRAM OPTIMIZATION

let the schedule be rational, for instance to model resource constrairttss thesis we do not impose
any constraint on the form of the schedule, as we use the CLooG cadeaggr which does not require
special properties on the schedule [10]. In general, we use in this Hesi& unless explicitly specified
otherwise.

Multidimensional dates can be seen as clocks: the first dimension candssfodays (most signifi-

cant), next one is hours (less significant), the third to minutes, and sossaié, a schedule associates
a timestamp to each executed instance. As an illustration, let us consider tgrfglschedules for the

Ring-Roberts example:

@R(XR):(é (1) 8 8 8).(i i 1g owt)T =)
@S(Xs):@ (1) cl) 8 8)(| j lg wt l)T:(i+Ig,j)

As O functions are 2-dimensional, timestamps are vectors of dimension 2. Onewartompute the
timestamp associated with each point of the iteration domain as specifi@8 byr — 72

(lg—2,wt—2)r — (Ig—2,wt—2)

Similarly for Sand®S : ng — 7?2

(1,1)s — (1+lg,1)
(1,2)s — (1+1g,2)

(lg—3wt—2)s — (2xlg—3,wt—2)

The schedule of statemeRtorders its instances accordingitfirst and thenj. This matches the
structure of the loops of Figure 2.1. This is similar for stateni&nexcept for the offset on the first
time-dimension which states that the first nest runs before the secondbitethe largest value of the
first time-dimension foR is Ig— 2, the smallest value of the first dimensionRfs Ig— 1. Hence the

loop surrounding? “starts” after the loop surroundirig.

More formally, in the target program the execution order of the instandés igiven by thdexico-
graphic orderingon the set of associated timestamps. That is, for a given pair of inStaic&s), Xr is

executed beforg&s if and only if:
OR(XR) < O5(Xs)

where< denotes the lexicographic ordering. We recall ffaat. .., a,) < (b1, ..., bny) iff there exists an
integer 1<i <min(n,m) s.t.(ag,...,&-1) = (by,...,bi_1) anda; < by;.

Returning to the example, as we have:
VXr € DR, VXs € D5, OR(XR) < OR(XR)

then all instances dR are executed before any instancespés in the original code.

2.3. POLYHEDRAL PROGRAM TRANSFORMATIONS 27

2.3 Polyhedral Program Transformations

A transformation in the polyhedral model is represented as a set of affireelules, one for each polyhe-
dral statements, together with optional modification of the polyhedral repiason. We can distinguish
two families of transformations. (1$chedule-onlyransformations operates only on the schedule of
instructions, without changing the iteration domains and the number of statemérdgolyhedral rep-
resentation. These are described in this section, and the operatiorchegig@rithms presented in this
thesis operates explicitly only on such transformationsSg)edule and representatitnansformations
require to alter the polyhedral representation to be performed. Two dfwatisknown transformations
falling into that category are loop tiling and loop unrolling [51]. For suchgfarmations, we rely on
enablingtheir application by computing a schedule with some dedicated properties érgutability),
while delegating to an external process their actual application, typicallyb&fbre code generation.

2.3.1 One-Dimensional Schedules

A one-dimensionaschedule expresses the program as a sisgggientialoop, possibly enclosing one
or moreparallel loops. Affine schedules have been extensively used to design systaljs §7] and in
automatic parallelization programs [41, 35, 54], then have seen many pibi@ations.

Given a statemerf, a one-dimensional affine schedule is an affine form on the outer loapater
Xs and the global parametenisvhereT g is a constantow matrix. Such a representation is much more
expressive than sequences of primitive transformations, since a simgldimensional schedule may
represent a potentially intricate and long sequence of any of the traretfons shown in Figure 2.7. All
these transformations can be represented as a partial order in thetphasstances for all statements,
and such orderings may be expressed with one-dimensional schedudigphs [123].

Transformation | Description
rever sal Changes the direction in which a loop traverses its itenatmge
skew ng Makes the bounds of a given loop depend on an outer loop counte
i nterchange | Exchanges two loops in a perfectly nested loop, ageanut at i on
peel i ng Extracts one iteration of a given loop
shifting Reorder loops
fusion Fuses two loops, a.k.pami ng
distribution | Splits a single loop nestinto many, a.kiassi on orsplitting

Figure 2.7: Possible Transformations Embedded in a One-Dimensional8ehe

For a concrete intuition of one-dimensional schedule, considem#tgult example in Figure 2.8.
The schedule®R(XR) = (i) and ©5(Xs) = (k4 N) consist in a composition of (1) distribution of the
two statements, and (2) interchange of loépandi for the second statements. Note that as we use
one-dimensional schedules, only the execution order of the outer-mosiitime@sion is specified: the
remaining dimensions that are required to scan the original domain cantdecke any order, includ-
ing in parallel. As many programs do not contain such an amount of paralldbsiiose programs a
one-dimensional schedule cannot describe a correct executian orde

28 2. POLYHEDRAL PROGRAM OPTIMIZATION

for (i =0; i <N ++i)
| for (j =05 j <N +) {
- R | | dillil =0
Original Code:| | | for (k = 0; k < N ++k)
S | }\ | Cilli] += AiT[K] * BIKI[j];
\
i
j
Of%)=(1 0 0 0 O.|k|[=()
N
Transformation: 1
i
j
©°Xs)=(0 0 1 1 0.|k|[=(k+N)
N
1
for (i =0; i <N ++i)
\ parfor (i =0, j <N +4)
" for (ko k<2 e N i)
. or = <2* +4
OUtpUt Code: ‘ parfor (i =00 <N ++)
‘ ‘ parfor (j =0;] <N +4)
S | | | dillil +=Aillk- N * Bk - N[jl;

Figure 2.8:matMult kernel

2.3.2 Multidimensional Schedules

A multidimensional schedule expresses the program as one or more negteshial loops, possibly
enclosing one or more parallel loops. Given a staterBeatmultidimensional schedule is also an affine
form on the outer loop iteratof& and the global parametemswith the notable difference thdis is a
matrix of constants.

Existence and decidability results on multidimensional schedules have lmelpnostly by Feautrier
[41, 42]. We recall that, unlike with one-dimensional affine schedaesry static control program has
a multidimensional affine schedy#2]. Hence the application domain extendstlostatic control parts
in general programs.

Multidimensional affine schedules support arbitrary complex compositibasnide range of pro-
gram transformations. Moreover, the expressiveness is significaotgased compared to one-dimensional
schedule. Considering the transformations reported in Figure 2.7, multidonahschedules represent
any composition of those. As an example, one can specify loop interchange avhtiie loop depth,
enabling the representation of the ordek, j) for the loops of thevatMult program, as shown in Fig-
ure 2.9.

This increased expressiveness translates into the facnfidbop transformation can be represented
in the polyhedral representatidi26].

Several frameworks have been designed to facilitate the expressioarofransformations [42, 63],
or to enable their composition and semi-automatic construction [51, 114, &/illutration, a trivial

2.4. FRROGRAM SEMANTICS EXTRACTION 29

for (i =0; i <N ++)
| for(1-01<N++1)
RJ qillil =0
or|-0|<N ++i)
‘ for (k =0, k <N ++k)
| | for (j =0,] <N +)
|

S Qillj] += ATk * BIKI[]];

Figure 2.9:MatMult kernel with@R = (0,i,) and@S = (1,i,k, j)

loop fusion is not possible to improve data locality on Rieg-Roberts kernel in Figure 2.1. Because
of both data dependences and non-matching loop bounds, only a paspdutsion is possible, which
translates into a sequence of, efgision shifting and index-set splitting126]. Using multidimen-
sional schedules, a correct transformation (found usmgnking[13]) is simply: 6g(i, j) = (i, j) and
Bp(i,j) = (i+2,]). The corresponding target code is the result of a quite complex compositgym-
tactic transformations, as shown in Figure 2.10.

if (wt ==2) {
for (i=1; i <Ilg-1; i++) {
R Ring[i][1]=(Ing[i-1][0]+Ing[i-1][1]+Ing[i-1][2]+
Ingli][2] + Img[i][0] +
Img[i+1] [O] +I ng[i+1] [1] +I ng[i+1][2])/8
}
}
if (wt >=3) {
for (i=1; i <mn(lg-1,2); i++) {
for (j=1; j <wt-1; j++) {
R Ringl[i][jT1=(Inmg[i-21][j-1]+Ing[i-1][j]+ ng[i-1][j+1]+
Ing[i][j+1] + Ingli][j-1] +
g +1] [j- 1] +Ing[i +1] [j]+ ng[i+1] [+1])/8;
}
}
for (i=1; i <1lg-1; i++) {
R Ring[i][1]=(Ing[i-1][0]+ ng[i-1][1]+Ing[i-1][2]+
Ingli][2] + Img[i][0] +
Img[i+1] [O] +I ng[i+1] [1] +I ng[i+1][2])/8
for (j=1; j <w-1; j++) {

P Imgli-2][j]=abs(Ring[i-2][j]-Ring[i-1][j-1])+
abs(Ring[i-1][j]-Ring[i-2][j-1]);
R Ringli][j]=(mg[i-1][]j-1]+ mgli- 1][J]+|”U[l L) +1]+
Imgli](j+1] + mlillj-1] +

I'mg[i+1] [j - 1]+Irrg[l+1][1]+lngll+1][1+1])/8;
}

}
if ((wt >=3) & (1g >= 3)) {
for (j=1; j <wt-1; j++) {
P Imgllg-2][j]=abs(Ring[lg-2][j]-Ring[lg-1][j-1])+
abs(Ring[lg-1][j]-Ring[lg-2][j-1]);

Figure 2.10: Optimized Version &ing-Roberts

2.4 Program Semantics Extraction

A central concept of program optimization is to preserve the semantics ofitfiral program through
the optimization steps. Obviously not all transformations, and hence ndtiadl achedules, do system-

30 2. POLYHEDRAL PROGRAM OPTIMIZATION

atically preserve the semantics, for all programs. To compuggal transformation we resort to first
extracting thedata dependenceshaped in a polyhedral representation before constraining the $ekedu
to respect the computed dependences.

2.4.1 Data Dependence Representation

Two statements instances aredependence relatioii they access the same memory cell and at least
one of these accesses is a write operation. For a program transforitaatiercorrect, it is necessary to
preserve the original execution order of such statement instancesieto tknow precisely the instance
pairs in dependence relation. In the algebraic program representafictet! earlier, it is possible to
characterize exactly the set of instances in dependence relation in sywtnetic way.

Three conditions have to be satisfied to state that a statement inStadepends on a statement
instancels. (1) They must refer the same memory cell, which can be expressed afjregjine subscript
functions of a pair of references to the same array. (2) They mustbaligexecuted, i.eXs andXg have
to belong to their corresponding iteration domains. X3y executed beforg in the original program.

Each of these three conditions may be expressed using affine inequaltiesonsequence is that
exact sets of instances in dependence relation can be represengeaftisminequality systems. The
exact matrix construction of the affine constraints of the dependenchaatityn used in this thesis was
formalized by Feautrier [39], and more specifically we use its descriptigivas by Bastoul [11, 14].

for (i =0; i <=n; i++) {
R | s[i] =0
for (j =0, j <=n j+)
S | | sli] =s[i] +ali][j] * x[j]:

}

Figure 2.11:MatVect kernel

For instance, if we consider tht vect kernel in Figure 2.11, dependence analysis gives two de-
pendence relations: instances of statenfdéepending on instances of statemBne.g., R produces
values used b$), R — S and similarly,S— S.

Dependence relatioR — S does not mean that all instancesRandS are in dependence (for all
values ofXr andXs); in fact, there is only a dependencegf=is. We can then define dependence
polyhedron being a subset of the Cartesian product of the iteration domains, cogtaihthe values of
ir, is and s for which the dependence exists. We can write this polyhedron in matrigseptation (the
first line represents the equality = is, the two next ones the constraint ttiat) have to belong to the
iteration domain oR and similarly, the four last lines states tligg, js) belongs to the iteration domain

of 9):

1 -1 0 0 07
1 0 0 0 0| /ir
-1 0 0 1 o] [is]| _,
prs:| O 1 0 0 of.|is| =
0 -1 0 1 0 n| =0
o 0 1 0 of \1
0 0 -1 1 o]

To capture all program dependences we build a set of dependelyteg@, one for each pair of

2.5. CobeE GENERATION 31

array references accessing the same array cell (scalars beingcalparcase of array), thus possibly
building several dependence polyhedra per pair of statementspdileedral dependence graj a
multi-graph with one node per statement, and an effge is labeled with a dependence polyhedron
DR, for all dependence polyhedra.

2.4.2 Building Legal Transformations

For a program transformation to respect the program semantics, it hasuedhat the execution order
of instances will respect the precedence condition, for each pairstainices in dependence. So for a
program schedule to be legal, the following must hold.

Definition 2.8 (Precedence condition)Given two statements R and S, and dependence polyegsa
OR and ©° preserve the program semantics if:

VDRrs, V(XR,Xs) € DR,
OR(Xr) < ©5(Xs)

Checking if a transformation is legal can be done very efficiently. One siimadyto check that
the precedence condition is respected, for all dependences [1Chdpter 3 we discuss a technique to
linearize the constraints imposed by the dependence polyhedra into a éomme Using this technique,
one can check for each dimension of the schedule (that is, for eaabf ®yif the precedence condition
is enforced or not, thus determining the legality of the schedule.

Building legal schedules only While it is easy to checl posterioriif a transformation preserve the
program semantics, we aim at providing techniques and tools to encompastydnto the space of
candidate solutions the legality criterion. Chapter 3 presents a conveactrdation of all (bounded)
affine schedules preserving the program semantics. Chapter 5 anglifigligo further and propose
tractable solutions to efficiently build search spaces of affine schedaliegréserve the semantics.

A posteriori schedule corrections Another approach to build legal schedules, beyond encompassing
the legality criterion directly into the space, is to fix a posteriori a schedule t@ madgal. Vasilache
proposed an efficient framework for automatic correction of schediylshifting and index-set splitting
[114], by means of the analysis of violated dependences [113]. Wepatgmse such mechanisms

in Chapter 7 and significantly improve the correction applicability, by offedrsghedule completion
heuristicthat can fix any schedule to lie in the constructed search space.

2.5 Code Generation

Code generation is the last step of polyhedral program optimization. $isisrof regenerating a syntactic
code from the polyhedral representation.

The code generation stage generatssamning codef the iteration domains of each statement with
the lexicographic order imposed by the schedule. Statement instancebdhattlse same timestamp
are typically executed under the same loop, resulting in loop fusion. Seacpite is typically an

32 2. POLYHEDRAL PROGRAM OPTIMIZATION

intermediate, AST-based representation that can be translated in an ingpé&aguage such as C or
FORTRAN. Logically, one can translate back this syntactic code to a palgthegpresentation enabling
re-entrance[111]. In doing so, several advantages such as code generatianizgpions based on the
generated output quality can be performed. One can for instancessivatg refine the schedule until
some criteria on the generated code quality are met, e.g. code size or comiexity.

Modern code generation For many years this stage was considered as one of the major bottleneck
of polyhedral optimization, due to the lack of scalability of the code generatgorithms. Eventually

the lock was removed, thanks to the work of Bastoul [10, 11] who prb@s extended version of
Quilleré’s algorithm [96] that significantly outperformed previously impleméntrhniques such as
Kelly’s et al. in the Omega framework [65] or Griebl's in the Loopo framédw[d5]. Efficient algorithms

and tools now exist to generate target code from a polyhedral repatise with multidimensional
affine schedules. Recent work by Vasilache et al. [112, 111] arREsgrvoir Labs [77] improved these
algorithms to scale up to thousands of statements. All along this thesis, we statthef-the art code
generator CboG [10] to perform the code generation task.

The only constraints imposed by the code generator are (1) to repiegatibn domains with a
union of polyhedra, and (2) to represent scheduling functions amedifnctions of the iteration domain
dimensions. This general setting removes previous limitations such as kelredutibility [6]. Still,
more advanced code generation techniques are the subject of astéeealein particular in the context
of the iteration space slicing approach for automatic parallelization [93,6]15\While these techniques
enable non-affine scheduling functions, we limit in this thesis to multidimensidfiaé ascheduling
functions.

Relation between the schedule and the syntactic codeAn interesting property of code generation
is thatdifferent scheduling functions will generate different syntactic codliass is counter-intuitive as
some schedules may express the same relative ordering of instanaestieeracanning code should be
the same. However, the genuine code generation algorithm of CLooGates)svithout modification,
the schedule coefficients into controls in the syntactic code. Considerninigsiance a shifting of 1
on all loops, at+1 coefficient will appear in each loop bound computation, despite expgestse exact
same relative ordering of instance. Numerous previous works havetdériegmove this property —
considered more as an unwanted side effect — mostly through schedmalization techniques [112].
Their objective was to provide the code generator with an equivalesimpier schedule generating the
simplest controls. On the other hand, in the context of iterative searchaddscheduling function, we
want to keep having different syntactic codes for different schaeddlee reason is twofold.

e As we will show in Chapter 6, each schedule coefficient may have an ingmaperformance.
We observed that current implementations of some compiler optimizations gile femd may be
triggered by almost unpredictable syntactic changes in the input code.

e As the uniqueness of a candidate is defined as generating a differgattsy code, it is equiv-
alently defined as generating scheduling functions with different caaffie This simplifies the
encoding of uniqueness in the search space.

We discuss in Chapter 6 the tight coupling between the code produced tydbégenerator, and the
back-end compiler in the context of our source-to-source frameviwrkeveral situations the generated
codes have a weird shape, and would seem inaccurate at first glamoetapiler specialist. Yet, solid

2.6. SUMMARY 33

performance improvement are achieved. This comes from the conjundtitve schedule, the code
generator and the back-end compiler. The code generator applies apfiraization phase (mainly
removing useless controls), which is embedded in the code generatioitratgf0, 112]. Then, the

back-end compiler applies its own optimization phases, yielding a complex and lstréipsformation

process for the schedule. This led us to observe that potentially ineffextde (that is, with too much
complex controls) produced by the code generator are able to trigger ogtioniz in the compiler the
original code would not.

2.6 Summary

Program restructuring traditionally is broken into sequences of primitivesfoamations. In the case of
loops, typical primitives are for instance lofysion looptiling, or loopinterchange This approach has
severe drawbacks. First, it is difficult to decide the completeness ofd digectives and to understand
their interactions. Many different sequences lead to the same targedddigs typically impossible to
build an exhaustive set of candidate transformed programs in this way, é&h basic transformation
comes with its own application criteria such as legality check or pattern-matake®y Finally, long se-
guences of transformations contribute to code size explosion, pollutingétistt cache and potentially
forbidding further compiler optimizations.

Instead of reasoning on transformation sequences, we look for @sesgiation where composition
laws have a simple structure, with at least the same expressivenessaatteensformations, but with-
out conversions to or from transformation descriptions based on seggi®f primitives. To achieve
this goal, we use an algebraic representation of both programs andtraatbns. This is thg@oly-
hedral representationWe use the least constrained framework for polyhedral optimization, with n
unimodular, non-invertible scheduling functions to transform non-p#yfeested programs.

Reasoning about programs in such a polyhedral representation hgsachamtages, for both pro-
gram analysis and transformation:

1. instancewise dependence analysis is possible [40, 92];
2. there exists efficient algorithms and tools to regenerate imperative @6d&(];

3. loop transformation sequences of arbitrary complexity can be cotedraad transparently ap-
plied in one single step;

4. properties on the transformations, such as semantics preservatidre caodeled as constraints
on affine functions [42].

34

2. POLYHEDRAL PROGRAM OPTIMIZATION

35

Chapter 3

Semantics-Preserving Full Optimization
Spaces

"Mathematics is concerned only with the enumeration and
comparison of relations"

— Carl Friedrich Gauss

High-level loop transformations are the main instrument to map a computational ke efficiently
exploit resources of modern processor architectures. Neverthsdasting compositions of loop trans-
formations remains a challenging task. We propose in this thesis to addrefssttasnental challenge
in its most general setting, relying on affine loop transformations in the pdighmodel.

As a first step we present the optimizer with a convex characterization dfstilict, legal affine
transformations. We first introduce in Section 3.1 a convex charactenzatiall, distinct semantics-
preserving affine multidimensional schedules with bounded coefficieritscofbination of transfor-
mations — which does not require to modify the polyhedral representationcentsined in a single,
convex space. This is to date the most expressive modeling of compositi@nsformations into one
convex space.

We then present in Section 3.2 an affine characterization of all, distincéemantics-preserving
statement interleavingsnodeling arbitrary compositions of loop fusion and distribution.

3.1 Semantics-Preserving Affine Transformations

We consider in this thesis program transformations that alter the ordergigtement instance# pro-
gram transformation must preserve the semantics of the program. As agstasiim for optimization
space pruning, we build@nvex, polyhedral characterization of all legal multidimensional affiched-
ulesfor a static control program, with bounded schedule coefficients. Sabbhracterization is essential
to devise optimization problems in the form of (integer) linear programs, wlaiolpbe efficiently solved.

36 3. EMANTICS-PRESERVINGFULL OPTIMIZATION SPACES

3.1.1 Program Dependences

We recall that two statements instances arddpendence relatioifithey access the same memory cell
and at least one of these accesses is a write. Given two statefantsS, a dependence polyhedron
Drsis a subset of the Cartesian productf andDs: Drs contains all pairs of instancégg, Xs) such
thatXs depends oiXg, for a given array reference. Hence, for an optimization to predér/@rogram
semantics, it must ensure that

OR(X%R) < O5(Xs),
where< denotes the lexicographic ordering.

Let us consider again thmat vect kernel in Figure 3.1, with two dependendes» S' andS— S

for (i =0; i <=n; i++) {
R | s[i] =0
for (j =0; j <=n; j++)
S | | s[i] =s[i] +alil[j]l * x[jl;

}

Figure 3.1:MatVect kernel

For instance, dependence relat®ns St is written:

T 1 -1 0 0 0T
1 0 0 0 O iR
-1 0 0 1 O is| _g
DEs= 0 1 0 0 0l.]ljs| —
0 -1 0 1 of |n| 20
0O 0 1 0 O 1
. 0 0 -1 1 O]

This dependence polyhedron will serve as the running example for section.

3.1.2 Convex Set of One-Dimensional Schedules

Considering@r and ©s two one-dimensional scheduling functions, in order to respect the depee
DRrsthe schedules have to satisfy the precedence condition

GR(XR) < 95(23)
for each point ofbrs. So one can state that
Ars = B5(Xs) — Or(XR) — 1

must be non-negative everywhereng s.

The schedule constraints imposed by the precedence constraint cgoréssed as finding all non-
negative functions over the dependence polyhedra [41]. It is dedsilexpress the set of affine, non-
negative functions ovepr s in an affine way using the affine form of the Farkas lemma [101].

3.1. SEMANTICS-PRESERVINGAFFINE TRANSFORMATIONS 37

Lemma 3.1 (Affine form of Farkas Lemma) Let® be a nonempty polyhedron defined by the inequal-
ites AX + b > 0. Then any affine function(X) is non-negative everywhere i iff it is a positive
affine combination:

f(X) = Ao+ AT (AX+D), with Ag > 0 andA™ > 0.

Ao andAT are called Farkas multipliers.

Since we can express the set of affine non-negative functionsrgygrthe set of legal schedules satis-
fying the dependend® — Sis given by the relation

. R .
Drs=Mo+ AT <DR,S<XR> —I—dR,s) >0
S

whereDRsis the constraint matrix representing the polyhedrgis overxXr andXs, andoTRs is the scalar
part of these constraints.

Let us go back to theat vect example in Figure 3.1. The two prototype affine one-dimensional
schedules foR andSare:

9R<XR) = tip.ir+to.n+tz..1
Bs(Xs) = tigis+tog.js+tzg.N+1ts.1

Using the previously defined dependence representation, we can spiystem into as many in-
equalities as there are independent variables, and equate the casfficiboth sides of the equation.
For the dependence; s we have

iR 1ty = A +A2—A3
is tiy, = —A+As—As
js : tZS =)\6—}\7

n . t3;—try = Az+As+A7

1 : t4S—t3R—l =)\0
where), is the Farkas multiplier attached to tki€ line of DRrs.

This system expresses all the constraints a schedule has to respedirarto the dependenaeés.
In order to get a tractable set of constraints on the schedule coeffichntseed to eliminate the Farkas
multipliers and project their constraints on the schedule coefficients [4tH] far example the Fourier-
Motzkin projection algorithm [43]. If there is no solution, then no affine-dimaensional schedule is
possible for this dependence, and we have to resort to multidimensioralseh to fully characterize
the program execution [42].

If we build and solve the system for the dependenge, we obtain a polyhedrom,,, ., by projecting
the A dimensions on th¢ ones (the corresponding schedule variableR@ind S). This polyhedron
represents the set of legal values for the schedule coefficients, én wréatisfy the dependence. To
build the set of legal schedule coefficients for the whole program, we twatauild the intersection of
each polyhedron obtained for each dependence. The result is d gdlaedronT — with as many
dimensions as there are schedule coefficients for the SCoP — which is tiseatien of the constraints
obtained for each dependence. Transitively dependent statemertsrigetly handled in the global
solution: by intersecting the set of legal schedules obtained for eaeimdepce, we end up with a set of

38 3. EMANTICS-PRESERVINGFULL OPTIMIZATION SPACES

schedules satisfying all dependences. The intersection operation implidilyds the dimensionality
of polyhedra to the dimensionality af, and sets the missing dimensions as unconstrained. So we have
for all dependence polyhedra:

T = () Tors

VDRrs

As all systems are built and solved one dependence at a time before kersgated, the computation
of the legal space can be done simultaneously with the dependence analysis

Intuitively, to each (integral) point of corresponds a different schedule for the original program,
i.e., a different program version (or also a valid, distinct transformagguence). Nevertheless, several
transformation sequences are in fact expressing the exact sameeretdtving of instances, and would
be equal under a simple schedule normalization step as proposed by Magildd]. For the purpose
of iteratively selecting an efficient schedule, diversity serves the sttefdterative optimization. We
rely on the fact that with our code generator implementation, distinct tranatan sequences lead to
different syntactic programs to increase this diversity.

3.1.3 Generalization to Multidimensional Schedules

Addressing the generalization to the case of multi-dimensional schedusp®ctimg the precedence
constraint is a necessary and sufficient characterization. First ldistisguish between strong and
weak precedence satisfaction. A dependengg is strongly satisfiedvhen for all pairs of instances in
dependence relation the strict precedence condition is met.

Definition 3.1 (Strong dependence satisfactionfsiven Drs, the dependence is strongly satisfied at
schedule level k if

V<XR,25> € DRrs, @E(Xs) — @E(YR) >1

But a weaker situation may occur. A dependemggs can beweakly satisfiedvhen the precedence
condition is not enforced on all instances, and for some permi@g(@s) = OR(XRr).

Definition 3.2 (Weak dependence satisfactionfsiven Drs, the dependence is weakly satisfied at di-
mension k if

A <XR,25> € Q)R,S> OE(Ys) — OE(XR) > 0

3 <XR723> € DRrs, @E(Xs) = OE(XR)

For instance when no one-dimensional schedule exists at a given dimansidor a given dependence,
it means that at this dimension the dependence can only be weakly satisfied.

We introduce variabléfR’S to model the dependence satisfaction. Considering the first time dimen-
sion (the first row of the scheduling matrices), to preserve the precedelation we have:
VDRrs, V (%R, %s) € Drs, O5(Xs) — OR(Xg) > & °° (3.1)
5,% € {0,1}

3.1. SEMANTICS-PRESERVINGAFFINE TRANSFORMATIONS 39

The Farkas Lemma offers a loss-less linearization of the constraints feodefiendence polyhedron
into direct constraints on the schedule coefficients. This model extends to imeltisional schedules,
observing that once a dependence has been strongly satisfied, inatoesntribute to the semantics
preservation constraints for the subsequent time dimensions. This camneshie lexicopositivity on
the execution order of instances. Once the dependence is stronglyedadist given level, instances
in dependence are guaranteed to be executed such that the precededition is strictly enforced.
Furthermore, for a schedule to preserve semantics, it is sufficientéoy eependence to be strongly
satisfied at least once. Following these observations, one may statecgestiffondition for semantics
preservation (adapted from Feautrier’s formalization [42]).

Lemma 3.2 (Semantics-preserving affine schedules}iven a set of affine schedul@® ©S. .. of di-
mension m, the program semantics is preserved if:

V@R,Sv dpe {1, .. .,m}, 6gR’S =1

A Yi<p §*=0

A V<Y (%) € Drs, OF(Fs) ~ OF(%R) > 5

The proof directly derives from the lexicopositivity of dependence featiion [42].

Regarding the schedule dimensionality it is sufficient to pickm = d to guarantee the existence
of a legal schedule (the maximum program loop depti)ig-eautrier proved it was always possible to
build a schedule corresponding to the original program execution,atderonstrating the existence of
a solution to Lemma 3.2 for any static control program part [42].

This formalization involves an “oracle” to select, for each dependened]ithensiornp at which it
should be strongly satisfied. To avoid the combinatorial selection of this diorenge conditionally
nullify constraint (3.1) on the schedulegen the dependence was strongly satisfied at a previous dimen-
sion To nullify the constraint, a solution is to pick a lower boubduch that (3.2) expresses constraints
which do not intersect with the polyhedron of legal affine multidimensiorfzdales.

OR(%s) — O (Xr) > Ib (3.2)

When considering arbitrary values for the coefficientg2gf the only valid lower bound is-c.
Consider again the theatvect example, at the first dimension. If we selegt= K, t;; = 1 and all other
coefficients to be 0, then we have:

b= min (OF(Xs) — OF(Xr)) = —K.N

XrE DR, Xs€EDs

ConsideringN > 0, sinceK € Z we have:

lim (min (6%(%s) — OR (%)) = —

In order to compute a finite value tf, one has to resort to bounding the values oftleeefficients,
as proposed by Vasilache [111]. Without any loss of generality, wenasgparametric) loop bounds
are non-negative. Returning again to thatvect example, considering arbitrary schedules for the first
dimension we have:

|min (OR(Xs) — O (%R)) | = (Itag| + [tag| + Itas| -+ Itag| + Itag]) N+ [tag| + [tae]

40 3. EMANTICS-PRESERVINGFULL OPTIMIZATION SPACES

One can then selebt = (|tig] + [tog| + [tas| + [t1r] + [tor| + |tag| + |taz]) + 1 to ensure

min (©%(Xs) — OR(XR)) > —K.N—K
The existence oK is stated in generality in the following Lemma.

Lemma 3.3 (Schedule lower bound)Given®f, G)E such that each coefficient value is boundefkig].
Then there exists k Z such that:

min (O%(Xs) — OR(XR)) > —K.fi—K

Proof. If the iteration domains are bounded then the highest value of the iteratiorirdonamy of its
dimension is.fi+ c. By definition of static control parts the iteration domain cannot be modifieidglur
execution, henca andc are constant values that can be computed statically. As the scheduleieatfi
are bounded, there exists a finite value bounding the timestamp difference.

If at least one of the iteration domains is not bounded, then if a depeadsists between the two
statements the only possibility to express a non-negative function over flemdience polyhedron is
with a (parametric) constant function. As the schedule coefficients ameded, there exists a finite
value bounding the timestamp difference. [

Vasilache discussed another method to nullify a constraint, based on multigiigimghole constraint
by a term which equals 0 when the constraint should be nullified. This teodhigs two drawbacks:
first and foremost, the generated solution set is not convex; secondlites extending the range of the
d¢ variables tq—1, 1] instead of[0, 1], which makes the problem more complex.

Note that this lower bound Kfi— K can also be linearized into constraints@® ©S using the Farkas
Lemma. To obtain the schedule constraints we reinsert this lower bound irethieys formulation, such
that either the dependence has not been previously strongly satisfi¢deamthe lower bound ié{fR'S,
or it has been and the lower bound+i&n — K. We thus derive the convex form of semantics-preserving
affine schedules of dimensian for a program with bounded schedule coefficients, as a corollary of
Lemma 3.2.

Lemma 3.4 (Convex form of semantics-preserving affine schedulesiven a set of affine schedules
OR ©S... of dimension m, the program semantics is preserved if the three followinditimms hold:

() Vors 8p°°€{0,1}

m

(i) Vors ¥ SR =1 (3.3)
p=1

(iii) VDRrs, VP {1,...,m}, V(Xr,%s) € Drs, (3.4)

p—1
Op(%s) —OF (%) > — 3 8. (K.A+K) + 8"
k=1

Given the conditions from Lemma 3.4, it is possible to build a convex s&tsemantics-preserving
schedules, with one variable per coefficient in the scheduling matrix (Wiasin rows) andm Boolean
variables per dependence. For an efficient construction, aine should proceed dependence by de-
pendence. Building the constraints of the form of (3.4) is done for eaperitience, then the Farkas
multipliers are eliminated for instance with the Fourier-Motzkin projection teclen@gipresented in

3.2. EEMANTICS-PRESERVINGSTATEMENT INTERLEAVINGS 41

Chapter 4. The set of constraints obtained for each dependendbgmiatersected, and the process is
replicated for all dimensions.

A convex set of affine multidimensional schedules is the perfect tool to hatldénds of optimiza-
tion problems. It opens the door to well understood operation reselgatitms. It also facilitates
search-space pruning strategies, to focus the optimization problem tteranost profitable trans-
formations. Nevertheless, given its high dimension, our convex formalizatay induce a tractability
challenge on the larger benchmarks. Pruning is also a powerful metheduoe the dimension of the
search space. In Chapter 8, we illustrate the power of joining convex mgddlimultidimensional
schedules and pruning strategies when applied to loop fusion. Sectiontrd@@uices the background
concepts supporting this pruning strategy.

3.1.4 Related Work

Feautrier was the first to propose a convex encoding of all affinenegative one-dimensional schedules
[41]. He then extended to multi-dimensional schedules, focusing on fmgvich algorithm to compute
an optimal schedule for fine-grain parallelism [42]. In its original formfbisnulation of the space of
legal schedule is a combinatorial combination of subspaces, one fonesdty / strongly dependence
satisfaction scenario. We build on his approach, and by adding the @ionsif bounding the schedule
coefficient we model directly into a single space the semantics-preserving imeltisional schedules.

Vasilache proposed the first convex characterization of all bourffied multidimensional schedules
[111]. His approach, closely related to the one presented in this sectals, te the construction of an
affine set with only integer vertices and the same number of variables aaurtriee's formulation [42].
Yet the drawbacks of such an approach are twofold. First, Vasilasuets to decision variablé§ which
are integers inf—1,1]. In contrast, our approach uses omgpoleandecision variables, significantly
simplifying the complexity of linear programming. Second, Vasilache’s forralires coefficients in the
power of 2 to encode lexicopositivity of dependence satisfaction, with anmuem value of 21 where
m is the schedule depth. Practical experiments indicate that large coeffielees may decrease the
efficiency of parametric integer programming solvers. Finally, let us notetais Feautrier proposed,
in an unpublished communication from 2007, the same simplifications of Vassatttegacterization as
the one we have described earlier.

3.2 Semantics-Preserving Statement Interleavings

After providing a formulation to model in a single convex space the set ofoaiple affine transfor-
mations, we now focus on two highly performance-impacting transformatilmog fusion and loop
distribution. For that purpose we extract an affine subspace of all cliskgalstatement interleavings
modeling compositions of loop fusion and distribution. This subspace fedhgsesearch on the most
difficult part of the optimization problem: it models transformations that havgrafteant impact on the
overall performance, isolated from enabling transformations for whieletese heuristics exist.

We are interested in building an affine representation for the set of alldegadistinct multi-level
loop fusion and distribution possibilities for a program. Moreover, this setlsl be built in isolation
of the possibly required complementary transformations to make a givemfldistribution legal. Ob-
viously, all these possibilities are included in the seatf all semantics-preserving schedules. However,
using directly the formulation for semantics-preservation has two main distdes. First, in the per-

42 3. EMANTICS-PRESERVINGFULL OPTIMIZATION SPACES

spective of performing iterative search in this set, uniqueness of thémols a critical concern. By
using a representation of fusion / distribution based on the handling of spewific schedule coeffi-
cients, it is not possible to present a subset @f which each solution represents a distinct combination
of fusion / distribution, as discussed in Section 3.2.2. Second, scalabilityaigchallenged. To extract
the subspace of coefficients which models explicitly loop fusion and distriltits expected a projec-
tion step is required. This operation can quickly become intractable on syatelmge ag , especially

for programs with numerous dependences. On the contrary, we peedenoupled approach in Chap-
ter 8 where a schedule according to a given fusion / distribution schemneedmputed, in a tractable
fashion.

Compared to the state-of-the-art in loop fusion, we now consider aibjitcamplex sequences of
enabling transformations, in a multidimensional setting. This generalization pffieion is called
fusability and results in a dramatic broadening of the expressiveness of the optimizexre model
candidate statement interleavings for fusability as total preorders, wefinstigtrovide the first convex
characterization of the space of all distinct total preorders, bef@gepting a technique to prune this
space from the redundant and non semantics-preserving transformathis encoding and the resulting
search space is used as a basis of Chapter 8, where we proposelatedtemative and model-driven
technique for the efficient selection of multidimensional statement interleavings

3.2.1 Encoding Statement Interleaving

Fusion and fusability of statements In the polyhedral model, loop fusion is characterized by the fine-
grain interleaving of statement instances [20]. Two statements are fully digtilif the range of the
timestamps associated to their instances never overlap. Syntactically, thts neglistinct loops to
traverse the domains. One may define fusion as the negation of the distributéoioc. For such case

we say that two statemerf&gSare fused under at least one common loop if there exists at least one pair
of iterations for whichR is scheduled befor§, and another pair of iterations for whi&is scheduled
beforeR. This is stated in Definition 3.3.

Definition 3.3 (Fusion of two statements)Given two statements,R. They are fused at level pifk €

> 7/

{1...p}, there exists at least two pairs of executed instageg andXg ,Xs such that:

OR(%R) < OF(Xs) A OR(XS) < OR(%R)

But for fusion to have a performance impact, a stronger criterion is peefdéo guarantee that at
mostx instances areot finely interleaved. In general, computing the exact set of interleavechresa
requires complex techniques. A typical example is schedules generatimgumit stride in the support-
ing lattice of the transformed iteration domain. For such cases, computingatenesnber of non-fused
instance could be achieved using the Ehrhart quasi-polynomial of theectem of the image of iter-
ation domains by the schedules [28]. However, this refined precisiort ieqoired to determine if a
schedule represents a potentially interesting fusion. We allow for a lackeofspn to present an eas-
ily computable test for fusability based on astimateof the number of instances that are not finely
interleaved.

We first propose to define an estimator of the number of unfused instaowesdering two state-
ments and their associated schedules. Definition 3.4 introduces an Integear® which admits a solu-
tion only if the difference between the lowest timestamp for the instand@snfl the lowest timestamp

3.2. EEMANTICS-PRESERVINGSTATEMENT INTERLEAVINGS 43

for the instances ob is lower than a given constanj for all schedules dimensions. f. The constant
c is the timestamp difference between the first scheduled instarRewod the first scheduled instance
of S. By tuning the allowed size for this interval, one can range from full, alignsgbn (= 0) to full
distribution (withc greater than the schedule latencyRodr S). Notec is an integer constamistimating
the number of instances which are not fused, this definition does not sttatlythat at mostinstances
are not fused.

Definition 3.4 (Estimator for the fusion of statements) Given two statements R and S and their asso-
ciated schedule®g and©s. Given the parametric integer program FU8E S p) defined by:

FUSERSp): Vke{l,...,p}, —c<min(OF(%r))—min(OF(Xs)) <c

If FUSE(R, S, p) has a solutionvXr € Dg, VXs € Ds, and if OF and@f are not constant schedules, then
c is an estimator of the the number of fused instances of R and S.

To compute a value affor which a solution t&cUSE(R, S, p) implies thatR andSare fused at level
p, one can take a small integer corresponding to the shifting one wishes to(ellpywc = 10). As an
upper bound foc, one can enforceto be lower than the smallest loop trip count to avoid the possibility
of finding a solution where the two loops are indeed distributed. Note thdtdarase of parametric loop
bounds, there is no restriction to definas a function of some parameters which value is not known at
compile time, e.gc=min(M/3,N/3). We can now propose a definition for thesability of statements,
based on the prografUSE(R, S p).

Definition 3.5 (Fusability) Given two statements BR. They are fusable at level p if there exists semantics-
preserving schedule®R, ©° such thatvk € {1... p},

(i) FUSER S p) has a solution
(i) If and only if©F and©® are constant schedules, th&f = 6
(i) c<min(max(Of(Xr)) ,max(0(Xs)))

The last step is to propose an encoding of the problem such that we tmuhe from the de-
pendence graph if a schedule leading to fuse the statements exists, witving to instantiate the
schedules. Let us first study the simpler problem when schedule teeffi@are non-negative (that is,
6i ; € N). For the sake of simplicity, we assume that loop bounds have been nominslizke thad is the
first iteration of the domain. When considering nhon-negative coeffigiredowest timestamp assigned
by a schedul®f is simplyOE(ﬁ). One can recompute the corresponding timestamp by looking at the
values of the coefficients attached to the parameters and the constane, Hentmestamp interval
between the two first scheduled instanceﬁ@and@ﬁ is simply the difference of the parametric con-
stant parts of the schedules. In addition, to avoid the case v@femd/or@f are constant schedules,
we force the linear part of the schedule to be non-null. This is formalizedfmEion 3.6.

Definition 3.6 (Fusability restricted to non-negative schedule coé€ients) Given two statements B
such that R is surrounded by*doops, and S by ©lloops. They are fusable at level p¥k € {1...p},
there exist two semantics-preserving sched@@sand OE such that:

(i) vke{l,...,p}, —-c<OR0)-650)<c

dR ds
i) $OR >0, $67 >0
(i; ki iZl k,i

44 3. EMANTICS-PRESERVINGFULL OPTIMIZATION SPACES

This very tractable definition is heavily used in Chapter 8, where we peop@sactical implementation
of the selection of multidimensional interleavings.

Addressing the general case whérec Z is far more complex, as there is no easy way to retrieve the
instance scheduled first IHR. To achieve a reasonable expression of a test for fusability in theajener
case, we will actually limit ourselves to finding an encoding for Definition 3ds Tefinition holds by
exhibiting two instances for whicR is executed befor§, andR is executing afte6. For that purpose,
we selec, andi'r the lexicographically largest instance ©k. Then, to check for the fusability of
statements, one can check the possible orde@ffg8) < 65(0), OF(0) < O(ms), etc. As we check for
a pair of distinct instances, it is not required to ensure the schedulestarenstant: all checks will fail
if it is the case.

Definition 3.7 (Generalized fusability check) Given two statements R. They are fusable at level p if,
vk e {1...p}, there exist two semantics-preserving sched@%and G)E such that either one of the four
following problems has a solution:

(i) OR(0) < o(ms) A05(0) < OF(Mg)
(i) OR(mg) < O%(Ms) AOS(B) < OR(D)
(i) OR(0) < OF(Ms) A OF(Ms) < OR(MR)
(iv) O(me) < OF(0) AOf(MR) < OF(0)

For completeness, one should in addition test for different valugggans, in particular all vertices
of the iteration domains. As soon as there exists a valuggoims for which one of the above test do not
fail, then the statements are fusable. There exist pathological cases tivbebove tests all fail while it
is indeed possible to express a schedule leading to fusion. Howevbrssiedules will correspond to
fusing only a small portion of the iteration domains. Hence, had we used testusability test (that
is, using a small integer value foj the statements would have been detected as non-fusable with those
schedules.

Statement interleaving For our optimization problems, we are interested in building a space repre-
senting all ways to interleave the program statements. This relates to loop &msidoop distribution:
possibles ways to interleave statements include them sharing the same owealubphem being dis-
tributed and placed at different positions in the program. Consider aganpte a series of three
matrix-productsThreeMatMat, shown in Figure 3.2.

for (il =0; il<N ++1)
for (j1=0; j1<N ++1)
for (k1 =0; k1 <N ++k1)
R Qi [j1] += A1 [k1] * B{KkI][j1];
for (i2=0; i2 <N ++2)
for (j2=0; j2 <N ++2)
for (k2 =0; k2 < N ++k2)
S Fli2][j2] += Dli2][k2] * E[k2][j2];
for (i3 =0; i3 <N ++3)
for (j3=0; j3 <N ++3)
for (k3 =0; k3 <N ++k3)
T qi3][j3] += i3][k3] * F[k3][j3];

Figure 3.2:ThreeMatMat: C = AB, F = DE, G=CF

3.2. EEMANTICS-PRESERVINGSTATEMENT INTERLEAVINGS 45

To reason about statement interleaving, one may associate a Béctbdimensiond to each state-
mentSsuch that their lexicographic ordering encodes exactly the orderinfyiaiwsh information of each
loop level. If some stateme&is surrounded by less thahloops, 3 is post-padded with zeroes. As
an introductory example of statement interleavings Figure 3.3 shows fasibjp® transformations for
the illustrating example, as defined by different configurations ofithiectors. We also show, for each
version,L the sub-part of the scheduling matrix associated to the iterator dimensidrimgribe trans-
formation. Note that we do not represent the schedule coefficjaagsociated to the global parameters
i and the coefficient associated to the constant, they are set to 0 for these examples.

for (t1=0; t1 <N +t1) { for (t1=0; t1 <N +t1)

for (t3=0; t3 <N ++3) for (t3=0; t3 <N ++3)
for (t5=0; t5 <N +#5) for (t5=0; t5 < N +#5) {
R | dt3][tl] += Alt3][t5] * B[t5][t1]; | Otl[t3] += At1][t5] * B[t5][t3];
for (t3 =0; t3 <N +#3) | F[t1][t3] += D[t1][t5] * E[t5][t3];
for (t5=10; t5 <N ++t5) }
S | F[t1][t3] += Dt1][t5] * E[t5][t3]; for (11 =0; t1 <N +1)
for (t3 =0, t3 <N +t3) for (t3 =0, t3 <N ++3)
for (t5=0; t5 <N +#t5) for (t5=0; t5 < N, ++5)
T Gt5][t3] += Ct5][t1] * Ft1][t3]; T qta[t3] += qta][t3] * Ft3][t5];

}

0 1 O 1 0 O 0 0 1 1 0 0 1 0 0
LR=|1 0 o]LS=(0 1 o|LT=|0 1 O LR=|o 1 olts=(o 1 o
0 0 1 0 0 1 1 0 O 0 0 1 0 0 1

0 0

0 BS=1 l}Tz

0 1

(1)

for (t1=0; t1 <N ++1)

(2)

for (t1 =0; t1 <N ++t1)

for (t3 =0; t3 <N ++t3) for (t3 =10; t3 <N ++t3)
for (t5 =10; t5 < N ++t5) for (t5 =10; t5 < N ++t5)
R | Ati][t3] += Alt1][t5] * B[t5][t3]; S | FIt1][t3] += D{t1][t5] * E[t5][t3];
for (t1 =0; t1 <N ++1) for (t1 =0; t1 <N ++t1)
for (t3=0; t3 <N ++3) { for (t3=0; t3 <N ++3) {
for (t5 =10; t5 <N ++t5) for (t5 =10; t5 < N ++t5)
S J F{t3][t1] += D{t3][t5] * E[t5][t1]; R J qta][t3] += Alt1][t5] * B[t5][t3];
or (t5=0; t5 <N ++t5) or (t5=10; t5 <N ++t5)
T | Gt5][t1] += C[t5][t3] * Ft3][t1]; T | Gti[ts] += qt1][t3] * F[t3][t5];

~—_ O O

Figure 3.3: Four possible legal transformations@ot AB, F = DE, G=CF

Multidimensional affine schedules can be restricted to a form where statémenteaving vectors
are explicit: for each stateme$itone may constrain the rows 6F to alternate between constant forms
of the S vector and affine forms of the iteration and global parameter vectors 2@hisl -dimensional
encoding does not incur any loss of expressiveness [42, 6413025 For instance to build the full
scheduling matrix®R from LR andBR, one may proceed by interleavih andpR such thaty{? = 0 and

46 3. EMANTICS-PRESERVINGFULL OPTIMIZATION SPACES

R =0 here):

o 0 0 o0 pR
LEl Liz L53 ¥y cf
0O 0 0 0 pR
L3 L3, L3 V8 &
O 0 0 o0
LS L5, L§s V5 &

Unlike standard & + 1 encodings, we explicitljorce the 3 vectors to exhibit important structural
properties of the transformed loop nest:

R =

2755

1. if BR= E, vk € {1,..., p} then the statements share (at leg@stpmmon loops;

2. if Bﬁ + BﬁAVk € {1,...,p—1},BR # B then the statements do not share any common loop at
depthp (or more).

However, intuitively, several choices @f vectors represent the same multidimensional statement
interleaving: for example, the transformed code is invariant to translatiafi obefficients at a given
dimension, or by multiplication of all coefficients by a non-negative const@onsider the following
example:

BX=(0),BT=(2),Bi =(2)
This ordering defines th&andT are fused together, and tHatis not and is executed befo&andT.
An equivalent description is:

Br=(0), BP=(1), B =(1)

To abstract away these equivalences, let us now formally define tleegbaf multidimensional
statement interleaving.

Definition 3.8 (Multidimensional statement interleaving) Consider a set of statement&nclosed within
at most d loops and their associated vectsrs {BS}s-s. Foragiven pc {1,...,d}, the one-dimensional
statement interleaving of at dimension p defined y is the partition ofs according to the coefficients
[3%. The multidimensional statement interleavingsadit dimension p defined kw is the list of d parti-
tions at dimension p.

The structural properties of statement interleaving indicate that equialdasses at dimensiqn
correspond to distinct loops at depthin the transformed loop nest.

Definition 3.9 (Total preorder) A total preorder on a set is a relation< which is reflexive, transitive,
and such that for any pair of elemer(t§;,) € 5, either § <$S or <1 or both.

An important result is that any preorder of a seils isomorphic to a partial order of some equiva-
lence classes of. Applying this result to the structural properties of statement interleaviigddsythe

following lemma.

Lemma 3.5 (Structure of statement interleavings)Each distinct one-dimensional statement interleav-
ing corresponds to a unique canonical total preorder of the statememtsexiprocally.

We now propose an affine, complete characterization of multi-dimensiotairstat interleavings.

3.2. EEMANTICS-PRESERVINGSTATEMENT INTERLEAVINGS 47

3.2.2 Affine Encoding of Total Preorders

One-dimensional case For a given set oh elements, we define as the set of all and distinct total
preorders of ite elements. The key problem is to modeés a polyhedron. This problem is not a straight
adaptation of standard order theory: we look for sle¢of all distinct total preorders oh elements, in
contrast to classical work defining counting functions of this set [104].

We recall that uniqueness implies only distinct total preorders are mpeEbsin the set. To the
best of our knowledge, uniqueness cannot be modeled in a convaarfam the set of vectors. The
problem lies in the ability to express affine constraints to prune all and odiyndant3 vectors: there
is no affine description possible to removefaitectors expressing the same preorder. To overcome this
problem we propose to model the ordering of two eleménfiswith threebinary decision variables,
defined as followsp; ; = 1 iff i precedeg, g ; = 1iff i equalsj ands ; = 1 iff i succeedg. To model
the entire set, we introduce three binary variables for each orderedfpg@gments, i.e., all pair§, j)
such that < i < j < n. This modelso with 3 x n(n—1)/2 variables.

0<p;j<1
0=¢ 0<g;<1
0<s;<1

For instance, the interleavirRf = 0, B =0, B] = 1 of Figure 3.3(2) is represented by:

ers=1 er7=0,6s7=0
Prs=0, prT =1, psT =1
Rs=0, R7=0,557=0

From there, one may easily recompute the corresponding total pre@gler0, B3 = 0,3] = 1}, for in-
stance by computing the lexicographic minimum of a system with 3 non-negatiebies {37, 33,81 })
embedding the ordering constraints defined bygjl 6 ; ands j:

ers=1=pR=0%

prT=1= B <P}

pst = 1= BT < B}

The first issue is the consistency of the model, e.g. se&ing= 1 andp;» = 1 would make im-
possible to recompute a valid total preorder. The second issue is the totdlity aflation. These two
conditions can be merged into the the following equality, capturing both mutokistan and totality:

pij+ej+s;=1 (3.5)

To simplify the system, we immediately get rid of thg variables, using (3.5). We also relax (3.5)
to get:
pijte;<1

Mutually exclusive decision variables capture the consistency of the madaldingle pair of ele-
ments. However, one needs to insert additional preordering consti@acapture transitivity.

48 3. EMANTICS-PRESERVINGFULL OPTIMIZATION SPACES

Basic transitivity of e coefficients To enforce transitivity, the following rule must hold true for all
triples of statement§, j,k):
gj=1Nex=1=¢x=1 (3.6)

We will omit the= 1 in the rest of the section. Then, the following equation is equivalent t& B (
€ jNek= €k

Similarly, we have:
€, \€k= 6k

These two rules set the basic transitivityeofariables. Since we are dealing with binary variables,
the implications can be easily modeled as affine constraints:
{VKQLN7 aJ+3k§1+Qx}
6j+tek<l+ex

Generalizing this reasoning, we collect all constraints to enforce thetivétigf the total preorder
relation.

Basic transitivity of p coefficients We apply a similar reasoning for thecoefficients. We have:

Pik A Pkj = Bij
This translates into:
{ vkelijl. Pik+Pej <1+pij } (3.7)

Complex transitivity on p andt coefficients We also have transitivity conditions imposed by a con-
nection between the value for soreeoefficients and some ones. For instanclR < SandS=T
impliesR < T. The general equations for those cases are:

€A Pik= Pjk

€, APjk= Pik

€,j \ Pik = Bi,j
These translate to the following affine constraints:

vk €]j,n| 8+ Pik<1l+pjk
€, +Pjk<1+pik (3.8)
vk eli, j[&+ Pik<1+pij

Complex transitivity on sand p coefficients Lastly, we have to take into account the transitivity on
the fictitiouss variables (those modelirig > S). The transitivity condition is:

SkAPjk=S,j
Since the reduction equation gives:

Sj=1-pij—8&
with p; ; andeg j being mutually exclusive, the rule translates to the following affine constraints

{ vkelj,n| 8,j+PjtPk<1+pktex } (3.9)

3.2. EEMANTICS-PRESERVINGSTATEMENT INTERLEAVINGS

49

General formulation of 0 All the previous constraints are gathered in the following expressian of
the convex set of all, distinct total preordersxdlements. For Ki<n, i< j<n, ois:

0<pj <1)| Variables are
0<e&,;<1f binary
Relaxed mutual
Pijte = 1} exclusion
vk €lj,n| &j+ex<1+ejx| Basic transitivity
gjt+texk<l+egk) one
.. Basic transitivit
0 =< vkeli,j| pi,k+pk,j§1+pi,j} on y
p
vk €lj,n| &+ pik<1+pjk) Complex
8,j+Pjk<1+pik o transitivity
vk eli, | &+ Pik<1+p,j) onpande
Complex
vkelj,n &+ pij+Pjk<1+pik+ex, transitvity
onsandp

Lemma 3.6 (Completeness and correctness of) The seto contains one and only one point per dis-
tinct total preorder of n elements.

Proof. The full proof (shown in Appendix A) proceeds by showing that theditaity of the total
preorder relation is preserved for all points in the set, i.e., all possibs azstransitivity have been
enforced. Totality of the preorder comes from the mutual exclusion conddiad reflexivity is trivially
satisfied. [

Multidimensional case To encode all possible and distinct values for the multi-level statement inter-
leaving for a program, we need to replicate the gdbr each row of the vectors. Each row model

a given total preorder, but further constraints are needed to actiegstency and uniqueness of the
characterization across dimensions. Intuitively, if a statement is distribtifichansionk, then for all
remaining dimensions it will also be distributed. This is modeled with the following&gjs:

>k (pj=1=p=1) A (f=1=5;=1)
The final expression of the setof all, distinctd-dimensional statement interleavings is:

. Total preorders
vke {1,...,d}, constraints orX P
at levelk
I =
Statement interleaving

k k+1
Pij < P ,
uniqueness

o R < Pl e

i
It is worth noting that eaclo® contains numerous variables and constraints; but when it is possible
to determine — with the dependence graph for instance — that a giveniraydgrtwo elements
and | is impossible, some variables and constraints are eliminated. Our experimao#tdritat these
simplifications are quite effective, improving the scalability of the approactifgigntly.

50 3. EMANTICS-PRESERVINGFULL OPTIMIZATION SPACES

3.2.3 Pruning for Semantics Preservation

The setr contains all and only distinct multi-level statement interleavings. Another Eveluning is
needed to remove all interleavings that does not preserve the semaricalgbrithm proceeds level-
by-level, from the outermost to the innermost. Such a decoupling is possitéeibe we have encoded
multi-dimensional interleaving constraints inand that fusion at leved implies fusion at all preceding
levels. In addition, leveraging Lemma 3.4 and Definition 3.7 we can determirfadhbility of a set of
statements at a given level by exposing sufficient conditions for fusidghe@schedules.

The general principle is to detect all the smallest possible sgtsuofusable statements at level
and for each of them, to updat& by adding an affine constraint of the form:

el|(q7s+egT+...+&7W<p—l (3.10)

thus preventing them (and any super-set of them) to be fused all togétheoter the final set with all
pruning constraints for legalityr C 7. A naive approach could be to enumerate all unordered subsets
of the n statements of the program at leveland check for fusability, while avoiding to enumerate a
super-set of an unfusable set.

Instead, we leverage the polyhedral dependence graph to redutesthe a much smaller set of
structures. The first step of our algorithm is to build a gr&plo facilitate the enumeration of sets
of statements to test for, with one node per statement. Sets of statements to tesalidity will be
represented as nodes connected by a path in that graph. Intuitiv@ligs & complete graph then we can
enumerate all unordered subsets of thetatements: enumerating all paths of length 1 gives all pairs of
statements by retrieving the nodes connected by a given path, all patimgthf B2gives all triplets, etc.
We aim at building a graph with less edges, so that we lower the number aff st&gements to test for
fusability.

We first check the fusability of all possible pairs of statements, and addgeleetween two nodes
only if (1) there is a dependence between them, and (2) either they mussdxd tbgether or they can
be fused and distributed at that level. When two statements must be fugedrehwerged to ensure all
schedule constraints are considered when checking for fusability.

The second step is to enumerate all paths of lexgthin the graph. Given a path, the nodes in
p represent a set of statements that has to be tested for fusability. Each tyrerehgetected to be
not fusable, all paths witlp as a sub-path are discarded from enumeration,sah updated with an
equation in the form of (3.10). The complete algorithm is shown in Figure 3.4.

Procedurdui | dLegal Schedul es computes the space of legal schedulexccording to Lemma 3.4,
for the set of statements given in argument.

Procedurerust Di stri but e tests for the emptiness af when augmented with fusion conditions
from Definition 3.7 up to leved. If there is no solution in the augmented set of constraints, then the
statements cannot be fused at that level and hence must be distributed.

Procedurarust Fuse checks ifitis legal to distribute the statemeRtandS. The check is performed
by inserting asplitter at leveld. This splitter is a constant one-dimensional schedule at teviel force
the full distribution of statement instances at that level. If there is no solutitimsrset of constraints,
then the statements cannot be distributed at that level and hence mustdbe fus

ProcedureanDi st ri but eAndSwap tests if it is legal to distribut® andSat leveld and to execut&
beforeR. The latter is required to compute the legal values ofsifevariables at that level. The check

3.2. EEMANTICS-PRESERVINGSTATEMENT INTERLEAVINGS 51

Prunel | | egal I nterl eavi ngs: Conpute ¥
I nput :
pdg pol yhedral dependence graph
n: nunber of statenents
maxDepth maxi num | oop depth
Qut put :
#: the space of semantics-preserving distinct interleavings
1 75 «+1
2 unfusable« 0
3 for d «+ 1to maxDepthdo
4 G « newG aph(n)
5 forall pairs of dependent statenents RS do
6 Lrs < buildLegal Schedul es({R,S}, pdg
7 if nust Fuse(Lrs, d) then
8 79+ 79 n{edg = 1}
9 elseif nust Di stribute(zrs, d) then
10 74 79 n{es = 0}
11 else ’
12 if — canDistributeAndSwap(Lrs, d) then
13 79« 79 n{dg + pg = 1}
14 end if)
15 addEdge(G, R 9§
16 end if
17 end for
18 forall pairs of statements RS such that efq = 1 do
19 mergeNodes(G, R, S
20 end for
21 for | « 2 to n—1 do
22 forall paths pin G of length | such that
there is no prefix of pin unfusabledo
23 Lnodegp) < buildLegal Schedul es({nodes(p)}, pdg
24 if mustDistribute(Lnyodegp), d) then
25 74 g m{ZPe%airsinp<I*:I-}
26 unfusable<« unfusableu p
27 end if
28 end for
29 end for
30 end for

Figure 3.4: Pruning algorithm

is performed in a similar fashion as witlist Fuse, except the splitter is made to maReexecute after
S

Applications The first motivation of building a separate search space of multidimensitatahrgent
interleavings is to decouple the selection of the interleaving from the seledtiba tansformation that
enables this interleaving. One can then focus on building search heuigstibe fusion / distribution of
statements only, and through the framework presented in this chapter congultedale that respects
this interleaving. Additional schedule properties such as parallelism and tilatalitghen be exploited
without disturbing the outer level fusion scheme. We present in Chapteoéplete technique to op-
timize programs based on iterative interleaving selection, leading to parallelimbtled transformed
programs. This technique is able to automatically adapt to the target frameavatlsuccessfully dis-
covers the optimal fusion structure, whatever the specifics of the pmg@mpiler and architecture.

Another motivation of buildingr is to enable the design of objective functions on fusion with the
widest degree of applicability. For instance one can maximize fusion at mviely by maximizing
Yl ql’j or similarly distribution by minimizing the same sum. One can also assign a weight to the

52 3. EMANTICS-PRESERVINGFULL OPTIMIZATION SPACES

coefficientsg ; to favor fusion for statements carrying more reuse, for instance, ete. f@imulation
allows devising further pruning algorithms, offering to the optimization the videsice of legal only
interleavings.

3.2.4 Related Work

To the best of our knowledge, no previous work addressed the pnobiienodeling the set of possi-
ble loop fusion in a single convex set, especially with the range of enablingftramations for fusion

presented above. Traditional approaches to loop fusion [66, 84083 are restricted in their ability to
reason about compositions of loop transformations. This is mainly due to theflagowerful represen-
tation for dependences and transformations. Hence, non-polyteggnadaches typically study fusion in
isolation from other transformations. Megiddo and Sarkar [85] prappasgay to perform fusion for an
existing parallel program by grouping components in a way that paralleliant @isturbed. Decoupling
parallelization and fusion clearly misses several interesting solutions thadl Wwave been captured if
the legal fusion choices were itself cast into their framework. Darte eB8).36] studied fusion for

data-parallelization, but only in combination with shifting. In contrast to all esthworks, our search
space can enable fusion in the presence of all polyhedral transfon®satio

Bondhugula et al. proposed the first integrated fusion and tiling heuriaedon the polyhedral
model [20, 21], and subsuming a large space of additional loop tramafmms (interchange, skewing,
shifting). It inherits the flexibility of the tiling hyperplane method [60, 54] to buditimplex sequences
of enabling and communication-minimizing transformations. The tiling hyperplatieati@roposes an
efficient model-driven technique to unify locality and parallelism togethesingle cost function. Tiled
parallel code is generated, resulting from a complex composition of tremafmns. Nevertheless, in
several situations more efficient code could be generated. An imposaetnisfthat the cost function
is geared towards maximal fusion as it will tend to maximally fuse statements urabenm@mon tiling
hyperplane, if it exists, to increase locality and reduce communication Bjough it is possible to
treat strongly-connected components of the dependence graplatedypand not fuse across them, the
method does not permit the modeling of the legal fusion choices in a single.spac

53

Chapter 4

Computing on Large Polyhedral Sets

"Pessimists, we're told, look at a glass containing 50% air
and 50% water and see it as half empty. Optimists, in con-
trast, see it as half full. Engineers, of course, understtded
glass is twice as big as it needs to be."

— Bob Lewis

4.1 Computing on High-Dimensionality Polyhedra

One of the challenges of iterative optimization in the polyhedral model is thabdayp to manipulate rich
and complex search spaces of transformation candidates. To maximizsgxpness one has to build a
very complex search space, both in terms of the number of variables, &mnthmof the space cardinality.
In this thesis we propose to build spaces of candidate scheduling casflialaees. To get a clinch at the
complexity of the sets we wish to manipulate, consider that the set of candigaséotrmations has:

¢ possiblyhundredsof dimensions, one for each scheduling coefficient of the full program;

e possiblythousand®f constraints, coming for instance from the semantics-preserving aonstr
that are embedded into the space;

e possiblyinfinite number of points, as the number of semantics-preserving transformatien fo
program is often infinite.

Previous approaches for iterative search of scheduling coeffidahtsot consider building a single
space of transformation. Neither Long and Fursin [82] nor Nisbet {83t able to build candidate
optimizations as a single set of legal transformations. This comes from two ofgjlenges. First, the
task of building a set of semantics-preserving affine schedules is aceerplex problem, and space
construction heuristics are needed as shown in Chapter 5. Secorldprithen was available to enable
the traversal of such sets, given their complexity constraints as shawe.ab

We propose in this chapter to solve the problem of efficiently constructiddramersing very large
polyhedral sets, which can represent the set of semantics-pragecbiadules for a program. We revisit
the problem of manipulating very large polyhedra, pinpointing the scalabilitilelbeck of existing

54 4. COMPUTING ONLARGE POLYHEDRAL SETS

algorithms in Section 4.2. We then discuss in Section 4.3 an appropriateeefatgsn for these sets,
such that standard operations are efficient. To address the probldgmamically scanning a large
polyhedron, we recall the key properties required on the constraiotsthat a linear-time scanning
procedure can be developed, and link these properties to the Foustekikl elimination algorithm in
Section 4.4. We present in detail the Fourier-Motzkin algorithm in Sectionefd@dintroducing a small
variation of this algorithm which enables the required scalability on our Isizgd problem instances.

4.2 Existing Techniques for Polyhedral Manipulation

4.2.1 Manipulation of Presburger Formulas

Presburger arithmetic is a convenient mathematical abstraction to manipulatr sdé&gy The language
of Presburger formulas contains affine equalities and inequalities on intedables, conjunction and
disjunction of those, negation, and first-order quantifieemdd. Integer linear programming relates to
the task of checking the satisfiability of a set of Presburger formulasPacdwplete problem, and is the
core of many optimization algorithms in particular for polyhedral program opétian. Although nu-
merous previous work addressed the problem of checking the emptineg®lyhedron by eliminating
guantified variables, such as Ancourt and Irigoin [6], Irigoin et al. whh PIPS system [61] or Lassez
[59], the Omega Test developed by Pugh [92] is a powerful technigaedon Fourier-Motzkin elimi-
nation to check the emptiness of an integer set. This technique is implemented imédga Gbrary. It is

a complete system for simplifying and verifying Presburger formulas. Ofsey the Omega test cannot
simplify all Presburger formulas efficiently (there is a non-deterministic [dweind and a deterministic
upper bound on the time required to verify Presburger formulas). Henvievpractice the Omega test is
efficient for small-sized problems.

All these tools have mostly been developed for instancewise dependeaigsis in the polyhedral
model, computing a single optimization for the program, and generate the restdtisprmed program.
They have to be seen as research efforts focused on the constraioseahiyy their application: working
on reasonably small sets (a few tens of variables at most), with the emphagsidingand simplifying
Presburger formulas. In contrast, our objective is to manipulate sets vd#rsoof magnitude more
variables, and to be able to efficiently perform a dynamic scan of theseltsist§ittle surprise that our
experiments on simplifying and scanning sets based on such tools totally fatieva the scalability
required.

Another recent development is the Integer Set Library by Verdoolddd#, which roughly offers the
same functionality as the Omega library but using different algorithms. Altimthig work provides very
strong improvements in terms of scalability and efficiency of the mathematicalthlgsrimplemented,
the focus still differs from our objectives. The library is dedicated to opiimizhe common case for
parametric integer sets, and is not able to reach the scalability requiremethts élynamic scanning of
very large polyhedral sets. We recall once more that our problem i$yhightext specific, and differs
from standard problems faced in polyhedral program optimization.

4.2.2 Dual and Double-description of Polyhedra

Probably the most standard representation nowadays of (parametyibggia is based on the implicit
and dual description of polyhedra. The implicit representation definel/hgrron as the intersection of

4.2. EXISTING TECHNIQUES FORPOLYHEDRAL MANIPULATION 55

finitely many hyperplanes, each of which in the form of an affine constr&@ivenQ" the set of rational
vectors of dimension, a polyhedrorr € Q" is defined as follows.

Definition 4.1 (Implicit representation)

?:{XeQ"|AX=h, CX>d}

The matrixA sets the dimensions which are affine combinations of others, if any. The rGatdts the
affine hyperplanes used to bound the space, if any. One may note ithat Aenor C are imposed to be
canonical. Implicit equalities can be containeddnfrom two or more constraints (that is, rows ©f
their combination may exhibit a linear combination of some dimensions. Redunaissttaints can be
contained too: some constraints may be equivalent or non contributing malinguthe polyhedrorr.

If # is a polyhedron, then it can be decomposed as a polytope plus a polybedea this is the
fundamental theorem of decompaosition for polyhedra [101]. dine representation models a polyhe-
dron as a combination of lindsand raysR (forming the polyhedral cone) and verticégforming the
polytope). The dual representation of a polyhedroa Q" is defined as follows.

Definition 4.2 (Dual representation)

7 {R€Q"|X=LA+RI+VY, 1>0,V >0, Tvi =1}
|

Every polyhedron has both an implicit and dual representation [101th&umore, it is possible to
compute a dual representation from the implicit one by using Chernikolggsitam [26, 74]. Although
the complexity of this operation i@(kWZJ), efficient implementations of this algorithm do exist. The
implementation by Le Verge and Wilde in PolyLib [74, 122] greatly contributeddputarizing this
technique.

Building on these representations, polyhedral operations such agtiters image under an affine
mapping and elimination of redundant constraints can be achieved effici€htyPolyLib is the result
of many years of theoretical developments in the manipulation of parametribguyl sets, and is
widely used in polyhedral compilation research. It has found numerpplcations, in particular in
code generation [96, 10] which is a problem strongly related to ours.

But the pitfall of the dual description lies in the explicit representation of tiighedron’s vertices.
When again considering very large polytopes, our experiments hewnshat the thousands of con-
straints of the implicit representation can translate into billions of vertices. Sirsgiggthe PolyLib to
compute the dual, redundancy-less representation of our solution sdédst@ke hours, making the use
of dual representation-based algorithms unsuitable for our problem.

Let us note also the Parma Polyhedra Library (PPL) [2] and Jolylib fre®eR/oir Labs Inc., two
other libraries to manipulate (parametric) polyhedra based on the duababtkellescription principles.
Although we did not perform experiments with these libraries, our ob8ervan the explosion of the
number of vertices still holds.

4.2.3 Number Decision Diagrams

Any Presburger-definable set can be represented with an automatodireyn Number Decision Dia-
grams [29]. In a nutshell, one can build an automaton that recognizesuatzigsuch that each word

56 4. COMPUTING ONLARGE POLYHEDRAL SETS

in L is a point in the integer set encoded. Number Decision Diagrams are the sadoasad symbolic
representation for manipulating sets of integer vectors encoded as sifitig# vectors.

Standard operations such as union, intersection or projection can beiszhwrectly on the au-
tomaton representation [127, 72]. An implementation of such techniquesilaldean the LASH tool
[1]. This is a promising direction which is able to offer polynomial-time algorithmsaimpute heav-
ily expensive algorithms such as the integer hull [73] or other good algaesito compute the (partial)
projection of polyhedral sets [19]. Yet these techniques are not maeanggh to be adapted to our prob-
lems. Based on the computation time reported to build the automaton represeritatpolydedral set,
which gathers the core of the complexity, modeling sets of more than a fewfteasables is simply
out of reach in a reasonable time. Still it is a promising direction and we leftfakige work of this
thesis the deep investigation of number decision diagrams for polyhedgaion optimization.

4.3 Polyhedral Operations on the Implicit Representation

From the observations made in the previous section, we conclude thatahepresentation of polyhe-
dra is not well suited to address the scalability challenges. Hence we deddkect the implicit repre-
sentation of polyhedra as a basis for manipulating the solution sets. Wee@adt the main operations
to be used on large polyhedral sets, before discussing in detail thieprob polyhedron simplification
for the case of the implicit representation.

4.3.1 Required Polyhedral Operations

Intersection Intersection is the most commonly used operation. During the computation afithi®s

set, starting from the universe polyhedron we successively redwith idditional constraints, to remove
points from the set. Giverr = 2, N P,. The intersection of polyhedra is defined as the conjunction
of the constraints defining; and the constraints defining,. We choose to not perform any more
operation than simply adding all constraints to the polyhedron: no emptinesse&plicitly performed

for instance to detect if the resulting intersection is empty.

Note that in the case of the intersection of polyhedra with different dimealipnwe choose to
define that the operation implicitly extends the dimensionality of the smallest patyinéalthe dimen-
sionality of the largest one, and leaves the missing dimensions as uncogtstrain

Emptiness test To determine if a polyhedron contains at least one integer point, sevehnaidgees are

available. The Omega test is based on an extension of Fourier-Motzkablaelimination to integer

programming, and has worst-case exponential time complexity [92]. Howeremany situations in

which other (polynomial) methods are accurate, the Omega test has lovwpotgeomial time complex-

ity. Another technique developed by Feautrier is Parametric Integerdmoging (PIP) [39], which also
handles the decision problem of the existence of an integer solution in m@@i@polyhedron. Itis a

specific extension of the simplex algorithm to handle parameters, precgaeddrameterized Gomory
cuts algorithm.

Although we do not aim at manipulating parametric polyhedra for the solutitsn\we use the PIP
algorithm as implemented in the PIPLib. The motivation is mainly a conveniencetixfaning the
tools, but PIPLib is a highly efficient implementation for our concerns.

4.3. POLYHEDRAL OPERATIONS ON THEIMPLICIT REPRESENTATION 57

Projection and dynamic scanning Dynamic polytope scanning is the cornerstone of the decisions
taken for the design of algorithms operating on high-dimensionality polyhédmarder to be efficient,

a traversal algorithm must be exhibited to operate with a low complexity. Othematpns, such as
arbitrarily picking a point in the set, must also be performed efficiently. Icti&e 4.4 and later we
address this problem, by providing an efficient scanning method basagmvious projection of the
full set.

Simplification We recall that a constraint is redundant in the description if, once remmidweobtained
polyhedron is identical. The benefits of having a redundancy-lessgeptation are twofold. First, no
space in memory is wasted to store useless constraints. Second, as thexitprapteany polyhedral
operations is a function of the number of constraints, one can expeetdpesations to perform faster
on a simplified polyhedron.

Hence we offer the possibility of simplifying a polyhedron by removing theaingidnt constraints
in its implicit description. In particular, we provide a mechanism to efficientlycedredundancy by
removing at almost no computational cost all parallel hyperplanes usefine the polyhedron. We also
provide a mechanism to remoa# redundantconstraints. These are detailed below in Section 4.3.2.

4.3.2 Redundancy Elimination

A mandatory operation when working on the implicit representation is the abilitgrtmve redundant
constraints from the description. When considering the dual descripitbtha Chernikova algorithm as
implemented in the PolyLib, the backward conversion procedure from thleejuresentation generates a
redundancy-less implicit representation. Here, additional effort isired| to exhibit a similar capability
for polyhedron simplification.

Basic Redundancy Elimination We propose to distinguish two kinds of redundancy. We differentiate
the local redundancywhere the redundancy can be observed between two constraintdesgidbal
redundancyvhere a constraint has to be checked against more than one constraint.

Definition 4.3 (Local redundancy) Given two constraintsi : 7, ¢ixi < qandf: ¥, dix <d. ais
said to be locally redundant with respectfiof one of the following holds:

(i) Vk, cx =dx and d < q (parallel hyperplanes)

(i) 3k, c#0, a/|o = B/|dk| (same hyperplane)

The three following examples highlight local redundangy x, > 2 is redundant with respect @ +
Xo > 1; 2X1 + 2%2 > 2 is redundant withx; +xo > 1; and X; + 2%, > 2 is redundant withx; + x> > 0.

Testing for local redundancy is one of the motivation for our choice txtbkproblem over rationals
instead of integers. Testing for local redundancy is trivial if the coimgr@renormalized A constraint
with coefficients inQ can be normalized by selecting selectirag the highest value for whiat # 0,
and then sety’ = c¢/ci. The constant paq also must be normalizedy = q/c;. Then, testing if two
constraints are parallel (or equal) simply consists to check the equality af, dil coefficients, and in
that event only look atj andg’. On the other hand, normalizing a constraint which has coefficients

58 4. COMPUTING ONLARGE POLYHEDRAL SETS

in Z requires dividing the coefficients by ttged of the full constraint (includingy). This prevents
from determining local redundancy by simply looking at the equality of odefit values, and actually
requires a much heavier computation.

To efficiently eliminate local redundancy, we apply the following principleve@ia new constraint,
first it is normalized and a hash key is associated to it. This key is a functithre of coefficients only.
Second, the constraint is tested for local redundancy against all @thstraints, by first checking the
equality of the hash key, then if needed the equality ofdheoefficients, then if needed the constant
parts. Local redundancy reduction is used at each step of all thathigsroperating on polyhedra.
Similar technigues are implemented in the Omega library and are standard implenmaleztiitiques to
control redundant constraint construction.

Although this principle may seem relatively trivial at first glance, we expentally observed it is a
cornerstone of redundancy removal when used with the Fourier-hogtknination algorithm.

Global redundancy elimination A constraint is said to be globally redundant if it is not locally redun-
dant with any other constraint of the system, and the system defines theoebmedron if we remove
this constraint. To detect this kind of redundancy we resort to perforamrgmptiness test on the global
polyhedron according to the following test.

Definition 4.4 (Global redundancy test) Given? € Q™ anda : 3, cix < g a hyperplanea is redun-

dant in the definition of if:
m

{#\a}nN {Zlcixi > q} =0

Local redundancy elimination is detected through a set of lightweight tes@rthambedded directly
into the polyhedral operations. Global redundancy requires muchdreammputation and is a costly
process. It implies to perform at worst one polyhedron emptiness tesbpstraint.

One may note that removing a redundant constraint can make the othadaadwonstraints non
redundant, so it is not possible in general to remove them all at the same tingeorder in which
constraints are checked for global redundancy can significantly mtidifgfficiency of the test. Le Fur
experimented with several traversal orders to perform the redupddmeck [46]. We experimentally
evaluated these traversal orders on the system we manipulate, in pattealscendingagnddescending
orders. The descending order checks first the constraints whiaf arghest dimensionality, and then
progressively checks constraints of lower and lower dimensionality.v&eely, the ascending order
checks first the constraints of lowest dimensionality. Our experimentdudmalso that the descending
method is the most efficient for our problem instances, in particular whet dsring the elimination
of variables with the Fourier-Motzkin algorithm. Local redundancy testslls perform well on low-
dimensionality constraints, motivating the good behavior of the descendieg or

4.4 Efficient Dynamic Polytope Scanning

As we aim to represent solution sets as polyhedra, it is required to preffideent mechanisms to
traverse these sets. To design iterative and feed-back driven taebrfiy the selection of an effective
transformation, operations such as partial, exhaustive or randomsestrbe available. Moreover, for
the iterative search to perform efficiently the time to instantiate a point in the spast be negligible.

4.4, EFFICIENT DYNAMIC POLYTOPE SCANNING 59

In the context of polyhedral program optimization, this scanning probksibleen largely addressed:
the code generation phase does exactly a scanning of the domain pal\Btipeis the context of itera-
tive compilation, we face solution polytopes of a dimensionality that is ordarsaghitude higher than
domain polyhedra. Currently, the performance of the best known algofith static code generation
does not permit to reuse these technigues on the polytopes we condidgemadtivates the need for a
dynamicand scalable approach for scanning large polyhedra.

4.4.1 The Dynamic Scanning Problem

The problem of statically generating a code to scan a polyhedron, catiechemeration, strongly relates
to our problem. These techniques usually rely on recursively projectengdtyhedron to end up with
an expression of the projection bounds on the inner-most dimensionidéofar example the following
polyhedrone:
i >0
P j>0
i+j<2

To construct all integer pointg € 2, one must enumerate the different values for its two coordinates
p1 and pz, corresponding to theand j dimensions. Herep=[00], p=[01], p=[02, p=[10],
p=[11 andp = [2 (] are the 6 integer points ia. To compute these points, we intuitively computed
the bounds fop; as the projection of along the dimension, enumerated all possible values for it, and
for each of the values fgs; we also computed the bounds fer as the projection along thiedimension

and enumerated all possible values for it. We formalize this procedure wifioltbeing algorithm to
dynamically scan all pointp € # of dimensiomm.

EXPLORE (p,k,?):

1. compute the lower bounld and the upper boundb of py in 2, provided the coordinate values
for p17 L) pk—l;

2. for eachx € [Ib,Ub:

(a) setpx =X,

(b) if k< mcall EXPLORE (p,k+ 1, ?) else outpup.

The main difference between static and dynamic polyhedron scanning iadhdedge ofp,. .., pk_1
when computindb andUb in the dynamic case. Moreover, our problem is much simpler in general: we
only want to scan a single polyhedron, which is not parametric, and doametabout simplifying the
expressions ob andUb.

4.4.2 Scanning Points Using Projections

Our objective is to minimize the complexity of thexELORE procedure. To achieve this goal, we must
control the complexity of the computation tif andUb. This computation corresponds to evaluating
the bounds of the projection along a specific dimension, given the cotedimtues for some other

60 4. COMPUTING ONLARGE POLYHEDRAL SETS

dimensions. Without further treatment, the complexity of computingnd Ub is not linear in the
number of constraints. Consider for example the following polyhegron

i >0

i <2

P j>0
j<2

i+j>3

Here, to compute the actual boundsiaffle cannot limit ourselves to inspect the constraints defining
0 <i <2, but rather we have to resort to computing the actual projectianaldngi, etc. We can allow
for a pre-processing pass which can be costly if it enables the protastantiating a point to be very
efficient. This is motivated by the fact that the search space is usually badtand for all, while a huge
number points may be instantiated.

In order for the EXPLORE procedure to have a complexity linear in the nuwfeonstraints, we
rely on a fundamental property of the Fourier-Motzkin algorithm. This elimimagigorithm generates
an equivalent set of constraints such that it is guaranteed that, pdomidalue in the projection of
vi,...,Vk_1, a value exists fow, for all k. This is called thé=M-propertyby some authors (including
ourselves), although it is often referred to as row echelon form. Thiggrty has been heavily used
in the design of code generation algorithms based on the Fourier-Motzaijicpon [6]; we recall it in
Definition 4.5.

Definition 4.5 (FM property) Given a polyhedrorp and its implicit representation A. A has the FM
property if, for pe 2, the value of the'k coordinate p only depend®n py,..., px_1. In other words, if
all the affine inequalities in A needed to computenpas non-null coefficients only foka. ., ax.

Consider now the polyhedran/, the result of the application of the Fourier-Motzkin algorithm on
P
i >0
[>1
[<2
Pl j>0
i>1
j<2
i+j>3

Now by simply inspecting the constraintsli < 2, one has the correct bounds for the projectios @i
i. This reasoning generalizes of course for polyhedra of arbitraryrdiioes, provided that the sequential
order chosen to build coordinates is the reverse order of the Foun&kivi elimination steps.

Furthermore, had we applied the simplification techniques described in thieysesection, we
ended up with a simplified polyhedron with a minimal set of constraints. Combine§ Myproperty
with the EXPLORE procedure yields a linear time technique to build a point: eawtraint is visited
at mostmtimes to build a point, for a polyhedron of dimension

Note that we have not considered in this reasoning the case of holes ijbetjpn ofZ-polyhedra.
In practice we have relaxed the manipulation of integer sets to rational setgha integer hull is
obtained by computing the ceil (or floor) of theandUb values obtained. Projection of integer polyhedra

4.5. FOURIER-MOTZKIN PROJECTIONALGORITHM 61

can lead to non-convex sets. Consider for instance the polyhedron

i >0
” <1
2j-i<0
3j—i>0

The set of integer points i® arep=[0 0, p=[2 1] andp = [3 1]. Hence the projection on the
dimension is not convex: whild = 0 andUb = 3, there is no point ire with p; = 1. For such cases,
the FM-property does not necessarily hold for all points betwbeand Ub. When an integer hole is
encountered during the scan, it is detected by observing for some latengiamnehatlb > Ub. The
recursive branching is simply not performed, and the process coatiauterate to the next value for the
previous coordinate. We acknowledge the existence of pathologiczd edwere the integer hole occurs
at an early dimension while the hole observation is done at a much later defhté mcursion. The
design of an efficient backtracking technique for this case is left atueefwork. Note that in practice
for the polyhedra we scan in the experiments presented in this thesis, therihtdg issue was rarely
encountered, and had a totally negligible impact on the traversal efficiedmeny encountered.

4.5 Fourier-Motzkin Projection Algorithm

There are many methods to solve a system of linear inequalities, some of iegnaye solution, or
simply deciding if a solution exists (see [101] for a comprehensive sur@&iyce the elimination method
works well to solve a system of linear equalities, it was natural to investigsiteilar method to solve
linear inequalities. Fourier first designed the method, which was redisabead studied several times,
including by Motzkin in 1936 and Dantzig [34].

The Fourier-Motzkin projection (or elimination) algorithm successively elit@savariables in a
given order. The resultis a new set of constraints which defines the galyhedron, but with the notable
property of enabling an easy construction of any point in this polyhedimnow define precisely the
algorithm following Banerjee’s description of an efficient implementation fp#]it

4.5.1 The Genuine Algorithm

Given a polyhedrorr : {X€ Q™| CX > J}, we first reduce its dimensionality by performing a Gaussian
elimination using the explicit equalities used to define The Fourier-Motzkin projection algorithm
solves the system defined By with mvariables andh inequalities:

m

_Zcina >dj (1<j<n) (4.1)

A solution to solve this system is to eliminate the variables one at a time, in thexard&h_1, ..., X1.
The elimination ofxy consists in a projection of the polyhedron (4.1) on the subspace .., m—1}.
This projected polyhedron is defined by:

m-1

Zl pijxi>q; (1<j<n) (4.2)

62 4. COMPUTING ONLARGE POLYHEDRAL SETS

(a) Sorting The first step of the algorithm is to rearrange the line€ &uch that inequalities where
Cmj is positive come first, then those whexg; is negative, and eventually those whegg is 0. We then
find integera; andn, such that:

>0 iflgjgnl,
Cmj=44<0 ifm+1<j<ny, (4.3)
=0 ifn+1<j<n,

Coefficientsn; andn, index the positive and negative inequalities.

(b) Normalization For 1< j < ny, divide thej™ inequality by|cn;|, to get:

m—1
thijxi +Xxm>0qj (1<j<nl)
m1

Ztina +xm<qg; (N+1<j<n2)
i=

(4.4)

Where

tij = Cij/[Cmj|
qj =dj/lcmjl
From (4.4) we derive- z{i‘lltijxi +qj, an upper bound faxy, for 1 < j < ny, and a lower bound for
xm forni +1 < j <ny. Itis so possible to define respectivdly, the “lower bound ball”’, andB, the
“upper bound ball” as:

m-1
bm(X1, ..., Xm-1) = max (— Ztijxi"i‘Qj
i=

n+1<j<n2

(4.5)

m-1
Bm(X1, .-, Xm-1) = 1gjugr;ll (— i; tijX +qj
Note that ifx,, has no lower bound (meaning = ny), we simply defindy,, = —o. Reciprocally ifxm
has no upper boundh{ = 0) we defineB,, = c. We can then express the rangexgfas:

Bm(X1, ..., Xm-1) < Xm < Bm(X4, ..., Xm—1) (4.6)

The equation (4.6) is a description of the solution setfor

(c) Create projection We now have the solution set fay,, and we need to build the constraints for the
Xm-1 dimensions. In addition to the constraints whegg = 0, we simply linearly add each constraint
wherecn; > 0 to each constraints wheeg; < 0, and add the obtained constraint to the system. One may
note that we add; (n; — n;) inequalities, and the new system lés= n—n, + ny (N — ng) inequalities

for m— 1 variables. The original system (4.1) has a solution iff this new systera ka#ution, and so

on frommto 1. If during this step, a contradiction occurs<{@; with q; < 0) then the system has no
solution.

Once the algorithm has terminated (and did not yield an unsolvable systempogsgle to build
the set of solutions by simply computing, foe 1 tok = m, the values obx andBy (yielding the bounds
of acceptable values fog).

4.5. FOURIER-MOTZKIN PROJECTIONALGORITHM 63

The algorithm From the previous formulation, we derive the algorithm in Figure 4.1.

Input: A systemof nlinear inequalities of the form
m
ax <¢ (1< j<n

=
Qutput: The solution set of the input system

for K = mto 1 do

1Sort the systemaccording to the sign of
aj, |V .
Compute ny the nunber of inequalities where a; > 0, n
the nunber of inequalities where a; < O.

2 Normalize the system by dividing each inequalities
where ag; # 0 by ‘akj‘,‘v j.
Store bx and By the | ower and upper bound inequalities for
Xk

3 Create the systemfor x _ 1, by adding each
inequal ity where a;j < O to each one where a; > 0 (use
n and ny to find bounds for j). If a contradiction occurs,

stop: no solution. Add the inequalities where a; = 0.
If the systemis enpty, stop: finished.
end do

Figure 4.1: Fourier-Motzkin elimination algorithm

45.2 Known Issues

The major drawback of the Fourier-Motzkin elimination algorithm is the strorsgipdity of generating
redundant constraints during step 3 of the algorithm. A constraint is deehtif it is implied by (an)other
constraint(s) of the system. Consider the following example:

X1+X >0
2X1 —Xo > 0
X1 > 0
Then eliminatingx, produces the additional constraint;3> 0, which is redundant witlxy > 0. The

number of constraints can grow exponentially, and the worst case lwjuhd total number of polyno-
mials in the output of the Fourier-Motzkin algorithm is, forconstraints and dimensions [120]:

m 2(i-1) . n2"
£ 221

2(2m+l_2)

More roughly ifn > 2, it is bounded by:
ny 2"
(m+1) (é)

4.5.3 Redundancy-Aware Fourier-Motzkin Elimination

The possible explosion of redundant constraints and thus useless tedioms makes this algorithm
poorly scalable, especially on large systems. The main modification whichuseddo make it scal-
able is to remove redundant constraints generated by a combination of hstraints. We defined in
Section 4.3 useful tools for the detection of local redundancy and edmstiormalization. We re-inject

64

4. COMPUTING ONLARGE POLYHEDRAL SETS

these ideas into the reformulated algorithm of Figure 4.2. In addition, we etk@e the complexity
by using six smaller sets of constraints instead of one (their cumulative sizenisshthe same as the

original set).

Input: A systemof nlinear inequalities of the form
m
ajx < ¢ (1< j<n

i=
Qutput: The solution set of the input system

forall j do
Nornal i ze the constraint by |amj| (if amj # 0)
if amj > O STORE the inequality in S
if amj < O STORE the inequality in S
if amj = O STORE the inequality in §

end do
Bm < S_
bm « S

for k <~ m — 1to 1 do
€ S xS,C=s5 +s.Ifa
stop: no solution

vV s,,8.

contradi ction occurs,
Vs € S where so ; # O,\C =

if k > 1 then
v C:
normalize C on the k — 1" variable.
if ckeg > O STORE the inequality in Su/
if .1 < O STORE the inequality in S/
if ce1 = O STORE the inequality in S

if Spr = 0N S

if k > 1,/Bc = = S

if k = 1,|Bc = maxS,), by = min(S.)
S = Si|S. =S/|% = %
removed obal Redundancy(S; N S. N &)

end do

ONSYy = 0N = 0stop: finished

Figure 4.2: Modified Fourier-Motzkin elimination

The benefits of this formulation is twofold: first, tert step is removed, since it has been replaced
by a simple test and three different sets; secondsti@reoperation is done only on normalized con-

straints.

ThesToREoOperation is the core of the local redundancy elimination. We assure Isyraotion that
we only store normalized constraints (let us recall that this normalization stejaeady mandatory to
the projection algorithm). To detect if a constraiht 3 ; ¢ix; < g is locally redundant we only have to
check, with each constraiit already present in the set i, ¢, = d;. If so, we check ifgg < qc.

For global redundancy elimination, we resort to testing and eliminating camtstan the set result-
ing from a full projection step. For this particular purpose the Le Furelediog order performs very
well. The output of our algorithm is thus a simplified polyhedron with a minimal ebostraints for
its implicit description.

This modified algorithm does not contain highly complex mathematical optimizatistedd, we
simply provide an efficient mechanism to control redundancy generatieach step of the algorithm.
The output of this algorithm is a new set of constraints for the polyhedrdoichawespects the FM-
property, and containingo redundant constraintsOur extensive experiments over the thousands of
polyhedra generated for the purpose of iterative schedule selectierdieanonstrated that redundancy
was the only major bottleneck of Fourier-Motzkin elimination on such probletanmtes. The modified
algorithm was implemented in the FM library [91] and, to the best of the authono®/ledge, is to date

4.5. FOURIER-MOTZKIN PROJECTIONALGORITHM 65

the most adapted algorithm for the projection and normalization of schedwefiatents polyhedra as
constructed in this thesis.

45.4 Some Related Works

The study of eliminating redundant constraints is a long-term issue, antiessed by numerous authors.
Many of the most useful references can be found in Schrijver [16d].a few additional references let
us explicitly cite Chernikov’s work [25, 83] who produced tlegluced convolution methpahich relies
on the concept of linear-dependence of the vectors generating a teneis also recall the work of
Pugh [92] on the Omega Test, a practical method to solve integer lineaapmsgand Sehr etl. [105]
who worked on redundancy reduction heuristics based on the Cherailterion. We may also note
the work of Weispfenning [120] who proposed a derivative of therieotMotzkin elimination with an
exponential worst case upper bound complexity.

66

4. COMPUTING ONLARGE POLYHEDRAL SETS

67

Part |l

Constructing Program Optimizations

69

Chapter 5

Building Practical Search Spaces

5.1 Introduction

Emerging microprocessors offer unprecedented parallel computirapitiips and deeper memory hi-
erarchies, increasing the importance of loop transformations in optimizingissy@Because compiler
heuristics rely on simplistic performance models, and because they are tooaniehited set of trans-
formations sequences, they only uncover a fraction of the peak peafme on typical benchmarks.
Iterative optimization is a maturing framework to address these limitations, bat,sbwas not success-
fully applied to complex loop transformation sequences because of the catontidh explosion of the
optimization search space.

A limitation of model-based approaches is the accuracy and portability of thmipation objective.
A strong motivation for offering a complete methodology to build a set of catdidptimizations is to
isolate and postpone the selection of a transformation to a subsequenfitegesult in a decoupling
of the expressiveness issue and the selection problem. Furthermdedtjrny iterative processes such
as adaptive compilation working on a well-formed space we enable the possibfiityus the search on
relevant candidates only.

Our solution for the search space construction is based on embeddingl griiperties directly into
the search space, to reduce the complexity of the selection stage. Thédolltowéng properties are
embedded in any search space generated by our algorithms.

1. ExpressivenessWe aim at building a search space which encompasses arbitrarily complex se
guences of transformations.

2. Legality. All candidates in the search space preserve the semantics of the origigedm.

3. UniguenessThere is no duplicate in the space: each point corresponds to a distirgfotraation,
leading to a distinct candidate version (that is, a distinct syntactic progféen}tze application of
the transformation.

In Chapter 3 we have shown that a space with maximal expressivenedse dauilt in a convex
fashion, hence bearing some of the mandatory tractability properties foaversal. We address now
the problem of building practical search spaces, navigating the trddeetvfeen expressiveness and
optimality of the solution versus tractability of the space construction and itg$ave

70 5. BUILDING PRACTICAL SEARCH SPACES

5.1.1 The Trade-Off Between Expressiveness and Practicality

When considering a search space with maximal expressiveness winitzinsoall transformations ac-
cessible for the current framework, scalability and convergence tisatiie optimal solution are the
dominant challenges.

1. Pros: Optimality of the solution guaranteed within the scope of the framework.
2. Cons:High complexity of polyhedral operations: they operate on high dimensjmoighedra.

3. Cons:Very large search spaces, challenging the convergence towardstitmalcsolution.

Complexity of Linear Programs The method proposed in Chapter 3 requires computing on a space
containing a possibly huge set of variables. For an illustration, considexxidmmple of Figure 5.1.

/* Determine nean of colum vectors of input data matrix */
for (j =1,] <=m j++) {
mean[j] = 0.0;
for (i =1; i <=n; i+4)
mean[j] += data[i][j];
mean[j] /= float_n;

/* Determne standard deviations of colum vectors of data matrix. */
for (j =1,] <=m j++) {

stddev[j] = 0.0;
for (i =1; i <=n; i++)
stddev[j] += (data[i][j] - mean[j]) * (data[i][j] - mean[j]);
stddev[j] /= float_n;
stddev[j] = sqrt(stddev[j]);

/* The following in an inelegant but usual way to handl e
near-zero std. dev. values, which bel ow woul d cause a zero-

divide. */
stddev[j] = stddev[j] <=eps ? 1.0 : stddev[j];
1
/* Center and reduce the colum vectors. */
for (i =1, i <=n; i++)
for (j =1,] <=m j+4) {
data[i][j] -= mean[j];

data[i][j] /= sqrt(float_n) * stddev[j];
}
/* Calculate the m* mcorrelation matrix. */
for (j1=1; j1<=ml; jl++) {
symat[j1][j1] = 1.0;
for (j2 =141 j2 <=m j2++) {
symmat[j1][j2] = 0.0;
for (i =1; i <=n; i++)
synmet [11][12) += (data[i][j1] * data[i][}2]);
symmat [j 2] [j 1] = symmat[j1][]2];
}

1
symat[nj[n] = 1.0;

Figure 5.1:Correlation program

In this example, constructing the space of all and only legal 3-dimensidiirz achedules involves
computing on a system witly 500 variables. Hence, any optimization method which would aim at
finding a space optimal point would require to solve an ILP on those 508bkas. Furthermore, in the
context of iterative search projecting the legality constraints to shape #ue $p a form suitable for
dynamic traversal is required. This may imply to perform thousands of ensptiests on such sized

5.1. INTRODUCTION 71

polytopes. At the time of writing of this manuscript, no known solving method exisgedte efficiently
to the number of variables involved for programs of more than a few tensigisents. Although we
have presented in Chapter 4 an efficient and scalable technique fecto, this technique reaches
its scalability limit on larger spaces. When considering programs beyond 1B statements, another
strategy must be devised.

One of the practicality concerns when building a search space is to ctmgrolmber of variables
involved at each stage of the process. We present in this chapteedtfferategies for significantly
reducing the space dimensionality.

Performance Distribution Along with more expressiveness comes the increasing chance to have (po
sibly many) candidates which have a similar or even very bad perform&uwanstance, considering
thematVect example of Figure 5.2.

for (i =0; i <=n; i++) {
R | s[i] =0
| for (j =0, j <=n; j+
S }\ | s[i] =s[i] +alillj] * x[j];

Figure 5.2:matVect kernel

Applying a shift of 1 with the transformation:

. is
IR .
100 1\ [ijs
f=(1 0 2.{n]|, G)S:()
1 0100 2

should not alter the performance. Applying a slowdown of 5 with the tranmsfton:
is

iR .
0"~ (5 0 0.(n]. &= (390 P |k
1 1

will generate complex control including modulo operations, as shown in &g

for (i =0; i <=5*n; i++) {
| it (i %5==0) {
R | | s[i/l 5 =0
Co for (j =0 <= j4)
S | s[i / 5] =s[i /5] +a[i / 5][j] * x[j];
|}
}

Figure 5.3: TransformeshatVect kernel

These intuitive comments point us towards a space pruning approacte sgrae transformations
(that is, some coefficients values) are not explored. We show in Chéyhet, mostly due to the com-
plexity of the optimization processes in most modern compilers, achieving thedédsrmance may
require tweaking all coefficients. Yet, as unnecessary complex costroigdd be avoided, we will favor

72 5. BUILDING PRACTICAL SEARCH SPACES

a coefficient bounding approach. Note that one strategy could pssteriorinormalization techniques
for the schedule discussed by Vasilache [111], but this would harmxgpiressiveness and remove the
unigueness property for the space as several distinct schedulesridgntical after normalization.

Target Architecture Features Another concern about building a highly expressive search space is th
adequacy of the properties of the candidate program versions forrted tachitecture features. The
target architecture must drive the simplification, by considering at least:

e parallelism (multi-core, multiple vector computation units, etc.);
e memory features (existence of cache memory, depth of the hierarchy, etc.)

¢ dedicated blocks for some operations (hard-wired modulo operatiariastance).

High-level characteristics such as parallelism or schedule latency ameronly concern. It is
critical to observe that the complex interplay between all architecturalre=satemphasized by the grow-
ing complexity of modern processors, requires finely tuning the prograemtibit high-performance.
Even the tiniest, most of the time unexpected, modification of some of the sclgduokifficients can
increase performance in a hardly predictable manner. To assess th meeserve a significant degree
of expressiveness in the search space, we show in Chapter 6 thanihg lhas a dramatic impact, for
instance even within a set of candidates exhibiting identical vectorizable omes.

Traversal and Convergence We have discussed in Chapter 3 some of the mandatory properties an
affine search space should encompass to enable an efficient ttalresacing the dimensionality of

the space is a key factor for the normalization step (to force the Fourigzkingoroperty on the space),
hence the dimensionality must be adapted to the scalability capability of the projedgiorithm dis-
cussed in Chapter 4.

For an efficient convergence of an iterative technique towards agmation, it is essential to build
dedicated space traversal methods. This is because exhaustive weald not be feasible on spaces
larger than a few hundreds of points, and because random or pszudiom search may be efficient only
if the proportion of good solutions is large. Intuitively, larger spacesarder to explore, unless some
properties could be exploited to focus the search. We show in Chapter Suttamethods, leveraging
both static and dynamic characteristics of the performance distribution ecdeMeloped.

5.1.2 Different Goals, Different Approaches

To the best of our knowledge, no previous work studied the perforendistribution of affine schedules
for computation-intensive programs. We can exhibit two main directions tetaart and traverse a
search space of affine transformations, the first favoring expesssss in the search space, the second
focusing on aggressive pruning of the space.

Favoring Expressiveness The first approach we develop is to build and enumerate a search dpace o
affine transformations by constructing a large and very expressavelsspace, where only the smallest
input bias is used to prune the space. In a word, this first approachsfttve quantity of the possible
transformations.

5.2. SARCH SPACE CONSTRUCTION 73

With this method, it is necessary to develop traversal techniques thatapteddo the performance
distribution as we delegate to the traversal phase the task of focusindgwantcandidates. The only
bias that we choose to embed into the space itself is the form of parallelism:opesaran algorithm
for the search space construction which is geared towards inner panaNehen possible, allowing for
an efficient vectorization. This approach typically targets architectuitbsSIMD-capable processors,
but is not limited to it.

We show in the following that this approach enables the construction oheslyeich search spaces,
both in terms of the variability of the produced output and in performancetdittn. In the following
chapter, we perform an extensive study of this distribution, exhibitingokeperties required to design
very aggressive and efficient pruning strategies.

Favoring Space Pruning The second approach that is studied in this work is to perform seveed$ lev
of pruning directly into the search space. In a word, this approachddke static characteristics of the
possible transformations.

Beyond constructing a search space which models only very few datngdoefficients — in con-
trast of the first method — we refine the obtained space by pruning it t@ fmegeveral static properties
of the schedules: tilability, parallelism, locality and latency. This approacVigee a more constrained
framework: candidate transformations are already optimized amongsakguals. The task of select-
ing a good schedule in the search space is extremely simplified, and everodpams of a dozen of
statements an exhaustive enumeration is tractable. This technique is deviel@bapter 8.

5.2 Search Space Construction

We first present an algorithm to construct and practically bound thelsaspace of all, distinct one-
dimensional schedules in Section 5.2.1. We then generalize this technigihe fmase of multidimen-
sional schedules in Section 5.2.2, then building a search space of progasformations for any pro-
gram amenable to polyhedral representation.

5.2.1 One-Dimensional Schedules

We have described in Chapter 3 a technique to linearize the precedamteagtds contained in the
dependence polyhedra into a single affine set. This results in the cdimtro€ the space of legal
one-dimensional schedulegswhere, fork dependences,

T =) T«
k

This formulation was first designed by Feautrier [41], the only notableriffce with ours being that we
take schedule coefficients hinstead ofN. This results in removing one linearization step that involved
applying the Farkas Lemma on the schedule coefficients also. Had we apeéattier’s initial method
using Farkas multipliers to compute a non-negative schedule, we wouldféeee the problem that
the function giving the schedule coefficients from the schedule FarkHpliews is not injective (many
points of the obtained polyhedron can give the same schedule). This medllod contrary, is very well
suited for an exploration of the different legal schedules since eusigg¢al) point in7 is a different
schedule.

74 5. BUILDING PRACTICAL SEARCH SPACES

Constructingr is efficient and tractable: it only involves solving small linear programs. Thedf
the systems to solve can be easily expressed. For each startiere are exactly:

S=ds+|n[+1

schedule coefficients, whedg is the depth of the stateme®tind|n| is the number of structure parame-
ters. An empirical fact is that the domain of a statentistusually defined by .Bs inequalities. Since
the dependence polyhedron is a subset of the Cartesian productenfistas domains, the number of
Farkas multipliers for the dependence (one per row in the matrix Nglus:

Spps =2.0r+2.ds+p+s+1

wherep is the size of the precedence constraints (at mostdrids) — 1) andsis the subscript equality.
GivenQ the set of statements, the dimension of the computed systems are at most:

VR SeQ

Syst= R+S+ s
= 3.dr+3.ds+2.|n| + min(dr,ds) + 4

Sincedg, ds, and|n| are in practice very small integers, it is noticeable that computed input systems
are small and tractable. They contaig+ ds+ [n| + 1 equalities andp, ¢ positivity constraints for the
Farkas multipliers, yielding a system small enough to be efficiently computedorbiextion operation
consists in projecting a space of si@gston a space of siz&€ + Ss (or a space of siz&yst— ds on a
space of siz&s if considering a self-dependence). The dimensiom a§ exactly:

S:%}(ds+|n|+l)

This formulation gives a practical method to compute the (possibly infinite¥ kejal one-dimensional
schedules for a program. We need to bounohto a polytope in order to make achievable an exhaustive
search of the transformation space. The bounds are given by congideside-effect of the used code
generation algorithm [10] for sequential targetBe higher the transformation coefficients, the more
likely the generated code to be ineffective

Practical Bounding of the Space

The legal one-dimensional schedule space for a given SCoP aghéedarChapter 3 is possibly infinite.
For instance it is easy to see that if there is no data dependence at ajl,valige of the schedule
coefficients is possible. Itis necessary to bound this space in suchthatan exhaustive scan becomes
possible. Bounding the space will remove some possible program trarefons. We have to ensure
we remove only the less interesting solutions for performance.

We can distinguish two families of coefficients in the schedule expressibniseator coefficients,
(2) parameter and constant coefficients. Each family will provide a spexifitribution to the global
program transformation [12]. The iterator coefficients will impact on laopcsure and boundskew-
ing-like transformations for instance) while parameters and constant will ingratdop ordering and
statement ordering within a loopl{ifting-like transformations for instance). It follows, while the order of
magnitude of coefficients values for parameters and constant do rahgvunfluence on performance,
using big iterator coefficients will result in a very high control overhdie generation of complex loop

5.2. SARCH SPACE CONSTRUCTION 75

bounds and costly modulo operation) that will waste the optimization they arst@deenabling [10].
Hence we should bound the values of the iterator coefficients with smallsvéhigechecked empirically
that the bounding interval-1, 1] is wide enough most of the time).

Parameter coefficients may have a hidden influence on locality. Let ugleotise exampléocality
of Figure 5.4

i =0; 0 <n; ++H)

j =0) <n +4) {
aljl;

al

o —
=

Figure 5.4:locality

One can note that the parameterwhich is in no initial loop bound, influences on localitynif< n,
then a subset of the array is read by botR andSinstructions. So the schedule of these instructions
should be the same for the corresponding subset of the iteration dommaingy(< nand 0< js<n—m),
to maximize the data reuse af It implies them parameter has to be considered in the loop bounds of
the transformation.

Had we used Feautrier's genuine method to compute positive affine sekduapplying Farkas
lemma also on schedule functions [41], we would have missed the boundssimce it is not involved
in any loop bound (no Farkas multiplier is attached to it, its schedule coeffigimnt always have been
0).

Still, the coefficients of the parameters and the constant have also to bedabienavoid an infinite
search space. The difference between the two bounds should ber ghea the number of statements to
ensure that at least every ordering of the statements within or outsideifoppssible. Greater intervals
will offer more possibilities, for instance to achieve more peeling transformatiot a large flexibility
is rarely useful in practice.

We made several tests to compare our approach, taking into account engg#i schedules, and
considering all schedules then the filter legal ones using a legality chedlorey et al. suggest [82].
We used different compute-intensive kernel benchmarks coming fesiaus origins and listed in Fig-
ure 5.5.h264 is a fractional sample interpolation of the H.264 standard [121}. andfft are DSP
kernels extracted from UTDSP benchmark suite [121].gauss, crout andmat mul t are well known
mathematical kernels corresponding to LU factorization, Gaussian elimin&@imut matrix decom-
position and matrix-matrix multiply WT is a kernel including two matrix-vector multiplications, one
matrix being the transposition of the othkecal i ty is a hand-written memory access intensive kernel.
Notice our motivation is not to evaluate the performance of our schedulesr@gfiect to aggressive
optimizations performed manually (like the BLAS), or by application-specifivadibraries (like AT-
LAS or SPIRAL): we are evaluating an automatic source-to-source franke exploringall but only
one-dimensional schedules, and not considering any domain-spewifidddge.

These kernels are typically small, from 2 to 17 statements. They suit well &semqr study and
allow for a fair comparison with present production compiler: first, theyukhaot challenge present
production compiler optimization schemes, and second, they will make it possédhieve an exhaus-
tive traversal of our search space which is necessary to evaluatettmial of the method and to design
heuristic technigues. Dealing with larger benchmarks presents some tdifficulties: first of all, ev-
ery SCoP does not have a one-dimensional schedule, and the likelaaesasks with the complexity of

76 5. BUILDING PRACTICAL SEARCH SPACES

the dependence graph; second, although we achieved a breakthupgiying the possibility for much
larger optimization spaces to be characterized and traversed, goingdb2@ao 30 statements chal-
lenges the scalability of our constraint simplification method (based on Faédagakin elimination),
due to the hundreds of transformation coefficients to consider simultdgeous

Further scalability may be achieved through algorithmic improvements in the exiooitf regu-
larity properties in the constraint systems, and through heuristics to prighigz@ost important depen-
dences and / or to partition the problem into smaller, modular schedulingspace

Figure 5.5 summarizes the study of the search space. The first colunemisrése various kernel
benchmarks; the second one labef®dpendences shows the number of dependence relations for the
corresponding kernei:Bounds shows the iterator coefficient bounds used for search space bgundin
p-Bounds shows the parameter coefficient boundsBounds shows the constant coefficient bounds;
#Schedules shows the total number of schedules, including illegal o#tesgal shows the number of
actual schedules in our space, i.e. the number of legal schedules;, fimallyshows the search space
computation time on a Pentium 4 Xeon, 3.2GHz.

We can represent classical loop transformations like reversal, skearndgslowing only with the&
coefficients. Their values directly imply the complexity of the control bouadd,may generate modulo
operations in the produced code; and bounds betwekand 1 are accurate most of the time. Yet to
enable the discovery of a one-dimensional schedule, in some cases Tikei Fequired to increase the
bounds, to allow for larger slowing or for the creation of more distinct loegtsiwith loop distribution.

| Benchmark | #Dependences | T-Bounds | B-Bounds | c-Bounds | #Schedules [#Legal | Time |

locality 2 -1.1 -1.1 -1.1 59x10* | 6561 | 0.001
mat mul t 7 -1,1 -11 -11 1.9x 10 912 | 0.003
WT 10 -1,1 -1,1 -1,1 47x10°F | 16641 | 0.001
fir 12 -1,1 -1,1 -1,1 4.7 x 10P 432 [0.004
lu 14 0,1 0,1 0,1 3.2x 10" | 1280 | 0.005
h264 15 -1,1 -1,1 0,4 75x10° 360 | 0.011
gauss 18 -1,1 -1,1 -1,1 5.9x 107 506 | 0.021
crout 26 -3,3 -3,3 -3,3 2.3x 10" 798 | 0.027
fft 36 —2,2 —22 0,6 58x10® | 804 | 0.079

Figure 5.5: Search space computation

The results show the very high benefit of working directly on a spacedimguwonly legal transfor-
mations since it lowers the number of considered transformations by one {oarders of magnitude
for a quite acceptable computation time. These results also show that witlcbu policy, achieving an
exhaustive search is not possible even for small kernels. While thadgésrshow profitability, it is not a
demonstration of scalability. In Chapter 7 we will propose to actually visit theckespace exhaustively
or heuristically.

5.2.2 Generalization to Multidimensional Schedules

One-dimensional schedules suffer from many limitations, the dominant beitig th

1. not all programs accept a one-dimensional schedule,

2. many combinations of transformations are not modeled.

5.2. SARCH SPACE CONSTRUCTION 77

Multidimensional schedules allows working on any program, and the sganeltdimensional affine
schedules is very expressive. Each point in the space corresfopdgentially very different program
versions, exposing a wide spectrum of interactions between architesttarponents and back-end com-
piler optimizations. This section presents the construction of a prasjieale of legal, distinct affine
multi-dimensional schedules

Multidimensional Problem

Nisbet [87], then Long and Fursin [81] experimentally observed thabsimg a schedule at random is
very likely to lead to an illegal program version. Moreover, the probabilifynaling alegal one (which
does not alter semantics) decreases exponentially with program sizegvais im the previous section.
This challenge can only be tackled when integrating data dependencaatifon into the construction
of the search space.

We showed it is possible to build efficiently the legal space for small progthatsaccept one-
dimensional schedules. But dealing with multidimensional schedules leadstia@natorial explosion.

Using one-dimensional schedules, all dependences have to be satifiéda single time dimen-
sion: the precedence constraint is SImpR(Xr) < Bs(Xs) and® is a row vector. In multidimensional
schedules, the legality constraints can also be built time dimension per time dimenglothe dif-
ference that a dependence needs toMeekly satisfied— Bs(Xs) — Or(Xg) > 0 — for the first time
dimensions until it isstrongly satisfied— B8s(Xs) — 6r(Xg) > 0 — at a given time dimensiod. Once
a dependence has been strongly satisfied, no additional constraigtiisetefor legality at dimensions
d’ > d. Reciprocally, a dependence must be weakly satisfied fal’alt d. There is freedom tale-
cide at which time dimension a dependence will be strongly satisfied. Each podsitigon leads to a
potentially different search space. Furthermore, it is possible to ailyitieerease the number of time
dimensions of the schedule, resulting in an infinite set of scenarios inaener

The output of our algorithm is in the form of a list of polyhedra of legalestifies, one for each time
dimension. This scheme significantly favors polyhedral tractability when eoedpto the technique
presented in Chapter 3: the dimension of polyhedra is limited to the number efidehcoefficients
for one schedule dimensioriThat is, we have removed all binary variables required for deperden
satisfaction, and partitioned the schedule coefficients in rows, with one guryh of possible values
per row. The downside is that, for each dependence satisfactionriecena may end up building a
different set of polyhedra for the search space. This makes théepndiighly combinatorial.

Building a Practical Search Space

To build the search space, we face two combinatorial problems. First,afeteo many scenarios to be
considered. Second, one needs to limit the search to bounded poly¥giesven the smallest bound
leads to polytopes that are too large to be explored exhaustively for cotople nests.

Feautrier found a systematic solution to the explosion of the number of pob/hkd considers a
space of legal schedules leading to maximum fine-grain parallelism [4R, Td &chieve this, a greedy
algorithm maximizes the number of dependences solved for a given dimendibite this solution
is interesting because it reduces the number of dimensions and may exhdvipamallelism, it is not
practical enough in its original formulation for several reasons.

First, it needs to solve a system of linear inequalities involving every sthedefficientplus a

78 5. BUILDING PRACTICAL SEARCH SPACES

decision variable per dependence [42]. This makes the problem venylento solve for kernels with a
large set of dependences.

Maximizing the number of dependences satisfied at outer levels relaxehddusing constraints on
the inner levels. Then, inner parallelism may be exhibited in the schedulepluited by the back-end
compiler. However, reducing the number of schedule dimensions is ndéevéor our purpose, as we
wish to build a search space where the search process is able to opegathdoop level. To maximize
the expressiveness of the search space, and hence its expectedaffiteratively selecting coefficients
of the inner dimensions is critical. Thus it can have a dramatic performancetmipaer dimensions
are associated with the inner loops, and the vectorization process céghheihfluenced by the shape
of these inner loops.

In addition, minimizing the number of dimensions often translates into big schedaféctents;
these generally lead to algorithmic complexity and both significant loop bourtisaartrol flow over-
head after generation of the target imperative code [63]. We can lbarudefficient values of the linear
part of the schedule withif—1,0,1} to minimize control-flow overhead. Non-unit coefficients for the
linear part of the schedule are required to model compositions of slowithg@munit skewing, however
we believe the benefit to search for such compositions of transformationaverage exceeded by the
benefit of generating programs with simpler control-flow. Note this boundimgd have been very re-
strictive if we were constrained to one-dimensional schedules. In the multidioreal case, although it
eliminates some schedules from the space, these bounds are compatible expréssion of arbitrary
compositions of loop fusion, distribution, interchange, code motion; in thetveaise, it translates into
additional time dimensions.

Algorithm 5.6 sketches our search space construction for a given statiotpart. It outputs a col-
lection of polytopes = {74}, wherezy is the polytope of legal scheduling coefficients for dimension
Procedurer eat ePol yt ope creates a polytope with one variable per coefficient in a row of the pnogra
scheduling matrix. We use the first range arguméntl(1] here) to bound the values of coefficients
attached to loop iterators (that is, the linear part of the schedule). We eisetiond range argument
([—1,1] also here) to bound the values of coefficients attached to the paramestewcopart. Procedure
bui | dWeakLegal Schedul es builds the constraints on the scheduling coefficients such that the depen-
dence is weakly satisfied by any schedule in the computed set. The Famkasd.is used to express
the conditions on affine functions which are non-negative over thexglependence polyhedrarg s,
for Ars = OF(Xs) — OF(XR). Farkas multipliers are projected so that the B&t, contains only con-
straints on the schedule coefficients. Proceduré dSt r ongLegal Schedul es builds the constraints on
the scheduling coefficients such that the dependence is strongly satgfaad/ schedule in the com-
puted set. Each scheduledn, enforceAgrs = G)fj(zs) - G)(Fj(XR) — 1 to be non-negative for all points
of the dependence polyhedron. The reader may refer to Section 3r’a@ &le of how such a set
is computed.

To study the termination of our algorithm, we first observe that arbitraryt®dor the scheduling
coefficients may prevent finding at least one schedule for the progfasimple example is given in
Figure 5.7, together with the boun{s 1] for all coefficients. Here a range of 3 possible values for the
constant part (e.g[0, 2]) is required to exhibit a valid schedule.

In general, bounding the linear part of the schedulé0td] does not prevent finding a schedule,
however bounding the constant par{@1l] may. To guarantee the algorithm terminates, we first observe
that an interval of size for the bounding coefficients attached to the constant part, for a progrtn
X statements, is enough to guarantee the existence of a schedule. Seeoaly, an the same termina-
tion proof as Feautrier's multidimensional scheduling algorithm [118]: a&tleae dependence can be

5.2. SARCH SPACE CONSTRUCTION 79

Bui | dSear chSpace: Conpute 7
I nput :
pdg pol yhedral dependence graph
Cut put :
7: the bounded space of candidate multidinensional schedul es

d« 1
while pdg # 0 do
T4 < createPol ytope([—1,1], [-1,1])
for each dependence Drs € pdg do
Wopge < buil dWeakLegal Schedul es(Drs)
Td < Td N Wogg
end for
for each dependence Drs € pdg do
Sprs ¢ buildStronglLegal Schedul es(Drg)
10 if T4 N Sprg # O then
11 Tg < Td N Sorg
12 pdg < pdg - DRrs
13 end if
14 end for
15end do

O©CoO~NO O WN P

Figure 5.6: Algorithm for Search Space Construction

for (i =0; i <=n; i++)
RJ S +=s;

or (i =0; i <=n; i+4)
SJ S +=s;

or (i =0; i <=n; i+4)
T ‘ S +=s;

Figure 5.7: A Program with no schedule[d) 1]

strongly solved per time dimensiah Note that in our experiments presented in the next section, we
have used the boundirjg-1, 1] for all coefficients: these bounds did not prevent us from findinglid va
solution set for the considered benchmarks.

Our algorithm is a bounded variation of Feautrier's genuine algorithm fodimme fine-grain par-
allelism. Although it benefits from the same termination property provided aroppate coefficient
bounding, it differs in the properties of the generated set of scheditl@®es not guarantee a max-
imal number of dependences solved per dimension. Therefore, it mayinohize the number of
dimensions of the schedule. Interestingly, if we remove the coefficiemtdiog and initializezy as the
universe polyhedron instead, this algorithm is fully equivalent to Feaistgenuine version. This is be-
cause the maximal set of dependences which can be strongly solvegifenalimension is unique [42].
Hence, our algorithm can be used to favor the solving of several smatiblens (one emptiness test
per dependence) in place of a single problem involving additionally oneybitaaiable per dependence.

Our algorithm is efficient and only needs one polyhedron emptiness tesependence (overy
which contains exactly one variable per schedule coefficient). The elimmaftiearkas multipliers used
to enforce the precedence constraint on schedule coefficients @mped dependence per dependence
(i.e., on very small systems).

So far, we have not defined the order in which dependences arglemtswhen checking against
strong satisfaction. This problem does not arise with Feautrier’s gealgogthm because of the unique-
ness of the maximal set of strongly satisfied dependence for a givenslonemBut with our bounded

80 5. BUILDING PRACTICAL SEARCH SPACES

version, this order can have a significant impact on the constructed.spac

Considering two dependencd$ andd?, such that they can individually be strongly satisfied for
the current scheduling level — that is, there exists a sche@®tlstrongly satisfyingd® and weakly
satisfying all other program dependences, similarly@randd?. Without any coefficient bounding, it
is possible to strongly solvé! andd? at the current scheduling leved, = O 4+ ©2 is such a solution.

But because we have bounded the coefficients, the scheduling éoissitteposed byl! may prevent to

find a solution to strongly satisfy alsi? at the same time. Intuitively, this arises because we may not
be able to form® = ©1 + ©,, the composite schedule satisfying both dependences, without going out
of the schedule coefficients bounds. As a consequence, the depermtder in which we perform the
check of step 10 can lead to having a different number of dependembesstrongly solved for a given
schedule dimension.

A long term approach would be to consider this order as part of thetsspacre, but this is not
currently practical due to combinatorial explosion. Instead, we use talytézal criteria to order the
dependences. First of all, each dependence is assigned a priopggndieg on the memory traffic
generated by the pair of statements in dependence. We use a simplifieth wértsie model by Bastoul
and Feautrier [13]: for each arrdyand dimensiom, we approximate the traffic as{,’*, wheremy is the
size of thed™ dimension of the array, and is the rank of the concatenation of the subscript matrices
of all references to dimensiah of arrayA in the statement. Thus, the generated traffic evaluation for
a given statement is a multivariate polynomial in the parametric sizes of allsari& use profiling
to instantiate these size parameters. Intuitively, maximizing the depth whereeadége is strongly
solved maximizes reuse in inner loops and minimizes the memory traffic in outer. [bbpsefore, we
start with dependences involved in the statements with the least traffic. ©umdseriterion is based
on dependence interferenci is used in case of non-discriminating priorities resulting from the first
criterion. Two dependences interfere if it is impossible to build a one-dimealsgchedule strongly
satisfying these two dependences. We first try to solve dependenaésrintewith the smaller number
of other dependences, maximizing our chance to strongly solve moredipms within the current
time dimension.

Search Space Statistics

[Benchmark | #inst. | #Loops | #Dep. | #Dim. [dm1 [dim2 [dm3 [dm4 [Total |
conpr ess- dct 6 6 56 3 20 136 10857025 n/a 2.9x 100
edge 3 4 30 4 27 54 90534 | 43046721 5.6 x 10®
iir 8 2 66 3 18 6984 > 101 n/a > 101
fir 4 2 36 2 18 52953 n/a n/a 9.5x 107
I'msfir 9 3 112 2 27 10534223 n/a n/a 28x 1P
mat nul t 2 3 7 1 912 n/a n/a n/a 912
latnrm 11 3 75 3 9 1896502 | > 10% n/a > 1072
I pc 12 7 85 2 63594 | > 1070 n/a n/a > 107
I udcnp 14 10 187 3 36 > 107 > 107 n/a > 10%
radar 17 20 153 3 400 > 107 > 107 n/a > 10%8

Figure 5.8: Search space statistics

Figure 5.8 summarizes the size of the legal polytopes for different bemkbptfar all schedule
dimensions. We consider 10 SCoPs extracted from classical benchnTdr&dirst eight are UTDSP
benchmarks [76] directly amenable to polyhedral representatiamr ess- dct is an image compres-
sion kernel (8x8 discrete cosine transformjige- convol ve2d is an edge detection kernel (different

5.2. SARCH SPACE CONSTRUCTION 81

from Ring-Roberts)fir is a Finite Impulse Response filtémsfir is a Least Mean Square adaptive
FIR filter,i i r is an Infinite Impulse Response filtegt nul t is a matrix multiplication kernel,at nr m

is a normalized lattice filter, aridoc (LPC_anal ysi s) is the hot function of a linear predictive coding
encoder. We considered two additional benchmatkstcnp solves simultaneous linear equations by
LU decomposition, andadar is an industry code for the analysis of radar pulses. For each berkchmar
we report the number of (complex) instructions carrying array acsggsest), the number of loops
(#Loops), dependence#Dep), schedule dimensiomDim), and the total number of points for those di-
mensions (still only legal schedules) wherelQ" provides a conservative lower bound when it was not
possible to compute the exact space size in a reasonable amount of time.

5.2.3 Scanning the Search Space Polytopes

The algorithm presented in Section 5.2.2 constructs one polytope per dimenhgi@ schedule. Picking
one point in every polytopey fully describes one multidimensional schedule, hence one program ver-
sion: the generated imperative codes will be distinct if the scheduling magieetistinct. To construct

a program version, that is a schedule, we need to scan the legal pslyt®pes is reminiscent of the
classical polyhedron scanning problem [65, 10]; however, norteeoéxisting algorithms scale to the
hundreds of dimensions we are considering. Fortunately, our prol@dppehns to be simpler than “static”
loop nest generation: we only need to “dynamically” enumerate every aitpgint that respects the set

of constraints.

Each program version is represented by a unique scheduling r@affile first columns are schedule
coefficients associated with each loop iterator surrounding a statementarighwal programf), for all
statements. The next set of columns are schedule coefficients assogtatgtbbal parametersd), for
all statements. The last column are the schedule coefficients associatedevitbntant), for all
statements.

Since we represent legal schedules as multidimensional affine funaxtsron®y of the schedul-
ing function corresponds to an integer point in the polytope of legal coaffis 7y, built explicitly for
this dimension. A program version in the optimization space can thus be eepedsas follows, for a
SCoP oft statements, a schedule of dimensgand the iteration vectot:
X1

I] 11 1 X
ERRER T ﬁl Ci - G

1

1
To build each ron@q, we scan the legal polytopgy, by successively instantiating values for each
coefficient in a predefined orderFourier-Motzkin elimination — a.k.a. projection — [101] provides a

representation of the affine constraints of a polytope suitable for its dyrteawersal. Computing the
projection of all variables of a polytopgy results in a set of constraints defining the same polytope,

IThe order has no impact on the completeness of the traversal.

82 5. BUILDING PRACTICAL SEARCH SPACES

but where it is guaranteed that for a point 7g, the value of thek™ coordinatev, only dependon
vi,...,Vk_1, that is the affine inequalities involve only,...,vk. Thus, the sequential order to build
coefficients is simply the reverse order of the Fourier-Motzkin eliminatiorssteipis scheme guarantees
that provided a value in the projectionwf . . ., vi_1, a value exists fovy, for all k.? In its basic form, the
Fourier-Motzkin algorithm is known to generate many redundant conttrdivese redundancies reduce
its scalability on large polyhedra. Instead, we use our modified, redopdamare projection algorithm
which is described in Chapter 4. In practice, this modified algorithm scaleartdréds of variables
(schedule coefficients) in the original system. It is applied on each paytpgenerated.

5.3 Related Work

The growing complexity of architectures became a challenge for compileyrdes to achieve the peak
performance for every program. In fact, the tesompiler optimizatioms now biased since both compiler
writers and users know that those program transformations can repalfarmance degradation in some
scenarios that may be very difficult to understand [27, 18, 110].tivereompilation aims at selecting the
best parameterization of the optimization chain, for a given program @ ffiven application domain.
It typically affects optimization flags (switches), parameters (e.qg., loodlimgatiling), phase ordering,
the heuristic itself, or the hybridization of multiple heuristics [27, 18, 5, 7863107, 22, 69]

This thesis studies a different search space: instead of relying on gxistinpiler options to trans-
form the program, we statically construct a set of candidate prograsiowns; considering the distinct
result of numerous legal transformations in a particular class. Buildingcaralaoptimization phase
out of this search space is much easier than from the composition of multipleh sgzaces arising
from short-sighted, local transformations. Our method is also complemewtather forms of itera-
tive optimization which address the orchestration of existing heuristics. érantre, it is completely
independent from the compiler back-end.

In recent years, the benefits of iterative compilation have been widetytezh[67, 32, 33, 58]. It-
erative compilation is often able to find optimization sequences that outpettieriighest optimization
settings in commercial compilers. Kulkarni et al. [71] introduce the VISTétem, an interactive com-
pilation system which concentrates on reducing the time to find good solutiomsthér system that
attempted to speedup iterative compilation was introduced by Cooper et atl A&IE [31]. Tri-
antafyllis et al. [109] develop an alternative approach to reduce thenoalber of evaluations of a new
program. Here the space of compiler options is examined off-line on a petida basis and the best
performing ones are classified into a small tree of options.

Because iterative compilation relies on multiple, costly “runs” (including compilatial execution),
the current emphasis is on improving the profiling cost of each prograsiovne[71, 48], or the total
number of runs, using, e.g., genetic algorithms [70] or machine learnir22]3,0ur heuristic is tuned
to the rich mathematical properties of the underlypagyhedralmodel of the search space.Combining it
with machine learning techniques seems promising and is the subject of aingmgprk.

Several researchers have also looked at using machine learningstouobmeuristics that control a
single optimization. Stephensat al. [107] used genetic programming (GP) to tune heuristic priority
functions for three compiler optimizations: hyperblock selection, registeratltin, and data prefetching
within the Trimaran’s IMPACT compiler. Cavaze$ al. [23] describe the use of supervised learning to

2The case of holes ifi-polyhedra is handled through a schedule completion algorithm desénilleel next section.

5.3. RELATED WORK 83

control whether or not to apply instruction scheduling.

Iterative optimization has been used effectively on a variety of compilatidrparallelization prob-
lems and its applicability and practicality has been demonstrated beyond tresracadbrld [94]. Al-
though multidimensional affine scheduling is an obvious target for iteragitim@zation, its profitability
is one of the most difficult to assess, due to (1) the model’s intrinsic expeesss (the downside of
its effectiveness) and (2) its lack of analytical models for the impact ostoamations on the target
architecture. Hence, related work has been very limited up to this point. Taedteof our knowledge,
Nisbet pioneered research in the area with one of the very first papiesative optimization. He de-
veloped the GAPS framework [87] which used a genetic algorithm to trenesearch space of affine
schedules for automatic parallelization. In addition, Long and O’Boyle ¢®@kidered a search space
of transformation sequences represented in the UTF framework [GBh & these approaches suffer
from under-constraining the search space by considering all possibéglules, including illegal ones.
Downstream filtering approaches do not scale, due to the exponentiallyishimi proportion of legal
schedules with respect to the program size. For instance, Nisbet obtdin8 — 5% of legal sched-
ules for the ADI benchmark (6 statements). Moreover, under-constgaihe search space limits the
possibility to narrow the search to the most promising subspaces.

Long et al. also tried to define a search space based on the UnifiedoFraaton Framework [82,
81], targeting Java applications. Long’s search space includes aiptijelarge number of redundant
and/or illegal transformations, that need to be discarded after a legaliti,cdned the fraction of distinct
and legal transformations decreases exponentially to zero with the sizegsdm to optimize. On the
contrary, we show how to build and to take advantage of a search spéat® Wy construction, contains
no redundant and no illegal transformation.

The polyhedral model is a well studied, powerful mathematical frameworkpgoesent loop nests
and their transformations, overcoming the limitations of classical, syntagrdmodels. Many studies
have tried to assess a predictive model characterizing the best traatifor within this model, mostly to
express parallelism [79, 42] or to improve locality [125, 37, 84]. Howsueh models do not scratch the
full complexity of the target architecture and the interference of the lbackeompiler phases, because
they abstract away most of the fine-grain architectural properties inabsfrmodel for the selection
of an affine transformation. This yields sub-optimal results even on simpielke as well as a poor
performance portability on different architectures.

84

5. BUILDING PRACTICAL SEARCH SPACES

85

Chapter 6

Performance Distribution of Affine
Schedules

In the previous chapter, we formally defined how to build a singular sespabe where each point
corresponds to a distinct legal program version. We also adapted #ie spsuch a way that a scan
becomes possible in any case. In the following, we will actually traversestirels space to evaluate its
potential for program optimization.

In Section 6.1 we focus on the exhaustive traversal of the searcle $paprograms that accept
a one-dimensional schedule. We highlight critical results about therpgafae distribution, and its
connection with the compiler and the target machine. In Section 6.2 we providensive study for the
general case of multidimensional schedules. We provide and experimeataligte a powerful subspace
decomposition of the search space, a mandatory step towards devisireneffiaversal heuristics.

6.1 Scanning the Optimization Search Space

6.1.1 Experimental Setup

The experimental protocol is as follows. For each point of the seartes)l) generate the kernel code
with CLooG! (2) add input initialization and measure tools, to produce a C compilable ur@o@pile

it provided a compiler and its optimization options (4) run the program on thettarghitecture and
gather the results. In order to be consistent, the original code is includieis iorocedure starting at the
second step.

We ran our experiments on an Intel workstation based on Xeon 3.2GH&B 16, 1024KB L2
caches. We used four different compilers: GCC 3.4.2, GCC 4.1.1, 166€19.0.1 and PathScale
EKOPath 2.5. We used hardware counters to measure the number of uyeteby various programs.
In order to avoid interferences with other programs and the system, weesststem scheduler policy to
FIFO for every test. The kernel benchmark set is the one presentediini$5.2.1. The time to compute
the performance of each version in the space is connected to the exdtngmf each candidate. It can
be a matter of a few minutes fafatMult (912 points executing fast) or more than one hourdoality
(thousands of points).

1CLooG version 0.14.0, with default options

86 6. ERFORMANCEDISTRIBUTION OF AFFINE SCHEDULES

6.1.2 Exhaustive Space Scanning

Because our search space is only based on legal schedules, the ntisabations for kernel benchmarks
is small enough to make it possible to achieve an exhaustive search inomablEsamount of time.
Figure 6.1 and Figure 6.2 summarize our results. Bhechmark column states the input program;
the Compiler column shows the compiler used to build each program version of the sgaach (GCC
version was 4.1.1); th@ptions column gives the full compiler options; thearameters column shows
the values of the global parameters (e.g., for array sizes, parametetsosen to exceed L2 cache size);
the#Iimproved column shows the number of version that achieves a better performamchéhariginal
program (the total number of versions is shown in Figure 5.5)jBheest gives the unique “identifier”
of the best solution; lastly, thepeedup column gives the speedup achieved by the best solution with
respect to the original program performance. On average, onadécneeded to explore a point (code
generation, compilation and run of the target version).

The two main results shown by this figure are, first of all, that the bestamogersion highly de-
pends on both compiler and compiler options. Even considering the stives#l solutions, there is typ-
ically no intersection between the set of best transformations for two gairpiter/compilation-options.
Second, significant speedups are achieved, demonstrating the infalesmethod for optimizing com-
pilation. In few cases, a 0% speedup is achieved, meaning that the ogguhalwas already optimal
for our experimental setup and model. On average, the method leads td& §%eédup, or to 14.9%
excluding the extreme results of matrix-multiply kernel which is known to be a gaadidate for such
study. A global observation is the correlation between observed spgadd locality improvements and
/ or transformations enabled in the back-end compiler by our prograsionst

6.1.3 Intricacy of the Best Program Version

Another interesting result is the form of the best transformed prograroe #lirey typically appear to
be quite complex. Most of the time, it was not possible to easily understandhyhit of the trans-
formation sequence was responsible for the speedup since a signifacantf the answer was related
to the compiler design. We also noticed that optimization algorithms based on farprakentations
were sometimes far away from the optimal solution. A very simple but strikinghplais shown in
Figure 6.3.

The simple, supposed optimal locality transformation in our class suggesteaduse of(i) for SL
and (j + n) for S2 using theChunkingtechnique from Bastoul [13], which results in maximizing the
reuse of the arrag. The very best schedules were in féict- j) and(i + j —n+ 1) (the code generated
by our framework is given in Figure 6.3). While the supposed optimal sdbhsdjenerate a speedup of
147% withn = 100 andm = 50 using GCC 3.4, the very best schedules generate a speedup of 398%
(with a similar number of L1 and L2 cache-misses but a heavily reduced d&anisses).

The relation with the compiler is described further in section 6.1.4. Section Gal8$with the effect
of compiler options and lastly, we discuss the performance distribution in Begtic5.

6.1.4 The Compiler as an Element of the Target Platform

Our iterative optimization scheme is independent from the compiler and mayehese higher level
to classical iterative compilation. In the same way as a given programdrameion may better exploit
a feature of a given processor, it also may enable more aggressivaopf a given compiler. Because

6.1. SCANNING THE OPTIMIZATION SEARCH SPACE 87

| Benchmark | Compiler | Options | Parameters | #Improved [ID best | Speedup |
h264 PathCC | -Ofast | none 11 352 36.1%
GCC -02 19 234 13.3%
GCC -03 26 250 25.0%
ICC -02 27 290 12.9%
ICC -fast 0 N/A 0%
fir PathCC | -Ofast | N=50000 240 72 6.0%
GCC -02 259 192 15.2%
GCC -03 119 289 13.2%
ICC -02 420 242 18.4%
ICC -fast 315 392 3.4%
fft PathCC | -O2 N=256 M=256 O=8 21 267 7.2%
GCC -02 10 285 0.9%
GCC -03 11 289 1.8%
ICC -02 17 260 6.9%
ICC -fast 20 112 6.4%
lu PathCC | -Ofast | N=1000 100 224 6.5%
GCC -02 321 339 1.6%
GCC -03 330 337 3.9%
ICC -02 281 770 9.0%
ICC -fast 262 869 8.7%
gauss PathCC | -Ofast | N=150 212 4 3.1%
GCC -02 204 2 1.7%
GCC -03 52 2 0.01%
ICC -02 63 288 0.05%
ICC -fast 15 39 0.03%
crout PathCC | -Ofast | N=150 0 N/A 0%
GCC -02 132 638 3.6%
GCC -03 56 628 1.7%
ICC -02 37 625 0.5%
ICC -fast 63 628 2.9%

Figure 6.1: Search space statistics for exhaustive scan (1/2)

production compilers have to generate a target code in any case in aabsamount of time, their
optimizations are very fragile, i.e. a slight difference in the source codeemalyle or forbid a given
optimization phase.

To study this behavior and estimate how a higher level iterative optimizatioms&cheay lead to
better performances, we performed a exhaustive scan of our sgaack for various programs and
compilers with aggressive optimization options. We illustrate our results in Fig2restudying the
matrix multiplication kernel in more details in Figure 6.4 (this benchmark has beensaxely studied,
and is a typical target of aggressive optimizations of production compilers)

We tested the whole set of legal schedules within the bo(tlsl] for all coefficients (912 points),
and checked the speedup for various compilers with aggressive optimgzaimbled. Matrices are
250x 250 arrays of double-precision floats. We compared, for a given ibemtihne number of cycles
the original code took (Original) to the number of cycles the best transtammtok (Best) (results are
in millions of cycles).

Figure 6.4 shows significant speedups achieved by the best transforsnfmr each back-end com-

88 6. ERFORMANCEDISTRIBUTION OF AFFINE SCHEDULES

| Benchmark | Compiler | Options | Parameters | #Improved [ID best | Speedup |

mat nmul t PathCC | -Ofast | N=250 402 283 308.1%
GCC -02 318 573 243.6%
GCC -03 345 143 248.7%
ICC -02 390 311 56.6%
ICC -fast 318 641 645.4%

WT PathCC | -Ofast | N=2000 5652 4934 27.4%
GCC -02 3526 13301 | 18.0%
GCC -03 3601 13320 | 21.2%
ICC -02 5826 14093 24.0%
ICC -fast 5966 4879 29.1%

locality PathCC | -Ofast | N=10000, M=2000 6069 5430 47.7%
GCC -02 30 5494 19.0%
GCC -03 589 4332 6.0%
ICC -02 3269 2956 38.4%
ICC -fast 4614 3039 54.3%

Figure 6.2: Search space statistics for exhaustive scan (2/2)

piler. Such speedups are not uncommon when dealing with the matrix-multipliéatioal. The impor-
tant point is that we do not perform any tiling on the input code (it requirelti-dimensional schedules
and moadification of the polyhedral representation), contrary to nearhyttadir works (see [126, 4] for
useful references). Yet, we do not prevent the backend compifdyiag itself further optimizations,
which potentially includes tiling.

In general, it was possible to check using PathScale EKOPath that many @piiimiphases have
been enabled or disabled, depending on the version generated frarpboration tool. The enabling
transformation aspect of our method is brought to light with for instanceh26d benchmark: the
EKOPath compiler fuses 4 times in the original version but only once with thiefdaesd one, but was
able to vectorize 3 times more with our transformation. Nevertheless it is tetfiriead to know
precisely the contribution of the one-dimensional schedule (which hashgobigntial, by itself, as an
optimizing transformation) with respect to the enabled compiler optimizations. Imativaul t case,
Interchanging loops ok andi is the core of the transformation embedded in all best schedules found.
This drastically improves locality: for instance, with ICC -fast, the numberlfhd L2 cache-misses
is comparable for the original code and the best found version, buutineer of data TLB misses goes
from 15M to 164k, diminishing with a similar ratio the number of floating point opiena executed
(the results are consistent whether the matrices are allocatedakitioc or directly on the stack). This
encourages the potential of a combination with tiling.

But more transformations are embedded in the schedules, and anothegstedult is the high vari-
ation of the best schedules depending on the compiler. For instance thef thekj iterator inBg; (Xs1)
for GCC or the lack of then parameteBs(Xs) for ICC. These results, which are consistent with the
other tested programs, emphasize the need of a transfornsgigmifically built for a given compileo
achieve the best possible performance. One possible explanation isfénerdi& between optimization
phases in the different back-end compilers. Compilers have reachle@devel of complexity that it is
no longer possible to model the effects of downstream phases on upsires. Yet it is mandatory to
rely on the downstream phases of a back-end compiler to achieve & gedemnmance, especially those
which cannot be embedded naturally in the polyhedral model.

6.1. SCANNING THE OPTIMIZATION SEARCH SPACE 89

Si(i): a[i] =i
S2(i,j): b[jl = (b[j] - a[i]) / 2
Original code: best transformation:
for (i =0; i <=M i++) { S1(0);
S1(i); for (t = -M1; t <=0; t++) {
for (j =0,] <=N j+4) { for (i = max(0, t+MN-1); i <= t+M1; i+4+) {
| s2(ij); | S2(i,t-i+M1);
} 1
} S1(t+M;
}
Chunked code: for (t = 1; t <= Nt1; t++) {
for (t =0, t <=M t++) { for (i = max(t+MN-1, 0); i <= M i++) {
| Si(t); | s2(i, t-i+M1);
} }
for (t =M t <= MtN, t++) { }
for (i =0; i <=M i++) {
| s2(i,t-M;
}
}
Figure 6.3: Intricacy of transformed code
| Compiler [Option | Original | Best | Schedule | Speedup |
i Bs1(Xs1) = -1 o
GCC3.4.2 03 519 163 0o(¥w) — k+1 3184%
) 951(?51) = —i—j+n-1 0
GCC4.1.1 03 515 207 fo(¥w) — k+n 2487%
Bs1(Xg1) = —i+n 0
ICC9.0.1 -fast 465 72 bo(Xe) — k+1 6454%
PathCC 2.5| -Ofast| 228 | 79 | oslfs) = j-n-1 3081%
bo(Xe) = k

Figure 6.4: Results for theat nul t example

6.1.5 On the Influence of Compiler Options

Experiments have shown a relation between the best transformations aodntipder options. For
instance, in themat mul t kernel benchmark case with the ICC compiler used with the aggressage
option, the best transformation yields &% slowdown when it is compiled withQ2 and compared
to the best one found for this compiler option. This behavior was obsemedl the tested programs.
Finding the best compiler options is the subject of many research works ativeecompilation (see
section 8.5). Studying this aspect is out of the scope of the presentipapbose results are a sign that
combining our method with existing iterative compilation techniques is a promising way

6.1.6 Performance Distribution

Exhaustive scanning of all program versions is feasible on (smallekerand we can observe the
complete performance distribution. Figure 6.5 shows this distributiomefiorul t andl ocal i ty which

are compiled withG3CC 4. 1.1 - . In Figure 6.6 the leftr out is compiled withl CC - f ast, and the
second withGCC 4. 1. 1 - 3. Each graph represents the computation time of every point in the search
space as a function of its number in the scanning order. The horizontaHowes the performance of

the original program: every point below this line corresponds to a moeffiprogram version.

90

6. FERFORMANCEDISTRIBUTION OF AFFINE SCHEDULES

Although the scanning order may be a weird choice for such representasbows that the perfor-

mance distribution is not totally randofn.

matmult locality
2e+09 Bl 4e+09 A
R + b * ;.
1.80409 i £ 447} €aitlglity 40 (il vin el - 3.5e+09 t*if;ﬁﬁi*ﬁ "™ . *{ﬁf‘ﬁ ” ,
o+ * + +
1.66+09 F t T Trr o Tire 1¢++ + 3e+09 | %ﬁ%jﬂ%ﬁ fﬁﬁgﬁ HE B
et A T TR E L, $+$+ Fehty &# %*ngﬁ; f& ifﬁljﬁ
8 1.4e+09 i . ﬂﬁ -3 2.5e+09 -
-— + -_—
2 ¥or b p Fren b EET £ r bbb bbb b g dR S
O 1.2e+09 [, .. - O 2e+09 -
+ + T Lot 4ot
o409 [Pt Fake wr B evdenTie v 47 4e original 1.5e+09 L -
86408 ot 3&% At pet FEad Bt e i b 16409 T F
Foratr e deeng o 2 orpig thonomn d o e l Fid original
Ge+08 L L L L L L L L L J 58+08 L L L L L L J
0 100 200 300 400 500 600 700 800 900 1000 0 1000 2000 3000 4000 5000 6000 7000
Transformation identifier Transformation identifier
Figure 6.5: Performance distributions fat mul t andl ocal i t y with GCC -O3
crout crout
1.34+09 [. B 1.42e+09 a
1.33e+09 | o ;%: - 1.4e+00 | L -
1.32+09 | 5o R - 1.38e+09 | %ﬁ;ﬁ -
’ . &ﬁf m*f%ﬁé e : T PR
(7] 1.31e409 1 tﬂi# #*{;J' ++f 4 ;:? ' #trf% - I 1.36e+09 & :: 11 B
3 gty Ly e % T Lo +¢++ 4 ? g ET
R I eI R N S
3 i +¢f¢%ﬁﬁg A P) é}% &gﬁ Qﬁfﬁtﬁ
1296409 | gyt LAwmAL Ly F IS 132e+09 | i g o -
1.28e+09 | % «Hy - 1.36409 [Wik v ek
e R original %'
1.27e+09 fé* T > 1.286+09 | L+ A original
+
1.26e+09 : : : : : : 1.266+09 : : : : : M : ;

0 100 200 300 400 500 600 700 800
Transformation identifier

100 200 300 400 500 600 700 800
Transformation identifier

Figure 6.6: Performance distributions farout with ICC -fast and GCC -O3

From these observations, we conclude that;

e in Most cases, contiguous regions of similar performance can be identified,;
e several transformations may be close to the best performance, bubthebpity of finding them
at random can be very low (e.g., bocal i ty);

e for some benchmarks (e.g., amt mul t), strong correlations do exist but are not easily observ-
able without reordering the index space of the transformations (the X axiseoperformance

distribution figures).

The impact of the compiler on the distribution is emphasized orcithat example, in Figure 6.6.
Here we compare, for an identical original program (hence an idemjtahization search space), the
distribution onl CC - fast andGCC 4. 1.1 -03 on thecrout kernel benchmark. Hence, understanding
performance regularities may help to fihdt regions in the search space, thus avoiding useless runs in
low-interest regions and diminishing-return searches among nearly ostifogbons.

2|t is not an absurd ordering though: the scanning procedure cousédreas a very deep loop nest were the outer loop
iterates on values of the first iterator coefficient of the first statemethtttam inner loop iterates on values of the constant

coefficient of the last statement.

6.2. EXTENSIVE STUDY OF PERFORMANCEDISTRIBUTION 91

6.2 Extensive Study of Performance Distribution

The polyhedral representation of programs offers a compact wagpoésenting arbitrarily complex se-
guences of transformations, significantly increasing the expressiwarighe search space. Moreover,
the design of traversal methods for such spaces is facilitated by thealgploperties of the model. For
instance it is possible to consider only legal sequences, dramaticallyuiragrthe search. We propose
to go deeper and expose static characteristics of the space correlatgtbtongnce distributionCon-
sidering the search space constructed with the technique described pteZlawe extensively study
the performance distribution of some representative benchmarks ta sissdsllowing hypotheses.

1. Itis possible to statically order the impact on performance of transformegiefficients, that is,
decompose the search space in subspaces where the performaateanarmaximal or reduced.

2. The more a schedule dimension impacts a performance distribution, the nsareristrained.

As a result of this hypothesis, traversal techniques can be designedu® dn the most promising
subspaces first, notably increasing the efficiency of the search method.

6.2.1 Experimental Protocol

For each tested point of the search space, we generate the codiegpGrrode withl 00G[10], add all
the required instrumentation to the code, then compile and run it on the targeinma®ur target archi-
tecture is an AMD Athlon X64 3700+ (single core), running at 2.4GHz figoined with 64KB+64KB
L1 cache and 1024k L2 cache). The system is Mandriva Linux ancettiercompiler is GCC 4.1.2. All
generated programs (as well as the original codes) were compiled usifgltwing optimization set-
tings, known to bring excellent performance for this platforfi8 - nsse2 -ftree-vectorize. The
ACPI is not influential on this setting: the processor frequency is set to itgnmian. The performance
data are collected using hardware counters, using the PAPI libraryoNéeted counters for cycles, L1
and L2 hits and misses, and branches taken and mispredicted. To limit O8rieed to the minimum,
all program versions are run with real-time priority scheduler and aeerager 100 executions.

6.2.2 Study of thedct Benchmark

The dct benchmark presented in Figure 6.7 computes a 32x32 Discrete Cosirgfornarn(M=32).
This well known kernel is a good candidate for aggressive optimizatem representative of several
challenges for compilers. It is imperfectly nested, has 35 dependendescposes possible multi-level
fusion. Also, thecos1 array can be reused, by means of a complex transformation sequence.

Thel at nr mbenchmark presented in Figure 6.8 is a normalized lattice filter, and will be dtudie
Section 6.2.3.

Statistics of the search space fodct

The space of legal affine multidimensional schedules is built according talgloeithm presented in
Section 5.2.2. This technique builds a search space where 3 sequentiakidinseare necessary to
respect the program dependences @matrix has 3 rows). Its statistics are summarized in Figure 6.9.

92 6. ERFORMANCEDISTRIBUTION OF AFFINE SCHEDULES

for (i =0; i <M i+ { for (i =0; i <M i++) {
for (j =0;] <M j++) { top = data[i];
temp2d[i][j] = 0.0; for (j =1,] <N j++) {
for (k =0; k <M k++) { left = top;
tenp2d[i][j] += block[i][k] * right = internal _state[j];
cosi[j][k]; internal _state[j] = bottom
} top = coefficient[j-1] * left -
} coefficient[j] * right;
} bottom = coefficient[j-1] * right +
for (i =0; i <M i++) { coefficient[j] * left;
for (j =0,] <M j+) { }
sum = 0.0; internal _state[N] = bottom
for (k =0; k <M k++) { internal _state[N+1] = top;
sum += cos1[i][k] * temp2d[K][j]; sum = 0.0;
} for (j =0; j <N j++)
block[i][j] = ROUND(sun®); sum += internal _state[j] *
} coefficient[j+N];
} outa[i] = sum
}
Figure 6.7: Source Code fdct Figure 6.8: Source Code foat nrm

For each schedule dimension, we report tlegree of freedon{that is, the number oflifferent legal
schedulesdecomposed in 3 different classes. Thrdass represents all the schedules with a disiinct
prefix (that is, where iterator coefficients are going to be different, &ffgidistinct legal combinations
of interchange, skewing, reversal); then respectively forth@ class (adding fusion, distribution); and
theT+ p—+ c class (adding peeling, shifting). Finally, the size of the search spatiegf@ntire program is
shown in theTotal combined row, for each 3 classes (multiplying the degree of freedom for eacrdsitdn
dimension).

Schedule dimension T T+p T+p+c
Dimension 1 39 66 471
Dimension 2 729 19683 531441
Dimension 3 60750 1006020 64855485

Total combined | 1.7x10° | 13x10% | 16x10® |

Figure 6.9: Search Space Statisticsdor

It is worth recalling that each program version corresponds to an atbitcomplex sequence of
transformations applied to the original program. It is possible to limit the deafrleedom to (a part
of) theT or T+ P classes, by simply relying on our completion algorithm to find the minimal set of
complementary transformations (contained in the larger classes) to makettet a@quence legal. In
this case we do not explore the numerous possibilities of making this sedegatéut instead use the
completion algorithm to generate only one of them.

Performance distribution

To limit the set of tested program versions, we rely upon two empirical sasens. First, it is expected
that the degree of freedom for peeling and shifting will have a low impatti®@performance distribution,
as shown in the previous section, hence we can safely limit the traversal'te ficlass. Second, for the
dct benchmark, it is expected that the third schedule dimension will have a low impgerformance:
it will only affect the inner-most scheduling of two statements with a regular mgpmettern, thus very

6.2. EXTENSIVE STUDY OF PERFORMANCEDISTRIBUTION 93

little improvement can be expectédEventually, we consider a search space @9k 1P different
program versions, where each schedule coefficient that is notredpbcomputed with the completion
algorithm.

Figure 6.10 shows the performance distribution of all versions genei@téioe dct program. Fig-
ure 6.10(a) plots théest worst, andaverageperformance for each of the 66 possible values@gr
(represented in theaxis). For each of these values, we evaluated the 19683 possible f@l@es and
reported the performance. The performance of the original code rieseqted by the bold horizontal
bar: each point above this bar improves the original code. Figure §.p@its the raw performance
(sorted from the best to the worst) of all the 19683 point®gfusing the value o®; of the best found
version.

Performance distribution - compress-dct Performance distribution (sorted) - compress-dct
I ! ! ! ! " Best] ! ! ! ! ! ! ! ! v
1.6 Average —— 1.6
14+ 1.4 \ -
12 1.2 Ny R
£y 1 a 1
g E: —
2 o8 2 08¢ -
%) 7]
0.6] 06 [—
04t H IE AN N 04| ,
02} ‘: i (1 02t -
0 . i 0
10 20 30 40 50 60 0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Point index of the first schedule dimension Point of the second schedule dimension, first dimension fixed
(a) Representatives for each point@f (b) Raw performance of each point®, for the best
value for®;

Figure 6.10: Performance Distribution foct

The first observation is that an important speedup can be discovessbeshoptimization achieves
a speedup of 447%. Also, as what was pointed out for the case of one-dimensionadistgs, several
program versions achieve a similar performance.

The difficulty in reaching the best improving points in the search space isasizgll by their ex-
tremely low proportion: only 0.14% of points achieve at least 80% of the maxdpeddup, while only
0.02% achieve 95% and more. Conversely, 61.11% degrade perfagroatie original code, while in
total 10.88% degrade the performance by a factor 2 or more. Hence inottisx¢ it is expected that
pure random approaches will fail to converge quickly to the best sgeed

We note that there are several values for the first schedule dimensionwhich it is impossible
to attain the maximal performance. However, the maximal performance is at&@ainaim more than
one point in the first dimension. We conclude that effectively searclingdints in®; is important
in obtaining good performance, but cannot be the only criterion in desigaagch techniques when
performing iterative optimization in the polyhedral representation.

3We performed sampling also in tfie- B+ c class as well as for the third schedule dimension: it always confirmes the
assumptions.

94 6. ERFORMANCEDISTRIBUTION OF AFFINE SCHEDULES

Statistical analysis

This section describes a finer grain analysis by capturing the relative mfthe schedules coefficients
on the performance distribution. We first compute the variance of ea@uslehcoefficient on the set
of versions achieving at least 80% of the maximum speedup. Coefficigthtdittle to no variance
among points with good speedups mean that those coefficients are importastaining that good
performance. We observe that 7 (out of 12) coefficients of ttiass of®; have the same value, as well
as 2 (out of 5) coefficients of thgclass. Also, 3 (out of 12) coefficients of tiielass of©, have a very
low variance, emphasizing that the second dimen&ermlays an important role in obtaining a good
characterization of the performance distribution. The impact of the cmefticwith low variance on
the complete distribution shape is confirmed by correlating the performaregrafgram version with
a non-optimal value of these coefficients. For example, we found that shgimges to any of thélow
variance coefficients d; translated into major performance variations.

We observe that a relevant ordering of the impact of the several slagseefficients is > p > C,
and studying the variance of the coefficients confirmed our first hypstiséated in Section 6.2.

Hardware counters details

Figure 6.11 gives more details on source of performance improvementegratlations. It reports the
behavior for the_1 accessed 2 accesseandBranch countmetrics? The performance of the original
code is represented by a bold horizontal bar.

L1 accesses - dct L2 accesses - dct Branch count - det
1.8e+06 -

‘Best ! - 100
1.6e+06 | Average - - Average

- 500000 [

'. Best'

i Average -
Worst Worst) i . Worst

1.4e+06 - 8f = 400000 [}
1.2e406 [s

16406 1 " T L SERT - ; . ‘ . - 300000 |-
800000 £ . :

AL 40 ; H % 200000 |
600000 - { ; ;

400000 20 [- 100000

200000 -

0

. 0
10 20 30 40 50 60 10 20 30 40 50 60 0 10 20 30 40 50 60 70
Point index of the first schedule dimension Point index of the first schedule dimension Point index of the first schedule dimension

(a) L1 Accesses (b) L2 Accesses (c) Branch Count

Figure 6.11: Hardware Counters Distribution €mt

The metric that seems to capture the performance distribution shape bestisitmessesurve. We
observe that all transformations access the L1 cache more than the lcz@ieadoes. The transformed
code performs at least 8% more L1 accesses than the original codethfdowest L1 accesses points
corresponds exactly to the peaks of highest speedup reported i Bidg®(a). On the other hand, several
transformed program versions access the L2 cache less than theloraiiea Hence, the criterion in
terms of memory accesses for optimal performance is to minimize L1 and LZascééote, we increase
the number of L1 accesses as compared to the original code becawsartherore hits to the L1 cache,
thereby minimizing L2 accesses. The last reported performance cotatisticis Branch count. We can
correlate this statistic with the control statements added in the transformed Toelg@olyhedral code
generation algorithms are likely to generated many complicated control statefifiearid modulos)

4Accesses = hits + misses, count = taken + mispredicted

6.2. EXTENSIVE STUDY OF PERFORMANCEDISTRIBUTION 95

when highly complex transformations are applied. While not directly coretletehe performance
distribution itself, this metric shows that the space contains many complicateédngrand in most
cases a transformation sequence leads to more branches than the oddaal

Discussion of the performance counter statistics

The best performing transformations reduce the numbers of stall cycketalstor of 3, while improving
the L2 hit/miss ratio by 10%. Transformation sequences achieving the optifatrpance are not
obvious at first glance: they involve complex combinations of skewingrsa¥, distribution and index-
set splitting. These transformations address specific performance kgsaidhe loop nest, but they are
often associated with the interplay of multiple architecture components. Owmrabesults confirm the
potential of iterative optimization to find program versions that better expleictimplex behavior of
current superscalar processors. Also, we have extended itevptimaization to optimization problems
far more complex than those commonly solved in adaptive compilation.

6.2.3 Evaluation of Highly Constrained Benchmarks

We established in the previous sections a connection betwe@arclhss and the dispersion of the per-
formance distribution, on a representative benchmark offering a laged of freedom for scheduling.
In this section, we study the influence of a strong limitation of the degree efidra of ther class. In
particular, such a situation may derive from the greedy algorithm of Sestiha which tends to reduce
the degree of freedom for thielass of the first dimension.

Search space statistics on more examples

In the following we focus on four representative benchmarks extrdobetthe UTDSP suite. Namely

| at nr m a normalized lattice filter (shown in Figure 6.8);r, Finite Impulse Response filtdrmsfir, a
Least Mean Square adaptive FIR filter; dnid, an Infinite Impulse Response filter. Figure 6.12 shows
the search space statistics for the first schedule dimension fgrfthandc classes. We also report, for
each benchmark, the number of statemeh®t), the number of dependencesieps.) and the number

of schedule dimensiong Oim.) needed to represent the program.

[Benchmark| #St. | #Deps. | #Dim. | T | T+p | T+p+c |
latnrm 11 75 3 1 9 27
fir 4 36 2 1 9 18
[nsfir 9 112 2 1 9 27
iir 8 66 3 1 9 18

Figure 6.12: Search Space Statistics

We observe for each benchmark that the degree of freedom otthss, for the first dimension, is
null: there is only one sequence of interchange, reversal and skemailgble for the first schedule di-
mension in the search space. This situation is not connected to usuaprimgiicators such as number
of statements or dependences, itis necessary to build the search speteetdhis static property. More-
over, the four benchmarks we consider are syntactically differentreprésentative of many kernels in
embedded computing.

96 6. ERFORMANCEDISTRIBUTION OF AFFINE SCHEDULES

We show in the following how this lack of degree of freedom translates irjolaeties of the per-
formance distribution, and in performance improvements.

Performance distribution

We conducted for each of these benchmarks the same study as présedgetion 6.2.2. We exhaus-
tively traverse th&+ p class, for the first two schedule dimensions. Figure 6.13 shows theparice
distributions from this search.

Performance distribution - iir Performance distribution - Imsfir Performance distribution - latnrm

Speedup
Speedup
Speedup

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Point index of the first schedule dimension Point index of the first schedule dimension Point index of the first schedule dimension

@iir (b) I'msfir (c) latnrm

Figure 6.13: Performance Distribution for 3 UTDSP benchmarks

Again, we see there is significant speedup to be discovered: more t#as@&dup can be achieved
for each of these benchmarks. Hence, for these benchmarks, the liragesedf freedom of the first
schedule dimension does not restrict significant speedups.

The performance distribution is almost flat, another evidence of the impéetnsfformation coeffi-
cient freedom. We can conclude that the degree of freedom ihdlass translates into variations in the
performance distribution.

We also conducted variance studies to capture the relative impact ofusetueefficients. We ob-
serve that the impact on performance distribution of heoefficients is lower than theones, while
the impact of the coefficients is almost negligible. Overall, all the conducted experimentscoaiir
initial hypothesis from Section 6.2.

6.2.4 Addressing the Generalization Issue

In order to assess the hypothesis that schedule coefficients cangbedwdth respect to their impact on
performance, we need to distinguish two different concerns: the glersgion to other programs, and
the generalization to other architectures.

Generalization to other programs We showed a positive correlation between the amount of variation
in the performance distribution and the degree of freedom ifi theess, especially for the first schedule
dimension. Hence, it is expected that a traversal of each possible walthéd class will be necessary

in order to guarantee the maximal performance is achieved. Neverthaléss general case, particular
fusions and distributions can achieve a dramatic impact on performartéheaurfiull T+ g class is of
interest for traversal. Finally, traversing the degree of freedomdelipg and shifting is almost useless,
as the aim of those transformations usually is program legality and notgenoggrformance.

6.2. EXTENSIVE STUDY OF PERFORMANCEDISTRIBUTION 97

Generalization to other architectures Generalizing the results obtained on AMD Athlon64 to other
architectures must be done with care. First, even if it is clear thatdlass will still have a large impact

on performance regardless of the architecture, one has to pay attenfiimioto and distribution: which

are important transformations for several embedded architecturese Hantivating the traversal of the
degree of freedom offered by tfie- p class. We also conducted experiments on the ST231 embedded
VLIW processor, though different from the AMD Athlon, we still obsedva similar impact of théclass

to the shape of the performance distribution. Although smaller speedupdaverd (the regular VLIW
architecture is easier to model and well exploited by the STMicroelectrooiopiter), our framework

is still able to discover performance improvements on all tested benchmatksmaverage of 13%.

An important factor on modern and upcoming architectures is the influenfreqfency scaling
mechanisms such as the Advanced Configuration and Power Interfa&d)(Aonsidering for instance
that only the processor frequency is decreased by the operatingnsytbin the influence of locality
effects may be reduced: the penalty to load a data element is reduced dartext, an appropriate ap-
proach is to run the iterative process for a few representative coafigos (e.g., maximal performance,
average and minimal power). The same observations on the benefitlofieggirst ther class then also
theT+ p holds whatever the power configuration. As a best transformation islflaueach use scenario,
versioning is used in the generated code. However we believe that inntbeatjease where performance
is critical, limiting to the version found when the processor performance is maidreatisfactory.

Performance distribution discussion From this study of the performance distribution of several pro-
grams, we deduce the following facts.

1. The degree of freedom in theclass of@;, the first row of®, translates into variation in the
performance distribution.

2. When the degree of freedom in thelass of®; is nonexistent, the performance distribution is
almost flat.

3. The impact of coefficients on performance is ordefdimpacts performance more th@n, and
inside a schedule rowcoefficients impact performance more thaandc.

98

6. FERFORMANCEDISTRIBUTION OF AFFINE SCHEDULES

99

Chapter 7

Efficient Dynamic Scanning of the Search
Space

7.1 Introduction

Applying iterative optimization to the polyhedral model provides a significagakthrough to the chal-

lenges of expressiveness and applicability. It enables searchingacea s/here every point is relevant:
each point corresponds to a legal, distinct program version resultingeiaghlication of an arbitrar-

ily complex sequence of transformations. Since it is impractical to explore tlodevgearch space on
large benchmarks, we propose heuristics to enumerate only a high-plebspace, using the proper-
ties of the polyhedral model to characterize the highest potential anowest one. We first present a
heuristic adapted to the case of one-dimensional schedules in SectiorhitR,isvable to discover the

space-optimal point in our experiments without having to traverse the tull se

We then extend our approach for one-dimensional schedule searah ¢agd of multidimensional
schedules in Section 7.3, offering a feedback-driven iterative hieuiddlored to the search space prop-
erties of the polyhedral model. Although it quickly converges to good saistior small kernels, larger
benchmarks containing higher dimensional spaces are more challengirmuaheuristic misses op-
portunities for significant performance improvement. Thus, we introducection 7.4 the use of a
genetic algorithm with specialized operators that leverage the polyhegrasentation of program de-
pendences. We provide experimental evidence that the genetic algofidatively traverses huge opti-

mization spaces, achieving good performance improvements on large Isigpnith complex memory
accesses.

7.2 Heuristic Search for One-Dimensional Schedules

7.2.1 Decoupling Heuristic

We represent the schedule coefficients of a statement as a three comnyexter:

Xs
Bs(Xs) = (TP) (ﬁ)
1

100 7. BFFICIENT DYNAMIC SCANNING OF THE SEARCH SPACE

whereT represents the iterators coefficierfighe parameters coefficients anthe constant coefficient.

In this search space representation, two neighbor points may repeesery different generated
code, since a minor change in th@art can drastically modify the compound transformation (a pro-
gram wherenterchangeandfusionare applied can be the neighbor of a program with none of these
transformations). The most significant impact on the generated codesscay iterator coefficients,
and we intuitively assume their impact on performance will be equally importamveZsely, modify-
ing parameters or constant coefficients is less critical (especially whedliorensional schedules are
considered). Hence it is relevant to propose an exploration heuristiereel on the enumeration of the
possible combinations for thecoefficients.

The proposed heuristic decouples iterator coefficients from the o#reaibling a systematic explo-
ration of all the possible combinations for thpart. At first, we do not care about the values for fhe
andc part (they can be chosen arbitrarily in the search space, as sooly asdloempatible with these-
guence). The resulting subset of program versions is then filtered egigect to effective performance,
keeping the top points only. Then, we repeat the systematic exploration pb#iséble combination of
values for thep andc coefficients to refine the program transformation sequence.

The heuristic can be sketched in 5 steps.

1. Build the set of all different possible combinations of coefficients ferrthart of the schedule,
inside the set of all legal schedules. Chog@gsandc at random in the space, according to tipart.

2. For each schedule in this set, generate and instrument the corriegppragram version and run
it.

3. Filter the set of schedules by removing those associated with a run time ransé4fslower than
the best one (combined with a bound on the limit of selected schedules).

4. For each schedule in the remaining set, explore the set of possible Valudne p and ¢ part
(inside the set of all legal schedules) while thmart is left unmodified.

5. Select the best schedule in this set.

7.2.2 Discussion

Figure 7.1 details a run of our decoupling heuristic (with a filtering level of&%d a static limit of

10 points per coefficient type, see below), and compares it with a plagtonarsearch for three of our
benchmarks. It shows the relative percentage of the best speduapeatas a function of the number of
iterative runs. The decoupling heuristic (tbél plot) yields much faster convergence, bringing to light
the correlation between the speedup anditbeefficients. On these tested examples, one may achieve
over 98% of the maximum speedup within less than 20 iterations.

On the other hand, we observed the heuristic behavior to be comparableltaandom driven
approach (theR plot), as Figure 7.1 shows for thmat mul t kernel. Not surprisingly, as soon as the
density of good transformations is large, a random space scan maygefaster than our enumeration-
based method. For th&/T kernel, even if there is a large set of improved versions in the searck,spa
the low density of good ones is emphasized by the poor convergencerafithem-driven approach.

A more important problem is the scalability to larger SCoPs. To prevent trelghp$arge set of
legal values for th& coefficients, it is possible to:

1. impose a static or dynamic limit to the number of runs, which should be coupéeddrploration

7.3. HEURISTIC SEARCH FORMULTIDIMENSIONAL SCHEDULES 101

locality matmult

60 | 50

40 +/
50

Maximum speedup achieved (in %)
Maximum speedup achieved (in %)

. 30 f DH _
; R
40 L—) 20 L)
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Tested points Tested points
MVT

100

95

90

85 |
8ot
750

70 ’

Maximum speedup achieved (in %)

DH —
R,

65

2 4 6 8 10 12 14 16 18 20
Tested points

Figure 7.1: Comparison between the random and the decoupling heuristics

strategy starting with coefficients as close as possible to 0 (remember 0 nEyrespond to any
legal schedule);

2. replace an exhaustive enumeration ofthembinations by a limited set of random draws inthe
space.

The choice between the exhaustive, limited or random exploration af $pace can be heuristically
determined with regards to the size of the original SCoP (this size usually gigeod intuition of the
search space size order of magnitude).

7.3 Heuristic Search for Multidimensional Schedules

7.3.1 Schedule Completion Algorithm

For SCoPs with more than 3 or 4 statements, the space construction algorittsnde@ry large search
spaces, challenging any traversal procedure. It is possible to theusearch on some coefficients of
the schedule with maximal impact on performance, postponing the instantiatoofuthtfschedule in a
second heuristic step. We show that such a two-step procedure casigeat without breaking the

fundamental legality property of the search space. This approach wildmbextensively to simplify the
optimization problem.

We rely on the previous projection pass to guarantee it is always possimelulete or even correct
any point, by slightly modifying its coordinates, to make it lie within a given polytgpeOurcompletion

102 7. BFFICIENT DYNAMIC SCANNING OF THE SEARCH SPACE

algorithmis sketched in the following. Given a poinin an-dimensional space with some coordinates
which have been set (for instance, with a heuristic search proceslpresented below), and some other
undefined coordinates:

1. set all undefined coordinates to O;
2. foreachk € [1,n]:

(a) compute the lower bouritd and the upper bounab of v in 7y, given the coordinate values
forvy...w_1,

(b) if v ¢ [Ib,ub)], thenvi = Ib if v < Ib or v = ubif v > ub.!

Therefore it is possible to partially build a schedule prefix, e.g., valueth&rcoefficients, leaving
the other coefficients undefined. Then, applying this completion algorithmreglllt in finding the
minimal amount of complementary transformations to make the transformation lie inriuted legal
space. The completion algorithm motivates the order of coefficients ® thatrix. We showed that the
most performance impacting transformations (interchange, skewingsadvare embedded in the first
coefficients of@ — theT coefficients; followed by coefficients usually involved in fusion and distign
— the p coefficients; and finally the less impactingoefficients, representing loop shifting and peeling.
The completion algorithm finds complementary transformations in order oftteastst impacting, as it
will not alter any vector prefix if a legal vector suffix exists in the space.

Three fundamental properties are embedded in this completion algorithm:

1. if vi,...,w is a prefix of a legal point, a completion is always found;
2. this completion will only update, 1, ...,Vq,,,. If needed;

3. whenvs, ...,V are ther coefficients, the heuristic looks for the smallest absolute value fopthe
and constant coefficients, which corresponds to maximal (nested) dsagmf— relative to th&
coefficients.

Picking coefficients as close as possible to 0 has several advantagaeiralg smaller coefficients
tend to simplify code generation, improve locality, reduce latency, and isertba size of basic blocks
in inner loops.

While it is possible to exhaustively traverse the constructed space ofegabns for small SCoPs,
in the case of one-dimensional schedules, it becomes intractable in the mulsidmarcase. We have
given earlier a preliminary answer by means of a heuristic to narrow thie sl accelerate the traversal
for the case of one-dimensional schedules. We build on this result tandepigwerful heuristic suitable
for the multidimensional case.

7.3.2 A Multidimensional Decoupling Heuristic

Our approach is called trdecoupling heuristi@s it leverages the completion algorithm of Section 7.3.1
to stage the exploration of large search spaces. It derives from sleevaltion of the performance distri-
bution from Chapter 6, where density patterns hinted that not all schedetftcients have a significant

1Z-holes are detected by checkinghtif> ub.

7.3. HEURISTIC SEARCH FORMULTIDIMENSIONAL SCHEDULES 103

impact on performance. The principle of the decoupling heuristic fordimensional schedules is (1)
to enumerate different values for theoefficients, (2) to instantiate full schedules with the completion
algorithm, and (3) to select the best completed schedules and further eethe different coefficients
for the p part.

A direct extension to the multidimensional case exhibits two major drawbackst, e relative
performance impact of the different schedule dimensions must be quantiiecond, an exhaustive
enumeration of coefficients for all dimensions is out of reach, as the number of pointsnexyially
increases with the number of dimensions. Figure 5.8 illustrates this assersomioyarizing the size of
the legal polytopes for different benchmarks, for all schedule dimaasio

Relations between schedule dimensionsTo extend the decoupling approach to multidimensional
schedules, we need to integrate interactions between dimensions. Focéndtadistribute the outer
loop of a nest (which can improve locality and vectorization [4]), one qaarate on thgs andc parts

of the schedule for the first dimension (a parametric shift). On the othet, ladtering ther parts will

lead to the most significant changes in the loop controls. Indeed, thetlagdsrmance variation is
usually captured through thigarts, and a careful selection of those coefficients is mandatory to attain
the best performance; conversely, it is likely that the best performingfmamations will share similar
coefficients in their schedules.

Furthermore, the first dimension is highly constrained in general, sincepdriences need to be
— weakly or strongly — considered. Conversely, the last dimension is tlse deastrained and often
carries only very few dependences.

The decoupling heuristic in a nutshell We conducted an extensive experiment showing @afthe

first time dimension of the schedule) is a major discriminant of the overall pedioce distribution.
Therefore, the heuristic starts with an exploration of the different leglales for the coefficients @1,

and the completion algorithm is called to compute the remaining ro®s Blurthermore, this exploration

is limited to the subspace associated withtleeefficients 0of®; (and the remaining coefficients &f;

are also computed with the completion algorithm), except if this subspace is sthatiexr given constant

L1 (L1 =50 in our experiments)L; drives the exhaustiveness of the procedure: the larger the degree
of freedom, the slower the convergence. By limiting totlotass we target only the most performance
impacting subspaces.

To enumerate points in the polytopes, we incrementally pick a dimensiorpitiean integetin the
polyhedron’s projection onto this dimension. Note that the full projection isprdged once and for all
by the Fourier-Motzkin algorithm presented in Section 5.Be8pretraversal. Technically, to enumerate
integer points of the subspace composed of therfirsblumns ofz7y, we define the following recursive
procedure to build a poirnt

EXPLORE (V, Kk, 7q):

1. compute the lower bourth and the upper boundb of vy in 7y, given the coordinate values for
Vi...Vk—1,

2. for eachx € [Ib,ub]:

2This is typically the case when the final dimension is required to order therstate within an innermost loop.

104 7. BFFICIENT DYNAMIC SCANNING OF THE SEARCH SPACE

(a) setv =X,
(b) if k< mcall EXPLORE (V,k+ 1, 74) else output.

The enumeration is initialized with a call toxBELORE (v, 1,74). The completion algorithm is then
called on each pointgenerated, to compute a legal suffix fofcorresponding to the columfs+ 1, n
of 7g), finally instantiating a legal point of full dimensionality.

Then, the heuristic selects tl&o best values fo®; (x = 5% in our experiments), it proceeds with
the exploration of values for coefficients &b with the selected values @1, and recursively until the
last but one dimension of the schedule. The last dimension (corresgdondhre innermost nesting depth
in the generated code) is not traversed, but completed with a single vahlerieg it would yield a huge
number of iterations, with limited impact on the generated code, and negligibletimpaerformance.
Eventually, the exploration is bounded with a static limit (1000 evaluations inxqaraments).

7.3.3 Experiments on AMD Athlon

Figure 7.3 shows the results fdct along with seven other kernels from the UTDSP suite that were
amenable to the polyhedral representation without code modification. Ndtbdtematnult is a 2
statement matrix multiplication, for 2010 matrices. See Chapter 6 for an extensive study of this kernel
on larger dataset sizes.

We report the number of statementstm.), the size of theé class for the first schedule dimension,
the size of the search space consideggie), the run number at which the best performing version was
found (d Best: the lower, the earlier), and the speedup achie@@ddup). The overhead of picking
a point in the search space and building its syntactic representation is negiigdmenparison to the
execution time of the program version, and several points can be testeéd aisiecond. Finally, the
procedure is fully automated.

Similarely as in Chapter 6, our target architecture is an AMD Athlon X64 378Dwle core), run-
ning at 2.4GHz (configured with 64KB+64KB L1 cache and 1024k LhejcThe system is Mandriva
Linux and the native compiler is GCC 4.1.2. All generated programs (as svéiksoriginal codes) were
compiled using: 3 -nsse2 -ftree-vectorize.

dct

mat mul t

I pc

edge-c2d

ir

fir

I'nsfir

latnrm

5

2

12

3

8

4

9

11

#Inst.
i

39

76

243

1

1

1

1

1

Space

1.6x 1016

912

> 105

5.6 x 1015

> 10t

9.5x 107

2.8x10°

> 1022

Id Best

46

16

489

11

34

33

51

6

Speedup

57.1%

42.87%

31.15%

5.58%

37.50%

40.24%

30.98%

1511%

Figure 7.2: Heuristic Performance for AMD Athlon

The heuristic succeeds in discovering an average speedup of 32066% 8 tested benchmarks. All
the best versions are the result of the application of a complex transfonsatipence, syntactically very
different from the original code. Analysis of the performance cognfier these transformations shows
improvements in memory behavior, combined with a better workload of the macasits which is
likely to be the result of hard to predict interaction between the compiler optimieasind the processor
features.

The limited performance improvement fedge is directly correlated to the code structure: this
benchmark performs a convolution of a 3x3 kernel, and is an excelledidzte for optimization with

7.3. HEURISTIC SEARCH FORMULTIDIMENSIONAL SCHEDULES 105

loop unrolling — a transformation not embedded in our search space. Ghnidgee is fully compat-
ible with other iterative search techniques such as parameters tuningh{B]f B expected that this
combination would bring excellent performance.

For the case of highly constrained benchmarks, we also specifically dttrdieperformance of a
single statically computed schedule, corresponding to applying the completioistic on a fully unini-
tialized schedule. For this class of benchmarks, this schedule perforgnevglt, and succeeds in dis-
covering 75%-99% of the maximum speedup available in the space. We tletathis schedule is
computed in a deterministic fashion from the spaceby using the completion algorithm on all coef-
ficients. Hence this schedule is generatethout any performance evaluatiaf other schedules. The
proposed heuristic can be coupled with the detection of the special case thle size of théclass on
the first dimension is 1,to avoid traversing a space leaving little room for fuiiygrovements (as it
is expected that the performance distribution will be almost flat). This apprieads to a an average
17.8% speedup on the 5 benchmarks where this criteria applies, withofutrgmsr evaluation required.

7.3.4 Extensive Experimental Results

We now consider three target architectures. The AMD Alchemy Aul506 snebedded SoC with a
MIPS32 core (Aul) running at 500MHz. We used GCC 3.2.1 with the -GB(flarsion of GCC and
option with peak performance numbers, according to the manufactute)STMicroelectronics ST231

is an embedded SoC with a 4-issue VLIW core running at 400MHz and &ibfpcache. We used
st200cc 1.9.0B (Open64) with the flage38 - maut o- prefetch -OPT.restrict. The AMD Athlon
X64 3700+ has a 1MB L2 cache and runs at 2.4GHz. It runs Mandiivax and the native compiler is
GCC4.1.1. We used the following optimization flags for this platform which aosrto bring excellent
performance: 3 -nsse2 -ftree-vectorize . For this particular machine, hardware counters were
used to collect fine-grained cycle counts, and we used a real-time priohigdsler to minimize OS
interference. We used the average of 10 runs for all performaradeations.

We implemented an instancewise dependence analysis, the constructiorsphtieeof legal trans-
formations, and the efficient scanning algorithms introduced in this tRasts used free software such
asPi pLi b [39, 122] (a polyhedral library and parametric integer linear programisimger) andCLooG
[10] (an efficient code generator for the polyhedral model). Foh ¢éested point in the search space, (1)
we generated the kernel C code willnoG* (2) then we integrated this kernel in the original benchmark
along with instrumentation to measure running time (we use performance cowften available), (3)
we compiled this code with the native compiler and appropriate options, (4)reaily ran the program
on the target architecture and gathered performance results. Theabdgde is included in this proce-
dure starting at the second step, for appropriate performance coompafFise full iterative compilation
and execution process takes a few seconds using our heuristic, dadadpw minutes using the GA
described in Section 7.4 for the largest benchmark (up to 1000 testadngrsThe time to compute
the legal space and to generate points is negligible with respect to the tataigume of the tested
versions.

Results Figure 7.3 shows the results for the three architectures we consideredepbftt the total
numbers of tested version$ested, the run index of the best performing versidd Best the lower,

SLETSEE, the LEgal Transformation SpacE Explorator, availabletat/letsee.sourceforge.net.
“We use CL00G version 0.14.0 with default options.

106 7. BFFICIENT DYNAMIC SCANNING OF THE SEARCH SPACE

compress-dct edge iir fir Imsfir matmult
Tested 480 243 1000 77 1000 81
AMD Athlon Id. Best 19 11 34 33 51 16
Perf. Imp. 37.11% 5.58% | 37.50% | 40.24% | 30.98% | 42.87%
Tested 480 243 1000 77 1000 81
ST231 Id. Best 39 12 6 2 9 16
Perf. Imp. 15.11% 3.10% | 24.91% | 17.96% | 10.17% | 17.91%
Tested 480 243 1000 77 1000 81
Aul500 Id. Best 30 17 38 27 11 17
Perf. Imp. 22.37% 251% | 3.12% | 14.00% | 15.80% | 20.18%
latnrm Ipc ludecmp radar Average
Tested 1000 1000 1000 1000
AMD Athlon Id. Best 6 489 37 405
Perf. Imp. | 15.11% | 31.15% | 4.50% | 6.42% | 25.14%
Tested 1000 1000 1000 1000
ST231 Id. Best 13 158 391 709
Perf. Imp. | 2.61% 1.99% | 6.33% | 4.12% | 10.42%
Tested 1000 1000 1000 1000
Aul500 Id. Best 43 82 175 454
Perf. Imp. | 15.19% | 14.08% | 3.66% | 3.39% | 11.43%

Figure 7.3: Results of the decoupling heuristic for AMD Athlon, ST231 and%00

the earlier), and the performance improvement of execution time in pereef®ag. Imp). We also
imposed a static limit of evaluating 1000 data points in the search Space.

Discussion Optimizing static control parts makes the optimization insensible to the dataset, dbecaus
the control flow is not changed whatever the data. However, iterataelsés sensitive to the dataset
size To guarantee optimality, one should perform the search for sevduals/af the size of the dataset,
because there is no guarantee that the best transformation is identicakivehdataset size changes.
Here, all UTDSP experiments use the reference dataset size. lingetda size would emphasize
locality effects, yielding actually an even better performance improvemengs, ngt nul t on Athlon

with n = 250 yields 361% performance improvememt: 64 yields 318% improvement, whereas the
reference valua = 10 yields 43% improvement. However, changing the dataset size may thaeltyetic
also require to search again for the best transformation. This would lggehtrate different optimized
versions of the code for different dataset size, as most of the autwgtliloraries such as ATLAS do.

Our results show significant improvement on all kernels of the UTDSP duitaddition, about 50
runs were sufficient for kernels with less than 10 statements (allgauandr adar).

For all benchmarks, the best program version is syntactically verydar the original one.

A good illustration of this is given for th&i ng- Robert s running example, which achieves a 47%
performance improvement on a full HD image on AMD Athlon; hardware taudetails show a 54%
reduction of the L1 hit/miss ratio and a 51% of the data TLB misses. This complesfdranation is
the result of multidimensional shifting and peeling of the iterations preventsigriuand the complete
fusion of the remaining iterations.

We also noticed that performance improvements are often the result ofdandirabling of back-
end compiler optimizations (e.g., vectorization or scalar promotion), in additioretdithct impact on
hardware components (e.qg., locality). Modern compiler optimization heuristicstidl fragile, and the
interactions between optimization phases are not captured in their desgglictiPig this interaction on

5This matches the maximum number of versions considered by the gelgeiiittan in Section 7.4.

7.4. BEVOLUTIONARY TRAVERSAL OF THEPOLYTOPE 107

non-trivial codes is still out of reach, and slight syntactic differerca@s trigger different optimization
results. Testing different source code having the same semantics is pie cui@umvent the compiler’'s
optimization unpredictability.

In addition, the best iteratively found transformation for a given benckrsadifferent when con-
sidering a different target architecture. This is due to different intiemag with the compiler, as well as
different architectural features to optimize for. Note that it is not a apumsece of working with more
expressive schedules: we already highlighted a similar pattern for teeotame-dimensional sched-
ules. It confirms the complexity of the optimization problem and the relevanededdback-directed
approach.

The heuristic heavily relies on the observation that the first dimension ottiezlale contains very
few points — it traverses this dimension exhaustively. However, exivaustiumeration is only possi-
ble for small kernels, such as most UTDSP benchmarks. Unfortunateliarfier programs liképc,
| udcnp, radar, and to some extent drat nr m this approach does not scale.

To address this scalability issue, we substitute the exhaustive search walees#l driven by a
genetic algorithm.

7.4 Evolutionary Traversal of the Polytope

This section introduces novel genetic operators tailored to the travégsaltopes of legal affine sched-
ules.

Genetic algorithms (GA) [52] are known for their genericity: we chosevafudonary approach be-
cause of the natural encoding of the geometric properties of the sgeoh imto crossover and mutation
operators. The two main properties are the following:

1. to enforce legality and uniqueness of the program versions, théigeperators must be closed
on the search space polytope; we construct dedicated mutation andvenoggerators satisfying
this property;

2. unlike random search, the traversal is characterized by its nooruonit§ (from the initial popula-
tion and the crossovers); this is utterly important as the largest part aé#nelsspace is generally
plagued with poor or similar performing versions.

Genetic algorithms have often been used in program optimization. Our cdirilisi to reconcile
fine-grain control of transformation heuristics — as opposed to optimizatigrofl pass selection [109,
3] — with the guaranteed legality of the transformed program — as opposkiteting approaches
[87, 80, 81] or always-correct transformations [107, 71].

7.4.1 Genetic Operators Design

Using classical GA operators would not be an efficient way to geneedgepiints in our search space.
This is because legal schedules lie in affine bounds that are strongifraioed and changing them at
random has a very low probability of preserving legality. Moreover, imegal, this probability decreases
exponentially with the space dimension [87]. We thus need to understandojheriies of the space of
legal schedules, and to embed them into dedicated GA operators.

108 7. BFFICIENT DYNAMIC SCANNING OF THE SEARCH SPACE

Some properties of affine schedules The construction algorithm outputs one polytope per schedule
dimension. We can deduce numerous properties on these polytopesdeiitaerg from the construction
algorithm or from affine scheduling itself. In the following, the teatffine constraintrefers to any
dependence, iteration domain, or search bound constraint on cofioighe schedule.

1. No affine constraint involves coefficients from different rowsapfsince those coefficients are
computed from distinct polytopes. Of course, multiple coefficients inside aaovwbe involved in
a constraint.

2. Multiple coefficients involved in a constraint are calldghendent Each row can be partitioned
into classes of dependent coefficienthere no constraint involves coefficients from different
classes. For example, in the polyhedron defineday+ X2 > 0A X3 > O} we say that the set
{x1,%2} is independent from the séxs}. Legality preservation is local to each class of dependent
coefficients.

We design novel genetic operators exploiting and preserving theserpesp

Initialization ~ We first introduce an individual with a statically computed schedule, builtgpjyang
the completion algorithm on a fully-undefined schedule. This choice slitsr@sotivation with the
decoupling heuristic in Section 7.3.2.

The rest of the population is initialized by performing aggressive mutatiorikisistatic schedule;
we generate 30 to 100 individuals, depending on the space dimensiomiflddgoopulation is heavily
biased towards a particular subspace (typically the subspace DEdledficients), emphasizing the non-
uniformity of the traversal.

Mutation The mutation operator starts with the computation of a probability distribution fantiee
ification of each schedule coefficient. This probability is driven by thestofs; the first one derives
directly from the heuristic of the one-dimensional case:

¢ coefficients of the iteration vectors have a dramatic impact on the structthie génerated code;
minor modifications trigger wild jumps in the search space;

e coefficients with few linear dependences with others may require more mgtatiarigger sig-
nificant changes, e.g., modifying their value will not require updating mamgracoefficients to
make the point legal;

¢ lower dimensions and especially the scalar ones usually have a lower inmpaetformance.

In addition, we weigh the probabilities with a uniform annealing factor, to tueatfgressiveness of
the mutation operator along with the maturation of the population.

We randomly pick a valuevithin the legal bounds for this coefficieand according to the distribution
of probabilities. As this mutation may cause other coefficients to become iotone then update the
schedule with the completion algorithm depicted in Section 7.3.1; it is a simple upeeaeide the
schedule prefix can be kept in the legal space, computing mutated coefficiethe reverse order of
Fourier-Motzkin elimination.

7.4. BEVOLUTIONARY TRAVERSAL OF THEPOLYTOPE 109

We also experimented with a simpler mutation operator, where the bounds to picledhutdues
where not adjusted to the corresponding polytope of legal versiophjiag our correction mechanism
a posteriori. This approach did not prove very effective as codffisiare often correlated or severely
constrained: randomly picking values for multiple correlated coefficienendéads to identical sched-
ules after correction. Only an incremental application of the correction améin avoids the generation
of many duplicates (which strongly degrade the effectiveness of the mutaigrator).

Crossover We propose two operators. Thew crossover aims to compensate the row-wise scope
of the mutation operator. Given two individuals represented®gnd @', the row crossover operator
randomly picks rows of eithe® or @ to build a new individual”. This operator obviously preserves
legality since there are no dependences between rows. Since the mutafatespvithin a schedule
dimension, it may succeed in finding good candidates for a given ré@asf®’, but may mix these with
ineffective rows. Combining these rows may lead to a good schedule, wittch higher probability
than with mutation alone.

The columncrossover is dedicated to crossing independent classes of schedffleients (repre-
sented by sets of columns not connected by any affine constraint); thiatopis quite original and
specific to the geometrical properties of the search space. It can beaseefiner-grained crossover
operator. From two individual® and@’, it randomly selects an independent class from either parent
— at every dimension — to buil®”. When there is only one independent class in a given schedule
dimension this operator behaves like the row crossover. This situation islikelyeto occur for outer
schedule dimension(s). But inner schedule dimensions are less coedtriagtause numerous depen-
dences have been solved at previous level. Hence, the probabilityiofindependent statements (that
is, independent classes of schedule coefficients) increases withhidudiag level.

We rely on the geometric properties of the polytope to compute classes ofdipeoefficients for
a given schedule dimension. These classes are computed immediately asteairittespace polytope is
built, and do not change during traversal. This operator presenaiyesgs it only modifies independent
sets of schedule coefficients. Dependences constrain scheduleients in pairs of statements. Several
transitive steps are needed to characterize all correlations betwe#aients in a dependent class. This
operator carefully refines the grain of schedule transformations, wiatepring legality.

Selection The selection process uses the best half of the current populationeforetti generation.
Mutation and crossover are applied on these individuals to generate tuth@epulation. Instead of
considering only running time, a better option might be to combine multiple metricsdinglyperfor-
mance predictors (to avoid running the code) or multiple hardware counters

7.4.2 Experimental Results

Figure 7.4 summarizes the results of the genetic algorithm applied to all berdchfoathe three archi-
tectures presented in the previous section, with the same experimental Retupleuristic/GA shows
the fraction of the performance improvement achieved by the decouplingstiew.r.t. the genetic algo-
rithm, and fractions are averaged for the benchmarks of less than lfistaseversus more than 10. We
initialized the population with 30 to 100 individuals, and performed at most b@rgéions; therefore,
the maximum number of runs for each program was 1000.

Comparing these results with the table in Figure 7.3 shows the efficiency atab#ity of our

110 7. BFFICIENT DYNAMIC SCANNING OF THE SEARCH SPACE

| Architecture | compress-dct [edge | iir | fir [Imsfir [matmult |
AMD Athlon 44.17% 7.86% | 32.18% | 40.70% | 24.23% | 42.87%
Heuristic/GA 84.31% 82.26% | 93.58% | 98.86% | 80.71% 100%
ST231 18.42% 3.29% | 27.40% | 18.81% | 8.63% | 17.91%
Heuristic/GA 83.33% 94529% | 90.91% | 95.48% | 85.14% 100%
AMD Aul500 25.11% 3.03% | 4.07% | 14.10% | 19.18% | 22.67%
Heuristic/GA 89.21% 82.83% | 78.29% | 99.50% | 81.64% | 88.93%
| Architecture | latnrm | Ipc | ludemp | radar [Average |
AMD Athlon | 28.23% | 45.84% | 69.63% | 40.18% 37.58%
Heuristic/GA 53.57% | 67.68% | 652% | 16.05% | 89.95%/35.95%
ST231 0.86% | 3.44% | 5.96% | 28.32% 13.30%
Heuristic/GA 92.30% | 3220% | 2226% | 30.82% | 91.56%/44.39%
AMD Aul500 | 27.01%| 17.43% | 15.71%| 30.87% 17.91%
Heuristic/GA 55550 | 82.35% | 1656% | 10.91% | 86.73%/41.35%

Figure 7.4: Results of the Genetic Algorithm. The decoupling heuristics sdsde discovering 78-
100% of the performance improvement achieved by GA for all benchntdress than 10 statements.
For larger benchmarks, the GA performd@x better in average, and up to g etter.

method. The genetic algorithm (GA) achieves good performance improvsrwerihe larger kernels;
these improvements are much better than those of the decoupling heuristie lEngder benchmarks. On
the other hand, the decoupling heuristic exposes 78—100% of the impnovelriained with GA within
the first 50 runs, for all kernels of less than 10 statements

Results are better on AMD Athlon than on embedded processors, prdiedayse the architecture
is more complex: a good interaction between architectural components & harachieve and brings
higher improvements. Conversely, the ST231 and AMD Aul500 havedicpable behaviour, more
effectively harnessed by the back-end compiler, and showing lessfadmprovement; yet our results
are still significant for such targets.

We report a detailed study of the representatioepr ess- dct benchmark, on AMD Athlon. Fig-
ure 7.5 summarizes the results, and confirms the huge advantage of thegbAlg statistically sparse
and chaotic occurrence of performance-enhancing schedulesreHidi(a) shows the convergence of
our GA approach versusRandom traversal in the space of legal schedules (only legal points are drawn)
The GA algorithm ran for 10 generations from an initial population of 50vilddials. Both plots are
an average of 100 complete runs. Figure 7.5(b) reports the perfoenagstdbution of the legal space.
We exhaustively enumerate and evaluate all points with a distinct value fortigecoefficients of the
first schedule dimension, combined with all points with a distinglue for the second one; a total of
1.29x 10° schedules are evaluated. For each distinct value of the first scheahgiegion (plotted in the
horizontal axis), we report the performance of Best schedule, th&vorst one, and théverage for all
tested values of the second schedule dimension. Figure 7.5(c) shovesfibwenance distribution for all
tested points of the second schedule dimension, provided a single vathe fost one, sorted from the
best performing one to the worst (the best performing schedule belotigis chart).

Figure 7.5(a) shows that our GA converges much faster than randoohs®andom search achieves
only 18% performance improvement, after 500 runs, while the GA takes @tlyrdns to match this
result. The GA converges towards.4% performance improvement after 350 runs, at tAg&neration,
before the imposed limit of 10 generations. This the maximum performance ismpent available, as
shown by the exhaustive search experiments in Figure 7.5(b). Thetiedfeess of the genetic operators

7.4. BEVOLUTIONARY TRAVERSAL OF THEPOLYTOPE 111

GA versus random - compress-dat Performance distribution - compress-dct
| | | |
| | | | | \ |
16 F Best
1.6 GA - Average -------

14 -

121 . _

g 1 — Ey

g g o8

[} S -

& % & . ; A P i
06 [/ - U S N R S U L A S N R S
04} - 04 | o -
0.2+ - 0.2 P i :ai i

0 L L L L L L L L L) 0 L i L L L L
50 100 150 200 250 300 350 400 450 500 10 20 30 40 50 60
Tested versions Point index of the first schedule dimension
(a) (b)
Performance distribution (sorted) - compress-dct
| | | | | | |
16 -
1.4 \ -
1.2 \ -
o 1
3 \
g 08r -
(7]
0.6 [\—.
0.4 | -
0.2 _

0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Point of the second schedule dimension, first dimension fixed

(©

Figure 7.5: Performance Distribution obnpress-dct, AMD Athlon. GA discovers the maximum
performance improvement available in the search space.

is illustrated by the lack of correlation of the performance improvements andctiv@l performance
distribution. Conversely, random traversal follows the shape of thinmeance distribution, and on
average is not able to reach the best performing schedules — as thatydethe space is very low. The
difficulty to reach the best points in the search space is emphasized byxtiemely low proportion:
only 0.14% of points achieve at least 80% of the maximal performance immeave while only 0.02%
achieve 95% and more, as observed in Chapter 6.

Finally, we studied the behavior of multiple schedules foratwepr ess- dct benchmark, analyzing
hardware counters on Athlon. This study highlights complex interactionssestthhe memory hierarchy
(both L1 and L2 accesses are minimized to achieve good performanc&)rization, and the activity
of functional units. The best performing transformation reduces the aerswdj stall cycles by a factor
of 3, while improving the L2 hit/miss ratio by 10%. Transformation sequence®wng the optimal
performance are opaque at first glance: they involve complex combiratf@skewing, reversal, distri-
bution and index-set splitting. These transformations address specfficpance anomalies of the loop
nest, but they are often associated with the interplay of multiple architectanpareents. Moreover,
we observe that the best optimizations are usually associated with more caroptex flow than the
original code. The number of dynamic branches is increased in most, a®ugh stall cycles are
heavily reduced due to locality and ILP improvements.

112 7. BFFICIENT DYNAMIC SCANNING OF THE SEARCH SPACE

Our results confirm the potential of iterative optimization to accurately cafitareomplex behavior
of the processor and compiler, and extends its applicability to optimization pnslie more complex
than those typically solved in adaptive compilation.

113

Chapter 8

lterative Selection of Multidimensional
Interleavings

8.1 Introduction

Selecting the appropriate combination of loop fusion, loop distribution and owation is a key per-

formance factor, and a highly target-specific problem — the best comhinedides across architec-
tures. Yet this selection is very hard, in terms of expressiveness, Sesyaneservation, and profitability.
Worse, deciding which sequence of enabling transformations — redfoirsgmantics preservation —
to obtain the selected combination of loop fusion and distribution is a hard cotobaigroblem.

For the first time, we address this fundamental challenge in its most genttiagsoffering to the
optimizer the choice of selecting fusions and distributions among a space disttict and semantics-
preserving transformations. We propose a level-by-level decompositithre problem to exhibit nec-
essary and sufficient conditions. Compared to the state-of-the-artprfus@mn, we consider arbitrarily
complex sequences of enabling transformations, in the multidimensional Th&egeneralization of
loop fusion, calledusability, results in a dramatic broadening of the expressiveness (henceetftedp
effectiveness) of the optimizer.

To make the characterization of semantics-preserving transformatioteblegave have introduced
the first affine encoding of all statement interleavings at a given loopile@hapter 3. We now demon-
strate key properties about fusability of loops at the statement level, ady tte transitivity of this
relation along with enabling transformations. We first state in Section 8.2 the oationizoroblem in
the polyhedral framework by giving a concrete example for the neeiffefeht loop fusion / distribution
choices for different target architectures. In Section 8.3 we présgmniesults to reduce the problem of
deciding the fusability of statements to the existence of compatible pairwise loopiadions. We fur-
ther improve the tractability through the design of an objective function tagiredmplex sequences of
enabling transformations for fusion, that include coarse-grain paratigigl tiling. Finally, we present
a complete and tractable optimization algorithm to select profitable interleaviefgsghts experimen-
tal evaluation in Section 8.4. Our experiments demonstrate the effectivehtfss approach, both in
obtaining solid performance improvements over existing auto-parallelizingitensypand in achieving
portability of performance on various modern multi-core architectures.

114 8. ITERATIVE SELECTION OF MULTIDIMENSIONAL INTERLEAVINGS

8.2 Problem Statement

8.2.1 Motivating Example

Let us illustrate the optimization challenge and the associated formalism on a skapiple, again a
series of three matrix-productBhreeMatMat, shown in Figure 8.1.

for (i1 =0; il<N ++1)

for (j1=0; j1<N ++1)

for (k1 =0; k1 <N ++kl1)

R | dilfj1] += Ali1][k1] * Bk [j1];
for (i2=0; i2 <N ++2)

for (j2=0; j2 <N ++2)

for (k2 =0; k2 < N ++k2)

S | Fli21[j2] += Dli2][k2] * E[k2][j2];
for (i3 =0; i3 <N ++3)

for (j3=0; j3 <N ++3)

for (k3 =0; k3 <N ++k3)

T | Qi3][j3] += qi3][k3] * F[k3][]j3];

Figure 8.1: Running exampl€ = AB,F =DE, G=CF

We setN = 512, and computed 5 different versionsTofreeMatMat resorting to complex transfor-
mations that include tiling. We experimented on three high-end machines dasitriSection 8.4, using
Intel ICC compiler for the AMD and Intel machines, and IBM XL/C for the Rw®#, all with aggressive
optimization flags. With the Power5+, none of the versions are able to ootpetfie native compiler.
But with the Intel and AMD machines, we outperform ICC by a fact@8% and 184x, respectively.
We observe that the best found version depends on the target mafchittee Intel, the best found ver-
sion is shown in Figure 8.2(2), on which further polyhedral tiling and lpelization have been applied
(not shown in Figure 8.2). But on the AMD machine distributing all statemerdsratividually tiling
them performs best,23x better than 8.2(2).

for (t1=0; t1 <N +tl) { for (t1=0; t1 <N +1)
for (13 =0; t3 <N +t3) for (t3 =0, t3 <N ++3)
for (t5=0; t5 <N, ++t5) for (t5=0; t5 < N ++t5) {
R | dt3][tl] += Alt3][t5] * B[t5][t1]; R | qta[t3] += At1][t5] * B[t5][t3];
for (13 =0, t3 <N +3) S | F[t1][t3] += D[t1][t5] * E[t5][t3];
for (t5 =10; t5 <N ++t5) }
S | FIt1][t3] += DIt1][t5] * E[t5][t3]; for (t1=0 t1 <N +t1)
for (t3=0; t3 <N ++3) for (t3=0; t3 <N ++t3)
for (t5 =0; t5 <N ++5) for (t5=0; t5 < N +#t5)
T | Qt5][t3] += qt5][t1] * F[t1][t3]; T | Gti[t3] += qt1][t3] * Ft3][t5];

01 0 10 0 0 0 1 1 0 0 1 0 0 1 0 0
Lr=(1 0 OfJLs=(0 1 O]JLy=|0 1 O Lr=(0 1 OfJLs=(0 1 0O|JLr=[0 1 O
0 0 1 0 0 1 10 0 0 0 1 0 0 1 0 0 1

0 0 0 0 0 1

Br = |O Bs = (1 Pr = (2 Br=|0 Bs= |0 Br=1|1
0 1 2 0 0 1

1) (2)
Figure 8.2: Two possible legal transformations@s AB, F = DE, G=CF

The challenge lies in the conjunction of a combinatorial transformation spata goorly under-
stood profitability model for those transformations. Figure 8.2 shows adevbmations of loop fusions:

8.3. OPTIMIZING FOR LOCALITY AND PARALLELISM 115

one combination may expose better temporal reuse of the intermediate@aray/®rr, while potentially
damaging other important performance components. Of course, giedecdesi combination of loop fu-
sions, many other decisions have to be taken: is it profitable to interchanuedf the loops to exhibit
fine-grain vector parallelism? is it possible to tile the iteration space (blockédxmaultiplication)

to further improve temporal locality? Is such a tiling transformation compatible wittegtraction of
coarse-grain thread-level parallelism? Is there a way to select thoséotraations to benefit from both
thread-level and vector parallelism? Of course, there is no well underst@thodology or heuristic
to answer such questions. The state-of-the-art provides only roudklsof the impact of loop trans-
formations on the actual execution, and it does not provide any e#eetss guarantee regarding the
heuristics.

8.2.2 Challenges and Overview of the Technique

We want to provide a general and sound optimization framework baseceaelbction of multi-level
statement interleavings. Several challenges must be tackled:

1. Expressiorof any possible multidimensional statement interleaving in a convex fashionates
the design of operation research algorithms (e.g., linear programs) fdeaweg selection, and
to enable an efficient enumeration of this set; this was covered in Chapter 3.

2. Pruningthis set so that all and only semantics-preserving interleavings remain, inastegen-
eral framework of arbitrary transformations for interleaving construactilis was covered also in
Chapter 3.

3. providingtractabletechniques to perform program optimization based on interleaving selection,
together with powerful optimizations such as loop tiling and parallelization.

Our technique relies on a level-by-level decomposition for all these prablen a nutshell, we
proceed from the outermost dimension (corresponding to the outerm@s) lsavards, and prune the
space of interleavings at each dimension. This results in a space of anifittrleavings at that level,
for each of which we may exhibit an optimizing affine schedule enabling feeti&fe transformation of
the loop nest.

8.3 Optimizing for Locality and Parallelism

In Chapter 3 we defined a general framework for multi-level statementeaténg. We address now
the problem of providing a complete optimization algorithm that integrates tiling anallglization,
along with the possibility to iteratively select different interleavings. Inteilepselection allows us to
determine which statements are fused and which are not, a critical decisjperformance.

The optimization algorithm proceeds recursively, from the outermostiewbk innermost. At each
level of the recursion, weelectthe associated schedule dimension by instantiating its values. We then
build the set of semantics-preserving interleavings at that level, pick mth@mceed to the next level
until a full schedule is instantiated.

We first present additional conditions on the schedules to improve therpenfice of the generated
transformation, by integrating parallelism and tilability as criteria. As we pssively instantiate the

116 8. ITERATIVE SELECTION OF MULTIDIMENSIONAL INTERLEAVINGS

schedule dimensions, constructing the set of legal interleaving at a lgivehis simplified: we have
reduced the number of unknowns, as we know exactly which depeasléage been solved at a previous
level. We show how to construct this set without having to resort to testingethef legal schedules for
sets larger than a pair of statements. Finally we present the complete optimizgtiothen.

8.3.1 Additional Constraints on the Schedules

Tiling (or blocking) is a crucial loop transformation for parallelism and localBpndhugula et al. de-
veloped a technigue to compute an affine multidimensional schedule suclatabiéldoops are brought
to the outer levels, and loops with dependences are pushed inside [2& the same time, the number
of dimensions that can be tiled are maximized. We extend and recast theigiezimo our framework.

Legality of tiling Tiling along a set of dimensions is legal if it is legal to proceed in fixed blookssiz
along those dimensions: this requires dependences to not be backemgdizose dimensions, thus
avoiding a dependence path going out of and coming back into a tile; this maéegal to execute the
tile atomically. Irigoin and Triolet showed that a sufficient condition for aesithe® to be tilable [60],
givenR the dependence cone for the program, is that

O.R>0

In other words, this is equivalent to saying that all dependences mustdidy satisfied for each dimen-
sion® of the schedule. Such a property for the schedule is also known asfb@@mmunication Only
property [53]. Note that schedule does not need to respect the Fep@rpy to be legal: given a schedule
dimensiornd at which a dependence is strongly satisfied, it does not need to be tab@cdount for the
legality constraints for subsequent schedule dimensions. On the com@®yrequires the dependence
to still be taken into account for subsequent dimensions, but enforcilygneak satisfaction (that is,
OF(Xs) — OR(XR) > 0) is enough. Considering thefirst schedule dimensions, if they respect the FCO
property then they can be permuted without breaking the program semgg®ic20]. Tiling thesep
dimensions is thus legal.

Returning to Lemma 3.4, it is possible to add an extra condition such thatfire dimensions of
the schedules are permutable. This gives a sufficient condition fgu fliet dimensions to be tilable.
This translates into the following additional constraint on schedules, tocnpermutability of schedule
dimensions.

Definition 8.1 (Permutability condition) Given two statements B. Given the conditions for semantics-
preservation as stated by Lemma 3.4. Their schedule dimensions anetadfe up to dimension Kk if in
addition:

VDR,Sa Vpe {l,...,k}, V<XR,23> c Q)R,S,

O35 (%s) — OR(Xr) > p"°

To translatek into actual number of permutable loops, thassociated schedule dimensions must
express non-constant schedules (unless these dimensions codsisexply statement interleaving).

8.3. OPTIMIZING FOR LOCALITY AND PARALLELISM 117

Rectangular tiling Selecting schedules such that each dimension is independent with respdict
others enables a more efficient tiling. Rectangular or close to rectandattsbare achieved when
possible, avoiding complex loop bounds in the case of arbitrarily shaped\ilesesort to augmenting
the constraints, level-by-level, with independence constraints. At thig,sthig implies: to compute
schedule dimensiok, we need to havstantiateda schedule for all previous dimensions 1kte 1.
This comes from the fact that orthogonality constraints are not linearrsegcand cannot be modeled
as affine constraints directly. In its complete form, adding orthogonalityt@nts leads to a non-
convex space, and ideally, all cases have to be tried and the best ameadépt. When the number
of statements is large, this leads to a combinatorial explosion. In such gasesstrict ourselves to
the sub-space of the orthogonal space where all the constraintsrareegative (that is, we restrict to
haveg; ; € N). By just considering a particular convex portion of the orthogonaispdre, we discard
solutions that usually involve loop reversals or combination of reversals atitér transformations;
however, we believe this does not make a strong difference in practicehé rest of this chaptewe
now fix 6; j € N.

Flexible permutability condition If it is not possible to express permutable loops for the first level,
Bondhugula proposed to split the statements into distinct blocks to increapegsibility to find outer
permutable loops [21]. Since our technique already supports explicitlyetbeton of any semantics-
preserving possibility to split statements into blocks via the statement interleaémpopose instead to
enable the construction ofner permutable loops, by choosing to maximize the number of dependences
solved at the first levels until we (possibly) find permutable dimensions atutrent level. Doing so
increases the freedom for the schedule at inner dimensions when itgesgible to express permutable
loops at the outer levels. Maximizing the number of dependences solvagivatrdevel was introduced

by Feautrier [42] and we use a similar form:

S=maxy 5, (8.1)

DRS

This cost function replaces the permutability condition, when it is not postilflad a permutable
schedule for a given dimensidn

Dependence distance minimization There are infinitely many schedules that may satisfy the per-
mutability criterion from Definition 8.1 as well as (8.1). An approach that hrasqul to be simple,
practical, and powerful has been to find those schedules that haviedtiest dependence components
along them [20]. For polyhedral code, the distance between depetetations can always be bounded
by an affine function of the global parameters, representecpadimensional vecton.

uf+w>0%Xs) —OR(XR) (Xr,Xs) € Drs (8.2)
ue NP weN

The permutability and bounding function constraints are recast througtifthe form of the Farkas
Lemma such that the only unknowns left are the coefficient® ahd those of the bounding function,
namelyu, w. Coordinates of the bounding function are then used as the minimization gbjextibtain
the unknown coefficients @.

minimizex (u,w,...,6i1,...) (8.3)

118 8. ITERATIVE SELECTION OF MULTIDIMENSIONAL INTERLEAVINGS

The resulting transformation is a complex composition of multidimensional looprfusistribu-
tion, interchange, skewing, shifting and peeling. Eventually multidimensionad tisirapplied on all
permutable bands, and resulting tiles can be executed in parallel or s wilsa pipeline-parallel
schedule [21]. Tile sizes are computed such that data accessed hjleesmighly fits in the L1 cache.

8.3.2 Computation of the Set of Interleavings

As we now proceed level-by-level, we face a simpler problem when cemsgithe construction of the
set of interleavings. We hawelecteda schedule for the previous levels, and so we know exactly the
polyhedral dependence graph to consider for the current level.

We look at the problem of deciding if a given set of statements is fusableshklayiven the schedule
constraints from Definition 8.1 and a schedule for levelsk-td.. The solution put forward in Chapter 3
resorts to testing the existence of a semantics-preserving schedule leaflispnfor the whole set of
statementsAs we are now considering a more constrained problem, we proposhrdgee based on
checking the existence of compatible permutations alonggéls of statementi® the set.

Fusability is the capability to exhibit a semantics-preserving schedule sudotha of the instances
are fused according to Definition 3.6. First let us remark that fusability isiricansitive relation. As
an illustration, consider the sequence of matrix-by-vector produetAb, y = Bx, z= Cy. While it
is possible to fuse them 2-by-2, it is not possible to fuse them all togethenWonsidering fusing
loops forx = Ab, y = Bx, one has to permute loops in= Bx. When considering fusing loops for
y = Bx, z=Cy, one has to keep loops yn= Bxas is.

Let us now propose a decompositionasfe-dimensional schedulestwo sub-parts, with the objec-
tive of isolating loop permutation from the other transformations embedded isctiexlule. One can
decompose a one-dimensional sche@ffavith coefficients inN into two sub-schedulgg? andAR such
that:

OR =R+ AR ReN, AReN

without any loss of expressiveness. Such a decomposition is alwagibf@because of the distributivity

of the matrix multiplication over the matrix addition. For our purpose, we are stiestien modeling one-
dimensional schedules which aret constant schedules. This is relevant as we do not want to consider
building a schedule for fusion that would translate only into statement intémtga@n the contrary we

aim at building a schedule that performs the interleaving of stateriretgceshence the linear part of

the schedule must be non-null. ARISurrounded byl loops, we enforcel to be a linear form of thel

loop iterators:

R =(® ... W 0 0.(iy ... ig A 1)

To model non-constant schedules, we add the additional consgfairiR = 1. Note that by constraining

K to have only one coefficient set to 1, this does not prevent to model@npasitions of slowing or

skewing: these would be embedded in hgart of the schedule, as shown in the example below.
Theu part of the schedule models different cases of loop permutations. Fanaesfor statemenr

surrounded by 3 loops in the illustrating exampl can take only three values:

t .

(i)

t .

(1)
(k)

R®)=(1 0 0 0 0.(i j k N 1)
WRE)=0 1 0 0 0.(i j k N 1)
WRE)=0 0 1 0 0.(i j k N 1)

8.3. OPTIMIZING FOR LOCALITY AND PARALLELISM 119

while AR can take arbitrary values. For better illustration let us now build the decatigposf the
schedule®R = (2.j + k+2). ©R is the composition of a permutation, a non-unit skewing and a shifting,
and can be decomposed as follows:

ORFR)=(0 2 1 0 2.(i j k N 1)'=(2]j+k+2)

t

FX)=(0 1 0 0 0.(i j k N 1) =(j)
M) =0 1 10 2.(i j k N 1)'=(j+k+2)

OR(%R) = (R +AR)(Xg) = (2.j +k+2)

One may note that another possible decompositiogR{gg) = (k), AR(Xg) = (2j +2). In general,
when the schedule contains skewing it is possible to embed either of the gkawiensions in thet
part of the schedule. For the sake of coherency we add an extrardanv for the decompositior
matches the first non-null iterator coefficient of the schedule. Retutoitige examplepR(Xr) = (j),
AR(%r) = (j +k+2) is thus the only valid decomposition 6.

Note that this decomposition prevents modeling of compositions of loop permutatitimeA part.
For A to represent a loop permutationmust have values i, as shown in the following example:

WRE)=(1 0 0 0 0.(i j kK N 1'=()
W+ =())=A=(-1 1 0 0 0

which is not possible as we have constraired N. Hence, when considering arbitrary compositions of
permutation, (parametric) shifting, skewing and peelingthe\ decomposition separates permutation
(embedded in the@ part of the schedule) from the other transformations (embedded i plaet of the
schedule). We now show it is possible to determine if a set of statementssat#donly by looking at
the possible values for thepart of their schedules.

Considering three statemeriRsS, T that are fusable while preserving the semantics at lev&€hen
there exisOR = IR+ AR, ©F = 5+ S, O] = u" +AT leading to fusing those statements. Considering
now the sub-problem of fusing onR andS, we build the setvr s of all possible values ofiR, uS for
which there exist AR AS leading to fusdk andS. Obviously, the value of®, u° leading to fusindR, S, T
are inMrs, andpS, " are also imrst. Similarly pR, u™ are inarr 1. We derive a sufficient condition
for fusability based on pairwise loop permutations for fusion.

Lemma 8.1 (Pairwise sufficient condition for fusability) Given three statements&T such that they

can be 2-by-2 fused and distributed. Giver s (resp. MrT, resp.Mst) the set of possible tuple§ S
(resp. IR, u", resp. |%,u") leading to fusing R and S (resp. R and T, resp. S and T) such that the full
program semantics is respected SRT are fusable if there existSuS, u" such that:

WS € Mrs
WU € Mry
We € ast

Proof. Given the schedul®f = pR+ AR ©° = S+ ASleading to fusingR andS, O} = IR+ AR 0] =
u" + AT leading to fusingR andT, and®S = pS+A'S @ = p" + AT leading to fusingSandT, such
that they all preserve the full program semantics.

120 8. ITERATIVE SELECTION OF MULTIDIMENSIONAL INTERLEAVINGS

The schedul®;R = PR+ AR+ AR 0;5 = 5+ AS+A'Ris legal, as addiny R consists in performing
additional compositions of skewing and shifting, which cannot make thendepee vectors lexico-
graphically negative. It cannot consist in performing a parametric @egulting in a loop distribution),
ORis a schedule fusingandSand®R is a schedule fusing andT. As ©;Ris a non-constant schedule,
it leads to fusingR andS. Generalizing this reasoning we can exhibit the following semantics-piager
schedule leading to the fusion BfS, T

eﬁR:HR+)\R+)\/R+)\S+)\IS+)\T+)\,T
O = IS AR AREAS NS AT AT
@ﬁT:uT—i-}\R—i-}\/R—l-)\S—i-)\/S—l-)\T—‘r}\,T

As all statements are fused 2-by-2, they are fused all together. As #eedtatements can be distributed
2-by-2, there is no dependence cycle. [

To stress the importance of Lemma 8.1, let us return to the illustrating examplean/@@mpute the
pairwise permutations for fusion sets at the outermost level:

Mrs = {(i,1); (1, 1); (1,K); (3,05 (3, 1); (1K) (&, 1); (K,) (K, K)

et = {(0,1);(J,k)}

Mt = {(i,k);(J,1)}
These sets are computed by iteratively testing, against the set of cotsstosisemantics-preservation
augmented with fusion and orthogonality constraints, for the existencelutfosts with a non-null
value for each of the coefficients associated with the statement iteratarknidally, we do not need
to computesmrs as the two statements are independent, and are trivially fusable. Heérgeloes
not contribute to the fusability dR,S T. Here we can decide th& S T are fusable, as the solution
R =j, ©®®=1i, 4T =k respects the conditions from Lemma 8.1. This solution is presented in Fig-
ure 8.2(1). Note that fusability at levéldoes not imply fusability at level + 1, although the number of
dependences to consider can only decrease for ¢tevel. This is because again we add orthogonality
constraints, providing stronger conditions on the remaining schedule diomens

To improve further the tractability, we rely on two more standard propertidsigion. Given two
statement® andS.

1. if RandS are not fusable, then any statement on whictiansitively depends on is not fusable
with Sand any statement transitively dependingSn

2. reciprocally, ifRandSmust be fused, then any statement depending and on whichSdepends
must also be fused witR andS.

These properties cut the number of tested sequences dramatically, inlpariic highly constrained
programs such as loop-intensive kernels. They are used at eacbhfdtep optimization algorithm.
Note that it was not profitable to rely on these properties for the generairg algorithm: computing
the existence of dependent statements at a given level is a combinatolmrwhen the schedule at
previous levels is not yet known.

8.3.3 Optimization Algorithm

We now present our optimization algorithm. The algorithm explores possibleiaténgs of dimension
maxExploreDe pthand generates a collection of program schedules, each of them beandidate for

8.3. OPTIMIZING FOR LOCALITY AND PARALLELISM 121

the optimization. We use iterative compilation to select the best performing amreea€h candidate
program schedule we generate back a syntactic C code, compile it aitebruthe target machine.

The structure and principle of the optimization algorithm, shown in Figure 8.3 hastihat of the
pruning algorithm of Figure 3.4, as it also aims at computing a set of feasigideiavings at a given
level. It is in essence gpecializationof the pruning algorithm for our optimization problem instance.
To decide the fusability of a set of statements, we put the problem in a fornhimgtihe applicability
conditions of Lemma 8.1. We merge nodes that must be 2-by-2 fused tan¢emthat we are checking
for the strictest set of program-wise vajidzalues when considering fusability.

Optim zeRec: Conpute all optinizations
| nput :

©: partial programoptinization

pdg pol yhedral dependence graph

d: current level for the interleaving exploration

n: nunber of statenents

maxExploreDepth maxi num | evel to explore for interleaving
Cut put :

©: conpl ete program optin zation

G « newG aph(n)
79 « o
unfusable« 0
forall pairs of dependent statements R'Sin pdg do
Trs < buildLegal Optim zedSchedul es({R,S}, ©, d, pdg
if nustDistribute(7rs, d) then
79« 79 N {es = 0}
else
if nustFuse(7rs, d) then
10 79« 79 N {ers = 1}
11 end if
12 79« 79 N {ms = 0}
13 MRs < conputelLegal PernmutationsAt Level (7rs, d)
14 addEdgeWthLabel (G, R, S wMRrs)
15 end if
16 end for
17 forall pairs of statenments RS such that eks = 1 do
18 mergeNodes(G, R, 9
19 updat eEdgesAfterMerging(G, R 9
20 end for
21 for | «+ 2ton-1do
22 forall paths pin G of length | such that
there is no prefix of pin unfusabledo

©CoO~NOUDh WNE

23 if — existConpatibl ePernutation(nodes(p)) then
24 g4 #d N {Yp €pairs in p < | -1}

25 unfusable<+ unfusableu p

26 end if

27 end do

28 end for

29 forall i € 79 do
30 Oy < conput eOpti m zedSchedul e(®, pdg d)
31 if d < maxExploreDepththen

32 OptinizeRec(®, pdg d+1, n, maxExploreDepth
33 else

34 finalizeQOptimzedSchedul e(®, pdg p)

35 return ©

36 end if

37 endfor

Figure 8.3: Optimization Algorithm

Procedurebui | dLegal Schedul es computes, for a given pair of statememRsS, the setLrs of
semantics-preserving schedules as described by Lemma 3.4. #\kdn then some of the schedule

122 8. ITERATIVE SELECTION OF MULTIDIMENSIONAL INTERLEAVINGS

coefficients have already been instantiated, thoirk < d. For such case, the corresponding coeffi-
cients inLrs are explicitly set to their instantiated value@ and for dependences which are strongly

solved by©y the associated Boolean variabl.‘e;f’é:‘S are setto 1.

Procedurerust Di stri but e checks ifitis legal to fuse the statemeRtandS. To perform the check,
LRrsis augmented with additional constraints:

e the fusion constraints up to levélaccording to Definition 3.6;
¢ the permutability constraints up to levafrom Definition 8.1;

e the linear independence constraints (i.e., orthogonality constraints assbscin the previous
section) up to levedl.

If there is no solution in the augmented set of constraints, then the statements ba fused at that
level and hence must be distributed.

Procedurerust Fuse checks if it is legal to distribute the statemeRtandS. The check is performed
by augmenting.r s with the permutability and linear independence constraints up to tevelgether
with the insertion of a splitter at level If there is no solution in this set of constraints, then the statements
cannot be distributed at that level and hence must be fused.

Procedureconput eLegal Per ut at i onsAt Level computesmrs the set of all valid permutations
uR 1S leading to fusion. This procedure operates on the same setsa®i stri but e, that IS, LRS
augmented with the fusion and permutability constraints. To check if a givenupationpR, uS is valid
and leading for fusion at level, the set of constraints is tested for the existence of a solution where the
schedule coefficients of roa corresponding teR and S is not 0. This is sufficient to determine the
existence of the associatdgart. Returning to th&hreeMatMat example, and considering statemeRts
andS. The two prototype schedules fRrandSat leveld are:

OF = 0F 1.1 +6f,.j + 05 3. k+654.N+6F5.1
OF =03 1.i+05 5] +633.K+654N+655.1

To determine all pairgR, u° leading to fusion at levedi, we successively test for the existence of a
solution in the augmented set of constraints wtéffe > 0,63, > 0, then83, > 0,63, > 0, and so
on for the 9 different pairs. Then, each time a solution do exist, the qameting tuplep®R, S (e.g.,
WR=i,pS=i)is inserted iMMRrs.

Proceduraipdat eEdgesAf t er Mer gi ng modifies the graph edges after the merging of two ndrles
andSsuch that: (1) if forT there was an edge ~R and note” S or vice-versag’ 7R is deleted, and
est = 0, this is to remove triplets of trivially unfusable sets; (2) if there are 2 etigageenT andRS
one of them is deleted and its label is added to the remaining one existing |13kibk (8bel of the edge
e?Sis added to all remaining edges to/frad$ ande®Sis deleted.

Procedurexi st Conpat i bl ePer mut at i on collects the set3s of the pairs of statements connected
by the pathp, and tests for the existence p#alues according to Lemma 8.1. If there is no compatible
permutation, then an additional constraint is added tsuch that it is not possible to fuse the statements
in p all together. The constraint sets that the variables, for all pairs, j in the pathp, cannot be set to
1 all together.

8.3. OPTIMIZING FOR LOCALITY AND PARALLELISM 123

Procedureonmput eOpt i ni zedSchedul e instantiates a schedu®y at the current dimensiod, for
all statements. The interleaving is given hyand for each group of statements to be fused under a
common loop, a schedule is computed to maximize fusion and to enforce permuitépitissible. To
select the coefficient values we resort to the objective function (8.3).

Procedurd i nal i zeOpt i mi zedSchedul e computes the possibly remaining schedule dimensions,
whenmaxE ploreDeptlis lower than the maximum program loop depth. Note that in this case, maximal
fusion is used to select the interleaving, hence we do not need to buildod ise¢rleavings for the
remaining depths.

In practice this algorithm proved to be very fast, and for instance comptitiagset7 * of all
semantics-preserving interleavings at the first dimension takes less.thaadond for the benchmark
ludemp, pruningz ! from about 182 structures to 8, on an initial space with 182 binary variables to model
all total preorders.

Let us go back to the illustrating example. We have set the valuogaaE ploreDeptho 1. A graph
G is constructed with 3 nodes, and two edges. The efigé is labeled withargt, andeS~T with
Mst. There is no edgeR S as the statements are not dependent. All statements can be 2-by-2 fused
and distributed, so there is no additional constraint onghe pst, pr1 Variables norrs,est,erT.
But T depends orR andS, henceT cannot be executed before thesa:t andsst are set to 0. There
is only one path of length 2, testing for the fusabilityRfS, T which are indeed fusable. The resulting
interleaving space contains 5 possibilities, from all fused to all distribuied, gpmbinations wherR
is executed afted. For each case a complete optimization is computed, the resulting programse (bef
tiling) for three of them are shown in Figure 8.2.

8.3.4 Search Space Statistics

Severalg j and p; j variables are set during the pruning of so several consistency constraints are
made useless and are not built, significantly helping to reduce the size qfabe ® build. Table 8.4
illustrates this by highlighting, for our benchmarks considered, the ptiepef the polytope in terms

of the number of dimensiongtim), constraints#cst) and points £points) when compared tg 1, the
polytope of possible interleavinder the first dimension onlyFor each benchmark, we ligtoops the
number of loops#stmts the number of statementgiefs the number of array references, as well as the
time to build all candidate interleavings from the input source code (that isdimg all analysis) on an
Intel Xeon 24GHz The number of candidates that end up being tested during the iteratisespris
reported #Tested), as explained in the following section. We also report the dataset sizeadefor the
benchmarksRb. Size).

0 F I

[Benchmark | #loops [#stmts | #refs | #dim [#cst [#points | #dim | #cst | #points | #Tested [Time [Pb. Size |
advect3d 12 4 32 12 58 75 9 43 26 52 0.82s | 300x300x300
atax 4 4 10 12 58 75 6 25 16 32 0.06s 8000x8000
bicg 3 4 10 12 58 75 10 52 26 52 0.05s 8000x8000
gemver 7 4 19 12 58 75 6 28 8 16 0.06s 8000x8000
ludcmp 9 14 35 182 | 3003 | ~ 102 40 443 8 16 0.54s 1000x1000
doitgen 5 3 7 6 22 13 3 10 4 8 0.08s 50x50x50
varcovar 7 7 26 42 350 47293 22 193 96 192 0.09s 1000x1000
correl 5 6 12 30 215 4683 21 162 176 352 0.09s 1000x1000

Figure 8.4: Search space statistics

Finally, for each candidate fusion structure, we also test with and witheuapbplication of poly-

124 8. ITERATIVE SELECTION OF MULTIDIMENSIONAL INTERLEAVINGS

hedral tiling (hence the number of tested candidates being twice the numipeint$ in #;). The
motivation is twofold. Firstly, tiling may be detrimental as it may introduce complex lmmymds and
the computation overhead may not be compensated by the locality improvemeand8etiling may
prevent the compiler from performing aggressive, low-level optimizatiaescurrent production com-
pilers optimization heuristics are still very conservative, in particular whep liounds are complex as
in polyhedraly tiled code.

The final number of tested versions is shown in Figure 8.4, isthsted column.

8.4 Experimental Results

Studies performed in Chapter 6 on the performance impact of selectingudebat various levels high-
lighted the much higher impact of carefully selecting outer loops. Hencegtbet®n of the statement
interleaving at the outermost level captures the most significant differierterms of locality and com-
munication. We choose to limit the recursive traversal of interleavings toutes tevel only, and show
that we are still obtaining significant performance improvement and a widgeraf transformed codes.
Nevertheless, when the number of candidateg fnis very small, typically because of several loop-
dependent dependences at the outer level, it is relevant to Jdildnd further. One can choose to
enumerate the next dimension if there are 2 or less candidates at thet dimrension, mostly to offer
freedom for the iterative search while still controlling the combinatorial matdithe recursive search.
Note that in the experiments presented in this paper we traverse exhgustiyer 1.

The automatic optimization and parallelization process has been implementedi@, RhePoly-
hedral Compiler Collectiona complete source-to-source polyhedral compiler based on available fr
software such as GhoG, CLAN, CANDL, PIPLIB and RPoLyL1B. Specifically, the search space con-
struction has been implemented in theTISEE optimizer and the transformations for tiling and paral-
lelization are computed by theLBTO optimizer. In the generated programs, parallelization is obtained
by marking transformed loops with OpenMP pragmas. In addition, when compiiith ICC, intra-tile
parallel loops are moved to the innermost position and marked witbp pragmas to facilitate compiler
auto-vectorization, when possible.

8.4.1 Experimental Setup

We experimented on three high-end machines: a 4-socket Intel hegxaceon E7450 (Dunnington) at
2.4GHz with 64GB of memory (24 cores, 24 hardware threads), a 4-socket AMD qassl-©pteron
8380 (Shanghai) at.20GHz (16 cores, 16 hardware threads) with@& of memory, and an 2-socket
IBM dual-core Power5+ at.65GHz (4 cores, 8 hardware threads) withGB of memory. All sys-
tems were running Linux 2.6.x. We used Intel ICC 11.0 with optiofest -paral | el -opennp re-
ferred to ascc-par, and IBM/XLC 10.1 compiled for Power5 with optior€3 - ghot =nosi nd - qsnp

- gt hr eaded referred to aslic-par.

We consider 8 benchmarks, typical from compute-intensive sequehedgebra operationsatax,
bicg andgemver are compositions of BLAS operations [8&]dcmp solves simultaneous linear equations
by LU decompositionadvect3d is an advection kernel for weather modeling aloitgen is an in-place
3D-2D matrix product.correl creates a correlation matrix, andrcovar creates a variance-covariance
matrix, both are used in Principal Component Analysis inStaLib library. Problem sizes are reported
in columnPb. Size of Figure 8.4.

8.4. EXPERIMENTAL RESULTS 125

The time to compute the space, pick a candidate and compute a full transformatémiigible with
respect to the compilation and execution time of the tested versions. In ceniregpts, the full process
takes a few seconds for the smaller benchmarks, and up to about 2 mimutesdl on Xeon.

8.4.2 Performance Improvement

In Figure 8.5, we report for all benchmarks the speedup of our itertshniqueifer-xx) normalized to
the best single-threaded version produced by the native compiler @Clatel and Opteron, XLC for
Power5+). We also compare the performance improvement obtained oxgnahdusion as proposed
by Bondhugula [21] and over ICC/XLC with automatic parallelizati@e-par or xlc-par) in Figure 8.6.

Speedup - Intel Xeon 7450 (24 threads) Speedup - AMD Opteron 8380 (16 threads)

100 t gcc 1 < 100 F gce ¥ <
iter-gcc TR : iter-gcc G g :
icc-nopar (baseline) icc-nopar (baseline)

iter-icc iter-icc

10

10

- Z 3
T

Speedup / icc-nopar
Speedup / icc-nopar

0.1 0.1

100

10 s 10

Nw

Speedup / xlc-nopar

0.1

Figure 8.5: Speedup for Xeon, Opteron and Power5+ processerdest single-threaded version

Fordoitgen, correl andvarcovar, three compute-bound benchmarks, our technique exposes a program
with a significant parallel speedup of up to X2n Opteron. Our optimization technique goes far
beyond parallelizing programs, and for these benchmarks locality atarizedion improvements were
achieved by our framework. Fativect3d, atax, bicg, andgemver we also observe a significant speedup,
but this is limited by memory bandwidth as these benchmarks are memory-boahdverare able to
achieve a solid performance improvement for those benchmarks oveattte compilers, of up t0.8x
for atax on Xeon and % for advect3d on Opteron. Fotudcmp, although parallelism was exposed, the
speedup remains limited as the program offers little opportunity for high-tasainizations. Yet, our
technique outperforms the native compiler, by a factor upt@8 Xeon.

For Xeon and Opteron, the iterative process outperforms ICC with arallglization, with a factor
between 12x for gemver on Intel to 153x for doitgen. For both of these kernels, we also compared with

126 8. ITERATIVE SELECTION OF MULTIDIMENSIONAL INTERLEAVINGS

Performance Improvement - Intel Xeon 7450 (24 threads) Performance Improvement - AMD Opteron 8380 (16 threads)
315.3

14

r icc-par (baseline)
maxfuse-icc =
iter-icc

12 ricc-par (baseline) —
maxfuse-icc
10 iter-icc

Perf. Imp / icc-par
N W A o o N
Perf. Imp / icc-par

=

o N A~ O

Performance Improvement - IBM Power5+ (8 threads)
5 15.8/21.3. J13.1

4 r xlc-par (baseline)
maxfuse-xlc &
iter-xlc ¢

Perf. Imp / xlc-par

Figure 8.6: Performance improvement over maximal fusion, and over thefdrence auto-parallelizing
compiler

an implementation using Intel Math Kernel Library (MKL) 10.0 and AMD CorathiLibrary (ACML)
4.1.0 for the Xeon and Opteron machines respectively, and we obtaiedLgpef 15x to 3x over these
vendor libraries. Fowarcovar, our technique outperforms the native compiler by a factor up to.15
Although maximal fusion significantly improved performance, the best itelgtiound fusion structure
provides a much better improvement, up t@3 better. Maximal fusion is also outperformed for all
but ludemp. This highlights the power of the method to discover the right balance betpagaiielism
(both coarse-grain and fine-grain) and locality.

On Power5+, on all buidvect3d the iterative process outperforms XLC with auto-parallelization, by
a factor between.1x for atax to 21x for varcovar.

For the sake of completeness, we also provide the best performancé R&-for all our bench-
marks in Figure 8.7. Benchmarks are superscripted vitthen the data type idouble and with for
float

] \ advect3d’ \ ataxd \ bicgd \ gemverOI \ Iudcmpd \ doitgend \ correl’ \ varcovar' ‘

Xeon E7450 (24 cores) 0.47 213 | 2.13 2.20 1.33 44.64 16.71 50.05
Opteron 8380 (16 cores) 0.53 142 | 1.70 2.66 0.75 31.25 11.14 33.36
Power5+ (4 cores) 0.34 1.16 | 1.15 1.42 0.48 10.41 7.16 14.30

Figure 8.7: Best Performance obtained, in GFLOP/s

8.4. EXPERIMENTAL RESULTS 127

8.4.3 Performance Portability

Beyond absolute performance improvement, another motivating factor fativee selection of fusion
structures is performance portability. Because of significant diffe@®ircdesign, in particular in SIMD
units’ performance and cache behavior, a transformation has to be femadpecific machine. This
leads to a significant variation in performance across tested frameworks.

To illustrate this, we emphasize themver kernel shown in Figure 8.8.

for (i =0; i <M i++)
for (j =0] <M j+)
S AT = ALEDLD T+ udfi] = vafj]
+u2[i] < ov2[jl;
for (i =0; i <M i+t
for (j =0,] <M j+)

S x[1] = x[i] + beta * A[JI[i] * y[j]:
for (i =0; i <M i++)
S8 x[i] =x[i] +z[i];

for (i =0; i<M i+4)
for (j =0; j<M j++)
s wWi] =wi] +alpha * A[i]T[j] * x[j];

Figure 8.8:genver original code

We show in Figure 8.9 the relative performance normalized with respact-tar of gemver, for
Intel and Opteron. The version index is plotted onstlais, 1 is max-fuse and 8 is maximal distribution.

gemver - Performance Variability

14 | ‘ ‘ ‘ " Xeon 7450 —‘Q— !
>< Opteron 8380 -—--><----

Performance Improvement / icc-par

08 L lann
0.6 | \ /
0.4%
02| ¥
i 2 s 4 5 6 7 8

Version Index

Figure 8.9: Performance variability fgemver

For Xeon, the best version is 4, corresponding to the fusion structirigime 8.10. It performs 10%
better than version 2 — version 2 corresponds to the fusion structune\gheS? andS3 are fused,
and$4 is in the next loop nest — which is the optimal fusion for Opteron. And folQbé&eron, version
4 performs 20% slower than 2. Note that ggmver the performance distribution for Power5+ is very
similar as for Xeon.

Performance variation is also exhibited by maximal fusion results over the #nchitectures. For
ludcmp, while it is the best performing one on Xeon and Opteron, it is not on PeweBuch a pattern
can also be observed fdoitgen.

The trade-off between coarse-grain parallelization and vectorizatiarysdifficult to capture, as it
also depends on the capability of the back-end compiler to perform veatiorizOne has to capture the
interplay between distinct optimization passes, something missing in presecomigylers. Moreover,

128 8. ITERATIVE SELECTION OF MULTIDIMENSIONAL INTERLEAVINGS

for (i =0; i <M i++)
for (j =0, j <M j+) {
St ALETLET = ALTTLHT + ulfi] * vifj]
+u2fi] * v2[j];
x } x[i] =x[j] + beta * ALi][j] * y[i];
for (i =0; i <M i++)
S8 x[i] =x[i] +z[i];
for (i =0; i<M i+4)
for (j =0; j<M j+4)
S wi] =wi] +alpha* A[i][j] * x[j];

Figure 8.10: Optimal fusion fagenver on Xeon

accurate profitability models have to be relied upon, and their design remaia@eachallenge for com-
piler designers. Tuning the trade-off between fusion and distribution ééesant technique to address
the performance portability issue. Our technique is able to automatically adéyet target framework,
and successfully discovers the optimal fusion structure, whatever ¢odisp of the program, compiler
and architecture.

8.5 Related Work

Several heuristics for loop fusion and tiling have been proposed faothsruction of loop-nest optimiz-
ers [124, 68, 115, 95]. Those heuristics have also been revisited aoittext of complex architectures
with non-uniform memory hierarchies and heterogeneous computingroesoll 00]. The polyhedral
model is complementary to those efforts, opening many more opportunitieefootistruction of loop
nest optimizers and parallelizing compilers. 1t is currently being integratedadugtion compilers,
including GCC and IBM XL.

The tiling hyperplane method has proved to be very effective in integratootiting into polyhedral
transformation sequences [60, 99]. However, the state-of-the-afelrdoiven technique proposed by
Bondhugula et al. [20, 21] lacks a portable heuristic to select good leiprf structures. But despite the
weaknesses of its target-independent optimization model, it does identifgstitey parallelism-locality
trade-offs. It is also unable to compute an enabling schedule for fusitreipresence of parametric
dependences. The techniques presented in this chapter inherits fraitirthdnyperplane benefits, and
removes the limitations of Bondhugula’s approach.

Powerful semi-automatic polyhedral frameworks have been designbdildsg blocks for com-
piler construction or (auto-tuned) library generation systems [64, 3(41108]. They capture fusion
structures, but neither do they define automatic iteration schemes nor dmtibgnate a model-based
heuristic to construct profitable parallelization and tiling strategies.

Iterative compilation has proved its efficiency in providing solid perforneangprovements over a
broad range of architectures and transformations [18, 107, 3, 8249419, 100]. However, none of
the previous works achieved the expressiveness and applicatiompliedotransformation sequences
presented in this chapter, along with a focused search on semantiesvprgcandidates only.

129

Chapter 9

Future Work on Machine Learning
Assisted Optimization

9.1 Introduction

For the past decade, compiler designers have looked for automatejtexhto improve the quality and
portability of the optimization heuristics implemented in compilers [23, 107, 11\Vathine learning
based approaches have been popularized in recent years, andsarissearch projects in production
compilers such as GCC. Fursin and the UNIDAPT group deployed iterasiwgell as collective opti-
mization frameworks into GCC, to allow the compiler benefiting from the resultsefigus off-site
compilation processes [49, 47, 50]. Building auto-tuning compilers is a pirmgnisrection to increase
the productivity of compiler writers, and the quality of the generated code.

Many learning-based compiler techniques typically aim at performing aifitasi®n of the search
space. A relevant application is to validate and even refine the subspadit®ping technique we have
described in Chapter 6, but more standard is the application to the decisapplying a dedicated
optimization heuristic or not. Yet the ultimate objective of machine learning assistagilation is
given a new program, to determine which optimization should be applied dn this spirit, we aim
at going further and rely on supervised learning techniques to infexcssionbased on the previous
samples that have been seen during the training phase.

Previous work poorly addressed the problem of using machine learnsejdot an affine transfor-
mation for the program. It was at best limited to improve the search efficianityGenetic Algorithms
for instance (see Nisbet for a basic approach [87] or Chapter 7 $enwntics-preserving one). Part
of the reason can be found in the increased complexity of selefitiagyrain optimizationsTo bene-
fit from the polyhedral representation, one has to consider buildingssifply partial) transformation
for each statements. This makes the problem more complicated thacaogitbe-grain optimizations
where the task of the process is to select a transformation to apply to thedgitbm. For such cases,
the standard output of the algorithm is a sequence of transformations"{geg+ unroll”) which is
blindly transmitted to a black-box which then decides the application of the seguBroblems such as
semantics-preservation are not taken into account by the transformaksmtien process, and it is not
possible to finely tune on which specific locations this transformation is applied.

We propose in this chapter to present some of the key ideas to achievoaratia, learning-based
fine-grain auto-tuner. Since we rely on the polyhedral program septation to abstract away the syn-

130 9. UTURE WORK ON MACHINE LEARNING ASSISTEDOPTIMIZATION

tactic limitations of a standard representation, this leads to a significantly marisgend powerful
optimization framework. This also leads to new challenges which must be tadkldéthrness the power
of polyhedral optimization for machine-learning assisted compilation, it isiredjtio revisit the main
building blocks and adapt them. We start in Section 9.2 by presenting nusieidicators which can
be used to relate programs. We rely on the algebraic nature of the payhegdresentation to devise
newprogram featuresvhich are decoupled from the standard syntactic ones. Another majaeprdor

a learning process is the knowledge representation, that is, how thmatfon to be generated by the
model is stored. We highlight in Section 9.3 the limits of a syntactic-based speati®n of transfor-
mations, and we present a generalized approach to model program optimizZeny off-line learning
framework requires a training phase on a substantial and represersatiof benchmarks. We build on
the framework presented in this thesis to present in Section 9.4 a technigereei@atg a very large set
of input programs. Finally, we gather all these ideas to give an absiuateof the functioning of a
machine learning process to build fine-grain optimizations in Section 9.5.

9.2 Computing Polyhedral Program Features

Program features are a convenient mean to describe a program widdaéikof values. For compiler-
based machine learning, it requires programs to be represented axf feséires that serve as inputs to
a machine learning tool. Since the first experiments of ML in compilation, it has Exjuired to model
any input program in a normalized fashion with a fixed-length set of progieatures. Recent work
shows it is a promising direction to automatically detect these features [I5ygy®cus here to the task
of exhibiting relevant features based on the polyhedral representation

9.2.1 A Grain for Each Goal

Depending on the application for the learning process, different godifemtures are relevant. Consider
for instance the task of learning an unrolling heuristic. Unrolling happetigedoop level, so features
of interest are defined at the granularity of the loop: information sudbagsnest deptlis meaningful
[106]. Consider now the problem of deciding a sequence of optimizatare full program part. The
same feature cannot be reused as-is: one can expect severagfispamd representatives likeximal
loop nest deptlor average loop nest depthust be used to keep a fixed number of features.

As we address the problem of the optimization of static control parts, it issdeedexhibit coarse-
grain features which are normalized on the full program part. Althoughinhugtively contradicts our
goal of performing fine-grain optimization, we show in Section 9.3 that theesgmtation of transfor-
mation we select does not suffer from this limitation. Moreover, we prasghe following section that
abstract polyhedral features can provide an efficient charadierizaf the program without resorting to
the finest syntactic features.

9.2.2 Some Standard Syntactic Features

Some standard syntactic features remain a very good discriminant forageapr. They enable a fast
classification of the input programs into major categories. We do not aimd@resent an exhaustive
list of syntactic features. Instead, we give an intuition of the elementary ame: left to the designer the
task of building composite features and to evaluate the variance of those traitting set. Let us note

9.2. COMPUTING POLYHEDRAL PROGRAM FEATURES 131

that a valid technique to determine which features are relevant for thénganodel is to compute a
very rich set of features for all the programs in the training set, and eliminaigseless ones for instance
with Principal Component Analysis.

An overview of some syntactic features is shown in Figure 9.1. It is left toghder to complete
it to a more extensive list, but we believe it is enough to give a good intuitioneokitid of syntactic
features that can be extracted from the program.

of loops # of outer loops # of branches
of arrays read # of arrays written | # of scalars read

of scalars written # of statements # of operations
of FP instructions max loop depth avg. loop depth
avg. stmts / outer loop avg. loops / outer loop avg. inst. / stmt

Figure 9.1: Some syntactic program features

9.2.3 Polyhedral Features

The polyhedral program representation abstracts away the actualitatiop which is performed by the
statements. Instead, the program is described as a set of depenbleiveesn each executed instance
of the statements. Syntactic features are required to get information aba@dttial computation which
is performed — think for instance to Floating Point instructions in the programth® other hand, this
algebraic representation gives the finest information aporgram data dependenceghich actually
dictates how the program can be transformed. We propose to extracategodes of features. The first
involves metrics about the dependences themselves, the second metntcsaisiormations which can
be done on the program.

Dependences The polyhedral dependence graph (PDG for short) is a unique dbdeation of the
program restructuring possibilities. In other words, if two differentgpoaons have the same PDG, then
exactly the same transformations can be performed on them. We propasesao$enetrics to repre-
sent the PDG. We are typically interested in having synthetic information oendept iterations. We
heavily rely on the possibility of computing the volume of polyhedra [9] to comfh#eactual number
of instances in dependence for a given dependence polyhedronddnto have normalized measures,
we will store a ratio between the statement iterations and the statement iteraticeseimdénce. For
instance, for thésatVect kernel, dependence ponheer)uri’S has a representative of ﬁim(@éls) =2,
and the minimal loop depth d® andSis 1. Note that in the case of parametric loop bounds, an enu-
merator for the volume of a polyhedron can be computed as an Ehrhartgplgnomial in the form of
the parameters [28, 102, 117]. For this case, using the normalization wéhiergl allow removing the
parameters from the picture: we simply keep the maximal degree of the polyraomdiaompare it with
the loop depth.

We propose the following metrics.

e number of dependence polyhedra (total, and for each dependencedaa-after-read, read-after-
write, write-after-read and write-after-write);

e average number of dependence per statement (for all kinds of depess);

e average number of dependence per outer loop (for all kinds of depers);

132 9. UTURE WORK ON MACHINE LEARNING ASSISTEDOPTIMIZATION

e maximal, average and minimal dependence ratio (as presented above) fiooginam.

Program Transformation We also propose to provide the learning model with metrics about the pos-
sibilities to transform the program. One of the main benefit of the polyheepaésentation is to allow
computing beforehand, via the expression of an affine schedule f@rolgeam, if the program can be
tiled, parallelized or simdized for instance. To compute the existence of sudidrmations, we propose
to use the state-of-the-art algorithm for tiling and parallelization in the pohghedodel: Bondhugula’s
Tiling Hyperplane method [20, 21]. We also propose to use the framewesdepted in Chapter 3 and
Chapter 8 to evaluate the possibilities of fusion and distribution for the progiée believe this informa-
tion about how the program can be restructured is a critical metric to cldlsifgrograms. Intuitively,
we can roughly partition programs into the sequential and parallel classdd,is useless for the learn-
ing model to learn how to do this partitioning. We propose to go even furthdri@investigate more
categories, as described in the following.

e Maximal number of fusable statements / total number of statements

e Maximal number of distributable statements / total number of statements

e Maximal number of statements under tiled loops / total number of statements

e Maximal number of statements under parallel tiled loops / total number of statemen
e Maximal tiling depth

e Maximal number of coarse-grain parallel outer loops

e Maximal number of fine-grain parallel inner loops

9.3 Knowledge Representation

The polyhedral optimization search space encompasses arbitrarily cosgugaences of transforma-
tions, this is the most complete approach in terms of expressiveness. ft [etiee increasing porta-
bility of the approach: as the largest set of transformations is considiérisdexpected that the best
transformation whatever the architecture lies in the space. But the dowrighie expressiveness is the
modeling of the transformation itself. Considering an optimization which wasteféefor a program
in the training set, one wants to apply it on a new program which has similarésattihis problem of
optimization knowledge representation is not trivial in the polyhedral sspration.

When considering a sequence-based representation, the informatiatrttzd optimization is stored
as a fixed-length vector of transformation primitives. Using a schedulingxnmastkes more difficult the
task of representing an optimization in uniform way.

1. Given a schedule, it is not possible to apply it as-is on another prodgrae schedule dimensions
are different between two programs that do not share the same numstaterhents, loops per
statements, and global parameters.

2. Converting a schedule back to a complete sequence of primitives is amélévhe equivalent se-
guence is of arbitrary length, and polluted with complementary transformdtiotegality which
introduces a cumbersome noise in the learning space.

9.3. KNOWLEDGE REPRESENTATION 133

It is required to devise a mechanism to store the transformation associatea pritgram version
such that the learning model can use this information to decide how to optimideeampoogram. Two
directions can be followed, the first based on modeling transformation prasjtand the second by
relying on the optimization characteristics.

9.3.1 Dominant Transformation Extraction

The first and most intuitive approach is to extract a sequence-bgzegeatation from the affine sched-
ule, but by distinguishing performance-related transformations fromrszeaelated ones. In Chapter 6
we have shown that a relevant subspace decomposition gives the veessy to shifting and peeling.
Hence one can focus on rebuilding a sequence from the scheduté drdgeon loop interchange, loop
fusion / distribution, loop skewing and loop tiling (with tiling depth). These primegiwould be defined

in an abstract way and not for a pair of statements: for instance oneawarf ise€R, S), tile(R,S) in

the generated program, those would be abstractédisestile. Such an approach has been tested in the
larger context of multidimensional (including illegal) affine schedules bygLeiral. [80, 82].

When considering the problem from the knowledge representation piou\w, it is in essence a
very fragile approach. We are trying to learn how to fix the program idsté&earning what we need to
fix. Consider this naive analogy: should we learn that on a desert iglarfthve to scratch matches to
survive, or learn that we need to make a fire? Because if we don'trhatehes but only a lighter, should
we irrevocably die?

Returning to a compilation language, consider the almost naive example ireEdur It is two
matrix multiply programs, one written in the standard way and the other with an optindap order.
Consider we are learning on a SIMD-capable single-core machine. dgaystance that training on
the first example we learn thatterchang¢i, k) is the good transformation. If the model is asked to
optimize the second program, it will also appiterchangéi, k) but the transformation will break the
performance. But if we had learned that given such a progearable SIMDwas the correct way to
optimize it then we would have efficiently transformed the second candidateyteamply not changing
the loop order.

for (i =0; i <N ++) for (i =0; i <N +H)
| for (j =0;) <N ++) Cofor (j =0) <N +)
|| for (k=0; k<N +k) | for (k=0 k<N +k)
R | | dillil += Alil[kl * BIKI[j]; R | | CKI[il += ALkITi] * Blil[j];
(a) Standard matrix-multiply (b) Optimized matrix-multiply

Figure 9.2: Two matrix-multiply kernels

The efficiency of the sequence-based approach lies in the statistidofiityita encounter only pro-
grams that are extremely close to the ones encountered during the traiaisg. prhespecificityof a
primitive sequence is very high in the context of fine-grain optimization. On&t treiable to adapt the
sequence to the new program. This leads to critical decision problems swehieh transformation
to adapt, and to which extent. Going back to the previous example, the prioags$o decide to select
another interchange (which one?) or another transformation to optimizedfgeam. Building such a
process is an open problem up to date. The other possibility is to providm@agraet rich enough to
cover almost all cases, this is obviously unrealistic when considering @llttansformations together.
This motivates the proposal of another technique to model knowledgé @hnsformation.

134 9. UTURE WORK ON MACHINE LEARNING ASSISTEDOPTIMIZATION

9.3.2 Optimized Program Abstract Characteristics

Another approach is to consider several metrics that can be statically teimputhe schedule resulting
in the best optimization. The knowledge is then represented as the distaneeiehe value for this

metric, computed from the optimizing schedule, and the optimal value that is ardygm-dependent.

The task of the learning model is to determine how metrics must be prioritizedhanthey should be

maximized with respect to the theoretical optimal for the program.

e Parallelism. Both coarse-grain and fine-grain parallelism may be extracted on agomnogBut
depending on the program and on the target machine, the best peréeritaes not necessarily
come with the exploitation of the maximal degree of parallelism available in the inpgitam. For
instance, the transformation required to extract parallelism may exhibit tob cauntrol overhead
and thus not be beneficial for performance. This situation typically scoarloops with few
iterations or non-uniform dependence patterns. The model can lé&n,the maximal degree of
parallelism for the program, what is the profitable amount of parallelism ta&xtr

e Memory. Several metrics do exist to characterize the memory behavior of a prodracality
of the memory accesses can be monitored, on a per-access basisrmramgheéhe frequency of
an access can be computed thus leading to a precise characterizationiroptiance of the
memory optimization. Consider for instance maximizing locality. Excessive fus@ninterfere
with hardware prefetching: processors have a limited humber of haedpvafetch streams. In
addition, after fusion, too many data spaces end up using the same cadinging the effective
cache capacity of each statement, conflict misses are also likely to incidesmodel can learn,
on a per-access basis, to which extent locality was maximized for it — witlecesp the best
locality that can be achieved.

Instead of relying on complex and often inaccurate machine models, wega op take the reverse
approach and learn the machine characteristics in practice from thedofstqing schedules for a pro-
gram. We also propose to link this information to the input program by abstgeatiay the connection
to the schedule coefficients. The information stored is no lomgech coefficients valuesre giving
good performance, binow to compute coefficients valuesefficiently optimize the program.

To complement such an approach, it is interesting to test also for seaaditates in the subspaces
corresponding to the different values for each metric. The goal is tordite for the input program if
a given metric is representative of the program performance. This tetpsler the importance of the
metrics on the target machine.

We build on the framework presented in this thesis to present in Section 9.Hracee to generate
a very large set of input programs.

9.4 Training Set and Performance Metrics

To guarantee the efficiency of a learning-based approach it is reduoiteain the model on a representa-
tive and large set of benchmarks. The training phase consists in ruthiiitgrative compilation process
on several candidate programs, to determine which optimization(s) perf@sh$or it. The information
about the performance of a given transformation is analyzed by thdrngamodel to successively re-
fine its decision mechanism about program optimization. Although severdbpis works use standard

9.4. TRAINING SET AND PERFORMANCEMETRICS 135

benchmark suites [107, 3], we require to learn on static control progeata. We propose to decouple
the quest of a benchmark suite into two steps.

9.4.1 Starting Benchmarks

We use as a starting basis the set of kernels and programs that hawdyagpatic control part in the
hot spot(s) of the code. Many of them have been used all along this,tirepisrticular in Chapte??
to Chapter 8 and span most of the standard patterns in extended lineaaaldéle reader may refer
to Figure 5.5, Figure 5.8 and Figure 8.4 to get information about aroundeB6himarks fitting the
requirements of static control parts. Note that all benchmarks (exe€pt) are publicly available in
the distribution of the PoCC compiler.

In addition, it is required to gather programs that have not been explicilly @éh in this thesis but
represent a significant source of interest for the high performammoentinity. These are typically stencil
computations [21] and signal processing codes. We believe the commupityybedral compilation is
crucially missing a coherent and shared set of benchmarks. It is atehorplanned effort to provide
such a suite, which would enable a fair comparison of the optimization algorithdns@uld be a starting
training set for learning algorithms.

9.4.2 A Potentially infinite Set of Training Benchmarks

We have presented in this thesis algorithms and tools to build and traverséasgayand expressive

optimization spaces. These algorithms can also be used to generate neweimgunharks. As for each

candidate version another syntactic code may be generated, startinth&amllection of benchmarks

presented above a potentially infinite collection of programs can be prddlss each input bench-

mark, thousands of versions can be generated by applying arbitrattiagsformations on them. The
syntactic code which is produced is then brought back to a polyhegradsentation, creating another
benchmark.

The advantages of this technique are twofold. First, as we consideaktamsformations of the
input program, a validating result for the training process is to obtain ampeaihce similar to the op-
timized original one on all its variations. Second, the variability of the gerradesions is extremely
large. We can create arbitrarily complex problems in the input code, inoget®e challenge for the
optimization algorithms. As we use several times a program doing the same ctioypudaly written
in a different way, there is a risk of over-fitting for the learning algorithrran8ard techniques such as
cross-validation are mandatory.

9.4.3 Performance Metrics

To gather information about the performance of a given optimization, alewatrics should be consid-
ered. Depending on the target architecture they may not be prioritizeduhe way. For instance, in
high-performance computing the dominant metrics are execution time and pongumption, but in
embedded computing code size may be critical. We propose the following metrics.

e Execution timeTotal number of cycles per core, total execution time for the program.

136 9. UTURE WORK ON MACHINE LEARNING ASSISTEDOPTIMIZATION

e Memory behaviolNumber of cache hit / cache miss, for each layer of the memory hieranty,
for instruction and data caches. Translation Lookaside Buffer (TLB)rhiss is also a relevant
metric.

e Parallelism. Number of coarse-grain parallel loops and number of vectorizable Idemseach
parallel loop the number of iterations that can be run in parallel shoulddmetes.

e Code sizeSize of the program, in its compiled form.

Several techniques do exist to collect dynamic information about thegorogxecution. In this thesis
we have used the Performance Application Programming Interface (RBRy* which has proved to
provide precise information based on performance counters availabtdlgion the chip. For the static
characteristics such as parallelism one can simply inspect the syntactiotna@d code and apply a
parallelism detection step based on the dependence graph, on eachtl@mmorth noting that not
all production compilers support annotations about dependence irtformand so may not be able to
parallelize a loop that is indeed detected and annotated as parallel in thesytiactic program. At the
time of writing of this thesis, the practical user is encouraged to performseagain parallelization via
OpenMP pragmas for instance, and to carefully monitor if the compiler wag@blietect SIMD loops
exposed in the program.

9.5 Pultting It All Together

To build an efficient auto-tuned compiler we rely on an initial training staggngwhich we make a
chosen model learn how to optimize programs. We glue in Section 9.5.1 the blegksed previously
and outline the procedure to train the model. Once the model is trained — aabily once the
compiler has finished to install — the compiler is ready for use. When askemiripile a new program,
an optimization for it has to be computed. We outline this process in Section 9.5.2.

9.5.1 Training Phase

During the training phase, the goal is to learn how to characterize the impexéabstract metrics such
as parallelism and locality on the program performance. To achieve thistigbjenve propose to test a
wide spectrum of transformations for each input program. The followrngguure depicts the process
for a given input training program:

1. compute the vector of optimal value¥ for the abstract metrics selected to represent the program
(parallelism and locality metrics);

2. pick a semantics-preserving transformation for the program;
3. compute the vector of abstract metrics vali®sfor the transformed program;
4. run the transformed code on the target machine, collect its performance

5. feed the learning model wit@V, TV and the performance.

Ihttp://icl.cs. utk. edu/ papi

9.5. RUTTING IT ALL TOGETHER 137

The model is expected to learn, for this particular program, how critical it extobit parallelism
(both inner and outer level), and how critical it is to improve the programlitycdor instance, if an
equivalent quantity of schedules with poor and good locality gives ageog performance, then it is
determined that locality improvement does not drive the choice of the optimization

As the metrics are defined for the training phase at the finest granulanityngtance, on a per mem-
ory access basis), the information must be generalized to program-imttsgienetrics. Considering a
program with 4 loops, the model would decide for instance that it is of highiitapoe to simdize loops
1 and 3, while the four loop nests are simdizable (optimum is then 4). Thisaaadion is an open
problem, but one care-free solution to evaluate is to simply consider thageyealue of each individual
metrics, here that half of the loops should be simdized.

The process is repeated for each training program, using of coursgastiacross-validation tech-
niques as well as feeding with randomly transformed versions of the initi@fd®nchmarks, as ex-
plained above.

This proposal of training process can be very long. We believe that timstreants for this learning
phase are not relevant at this stage. Hence, we consider we mayrtastdimost unlimited number of
candidate transformations for a given program. It is expected that ttimmgtage is a critical matter to
reduce the training time, but it is left as a future work to investigate the soluioms so.

9.5.2 Compiling a New Program

The final step is to build a transformation for a new program. So far, we th@scribed in a very abstract
way how the information is stored and used to optimize a new program. We rtail/ttiés procedure
with an example.

Consider again the example of Figure 9.2, where we have learned on tidarstanatrix multiply
code (left), and the compiler is now asked to compile the optimized one (right)eRber we are using a
SIMD-capable single-core machine. The syntactic and polyhedrakésatdithe program are computed
as described in Section 9.2, and the model correlates the new programenstiatidard matrix-multiply.
During the training phase, it has been determined that SIMD is critical (&netants must be simdized
to get good performance, the metrics value is 1), coarse-grain parallddtiesinot impact performance
(metrics value is 0).

Now to compute the transformation for the new program, one can procetdlags. We first
build the set of all legal affine multidimensional schedules for the programthéh refine the set with
additional constraints, such as inner-most parallelism in this case. Intleeagease, this leaves us with
a large family of candidate transformations that respects the criteria. Twamsggan be followed. First,
one can resort to iterative compilation in the subset of computed transfonmatis we have pruned
the space and isolated a subspace of potentially good transformationsgetged that such a process
can converge quickly towards a good performing one. The other plitgsibto resort to additional cost
functions to instantiate the schedule coefficients, as proposed in Chapter 8

Clearly, the decision process of performing the final section of the sédédanother open problem,
which is of critical importance. For instance, what happens if we can adyovize statements 1 and
3, or 2 and 4, which one do we select? As a future work of this thesis we twigtvestigate the
implementation and evaluation of the framework proposed in this chapter. kiewaledge that many
open problems remain to be solved, in particular the process of computingséotraation for a new
program deserves significant research to attain a high efficiency iretiera case. Still we believe we

138 9. UTURE WORK ON MACHINE LEARNING ASSISTEDOPTIMIZATION

have provided some significant blocks for machine-learning assistediletiolp and as a starter this
infrastructure can be used to speed the iterative compilation process.

139

Chapter 10

Conclusions

From the age of punched tape computers to present-day power effinidtivicore heterogeneous plat-
forms, a dominant task has been to use the computational resource#¥ficienis task, initially re-
sorting to programmers, is progressively relying more and moregptimizing compilersFor decades,
chip architects have used the most advanced ideas to beat the memory wHikybare now facing
hard the power wall. As a consequence chips are going multi-core, iregjemmpilers to automati-
cally parallelize sequential legacy applications. But another problematgeqaence of the increased
chip complexity is the performance gap between standard compiler outpthie@nthchine’s theoretical
capabilities.

Present day compilers usually fail to model the complex interplay betweearatiff optimizations
and their effect on all the different processor architectural comusndlso, the complexity of current
hardware has made it impossible for compilers to accurately model architecnelytically. Thus,
empirical search has become a valid alternative to achieve portable higihnpgnce on most modern
architectures.

Iterative compilation consists in successively testing for different catelidptimizations on the
target machine, measuring their actual performance instead of relyinfieanioaccurate performance
models. Most iterative compilation techniques target compiler optimization flagameters, decision
heuristics, or phase ordering. We take a more aggressive stand, aonthg £onstruction and tuning of
complex sequences of transformations.

We observe that previous iterative compilation processes have been lingitdbe lexpressiveness
of the transformation framework they use. In most related work the kelyibotion lies in the design
and analysis of efficient search techniques, more than in the questfofied framework for program
optimization. The search space is usually made of fixed-length sequdrtbesoptimization primitives
offered by the native compiler (for instance, loop unroll, loop tiling, loopricitange). Several problems
are encountered by such approaches.

¢ Legality of the sequenc&ome generated sequences may not respect the program semantics, and

thus not be applied. And since limiting to always legal transformations is draatiptieducing
the optimization range, it is no better solution.

e Unigueness of the sequen&ame sequences may lead to identical code due to the commutativity

and associativity properties of several loop transformations. Bountimgize of the sequence
does not help.

140 10. CONCLUSIONS

¢ Applicability of the sequenc&iven a sequence of transformation that is not semantics-preserving,
one may in many situation be able to compute a series of complementary transfostativake
the considered sequence legal. Most existing techniques miss the abilitymedsveness of the
polyhedral representation to be able to compute such complementary segiuen

We present in this thesis a unified search space where all those critbtdéims are solved. The
polyhedral program representation is the most powerful tool to modgtaily complex loop transfor-
mations into a single search space. In addition, we propose to wkiarone approactfor the search
space construction, to significantly help any search process to foaudemant candidates only. For a
given search space, we guarantee as a property for all candidat€s)tthey each preserve the program
semantics; (2) they each lead to distinct transformed programs; andpf@ssieness is maximized by
considering all combinations of transformations in a given category.

We presented in Chapter 3canvex representation of the set of all, legal and distinct multidimen-
sional schedulesvith bounded coefficients, as a starting block for the search spacé&wditn. By
encompassing all possible affine loop transformations into a single loop optiiwniztep, we have dra-
matically extended the expressiveness compared to standard iterativdatimm@pproaches. Loop
fusion and loop distribution are two key transformations which applicationldHze considered out of
the other complementary transformations — those transformations requirettiddyafuse or distribute
statements, such as skewing and peeling. We have contributed in Chapt&ifid@representation of the
set ofall, legal and distinct multidimensional statement interleavingsis generalization of loop fusion,
called fusability, results in a dramatic broadening of the expressivenessd of expected effectiveness)
of the optimizer.

Several other building blocks for the design of a robust and portabégiitercompilation process are
required. A critical concern is scalability, in other words, the ability of theatiee process to effectively
converge towards a good solution. In this spirit, we focused on provaliripe required mechanisms
for an efficient search space construction and traversal.

We presented in Chapter 5 efficient techniques to build search sparestioimensional schedules.
We have addressed the problembuoilding practical search spacesavigating the trade-off between
expressiveness and optimality of the solution versus tractability of the spastruction and its traversal.

To assess the relevance of our approach, we have extensivehatexhtheperformance distribution

of affine multi-dimensional schedulesntained in this space in Chapter 6. We evaluated numerous
programs on distinct architectures typical from desktop and embeddedgsors (x86, VLIW, MIPS32)
and concluded key observations on the performance distribution. WWeexgerimentally validated a
partitioning of the space of affine schedules,dsglering the performance impact of several classes of
schedule coefficients

We proposed several heuristics to enumerate only these high-potebtalbses in the set of affine
schedules, to discover efficient program transformations in Chapt®e have provided achedule com-
pletion mechanisreveraging the static and dynamic characteristics of the search spaokngta@acom-
plete or correct any partial schedule to make it lie in the space of legafdgraregions. We contributed a
heuristic to discover thevall-clock optimal schedulfor the case of one-dimensional schedules, and ex-
tended this work to the case of multidimensional schedules. To further impeal&bility on the largest
search spaces, we contributed tingt genetic operators for loop transformations which are closed under
semantics-preservatioe provided experimental evidence of the efficiency of the iterativega®in
optimizing programs, by testing on three different single-core architextu®err processes systemati-
cally outperform the native compilers, including Intel ICC, whatever thgetaarchitecture by up to an

10. CONCLUSIONS 141

order of magnitude faster.

Tiling (or blocking) is a crucial loop transformation for parallelism and localltye downside is that
itis not an affine transformation, as it requires to alter the polyhedre¢septation to be performed. Itis
known that tiling is legal if loops are permutable, and efficient algorithmsdoalfelism via tiling in the
polyhedral model have recently been proposed by Bondhugula. eded his approach in Chapter 8
by allowing for aniterative search of multidimensional statement interleavingée have tackled the
main limitation of this model-driven approach, by offering the optimizer the piitgito adapt for
any architecture the fusion structure of the program. Furthermore, werkaoved the applicability
constraints of this technique, by enabling the discovery of permutable ilotips presence of parametric
dependences. As a result, parallel tiled optimized code is produceduaesperiments on three high-
end modern multi-core machines (8, 16 and 24 hardware threads) ceddingrovements of up twvo
orders of magnitude faster programgen compared to the native auto-parallelizing compilers or the
initial model-driven approach.

The last building block for the design of an efficient iterative optimizer in thiyhedral model
relates to the manipulation of large polyhedra. As we have designed sgmchs as convex sets, we
face the problem of scanning polytopes of high dimensionality, orders ghitale larger than those
manipulated by other polyhedral frameworks. To reach scalability, we &slvibited the key properties
required on the space to enable the designlofemr-time scanning proceduref the search space. We
have motivated the chosen representation for these polyhedra, anditmglification mechanisms to
perform aredundancy-less projection with the Fourier-Motzkin algoriti@ur experiments showed that
redundancy was the dominant bottleneck of this algorithm, and with a redeydantrol is a scalable
technique to perform polyhedral projection on our problem instances.

We have gathered all the theoretical and practical contributions of thiis tiéés a set of software
applications dedicated to polyhedral compilation. During this thesis we haetoged-M, the Fourier-
Motzkin Libraryto enable the manipulation of high-dimensionality polyhedra. All search spate ¢
struction and traversal techniques have been implementedt®ee, the Legal Transformation Space
Explorator. To easily use and evaluate these tools, we also develep€Q, the Polyhedral Compiler
Collection which offers a full source-to-source iterative compiler in the polyakedrodel. All these
tools are freely available for download and are already used by $®tkes research projects.

As a result, we have designed, implemented and evaluatedcaine-independent optimizer com-
puting machine-dependent optimizatiorStill, there exists numerous possible improvements for our
techniques. Specifically, we identify the following sources for improvement.

e Knowledge transferin the processes we have designed, no knowledge is extracted to help the
compilation of another program. Each time the iterative process completegtthezation in-
formation coming from this compilation is lost.

e lterative search.The search process may require numerous runs before convefgingtimate
goal is to reduce to the minimum the number of runs. And an alternative is toa¢wahe po-
tential of substituting the program execution step with an off-line trained nmfodglerformance
evaluation.

e Scalability. We experimentally observed that the complexity of the search processnsated
with the number of polyhedral statements in the program. As the size of theapragcreases, so
does the compilation time.

142 10. CONCLUSIONS

The scalability issue is directly connected to the iterative search processiag If we can exhibit
techniques to control the iterative search to operate successfully oadadid small number of runs
(say, at most 10 runs and at best 0), then scalability wdelfactobe achieved too. In Chapter 9 we
presented novel ideas t@arness the power of polyhedral optimization in a machine learning adsiste
compiler We believe that the knowledge transfer, the iterative search and tlabisibaissues can all

be solved within a single approach for optimization based on machine leakivgrovided numerous
ideas to reach this goal, and a short term objective is to build upon thesepteio design an even more
effective compiler for the current and upcoming chip generations.

143

Appendix A

Correctness Proof foro

We restate the expression of the affine set of all, distinct total preordersroélements. For X i <
ni<j<n ois:

0< pi,j <1)| Variables are binary
0<g;<1
Relaxed mutual exclusion
pi,j+e;<1
vk €]j,n] ejtex<l+e k} Basic transitivity ore
€jt+tek<l+ex
o Basic transitivity on
vk eli, j plk+pk1<1+plj} yomp
VKe]j,n] €.+ Pik<1+pjk
&,j+Pjk<1+pik, Complextransitivity orp ande
vk eli, j] &+ Pik<1l+pij
. Complex transivity ors and
Wk €]j,n) &+ pij+ Pk < 1+ pi,k+a,k} P y P

We want to prove thathe seto contains one and only one point per distinct total preorder of n
elements.

Proof. We first prove thato contains all and only total preorders, before proving the uniquerfess o
preorders iro.

From the encoding througd) p ande variables chosen, at least all total preorders are represented in
the initial set
0<p;<1
0<eg;<1
0<s;<1

This is because all possible combinations for elemerjtsan be represented< j,i > j ori = j) with
the proposed representation. We now show that the successiveatisstidded to prune the set remove
all points that are not a valid total preorder. To prove so, we rely ordtigtat a total preorder relation
is a relation which is total, transitive and symetric. Hence, we prove thatomatraints are sufficient to
guarantee to preserve the totality, the transitivity and the reflexivity of thdam.

144 A. CORRECTNESSPROOF FORO

Totality: Givenx, ytwo elements of a s&of n elements on which the total preorder relation is defined.
Without any loss of generality and for the rest of the proof, we assuntéStisathe set of consecutive
integers from 1 ton. Givena, b their position identifier as specified by the preorder. Totality gives:

a<bvb=<a

Eithera < b, a=b, b <aorb=awhich is equivalent ta = b. This is guaranteed by the relaxed mutual
exclusion inequality.

Transitivity: Givenx, y, zthree elements amal b, c their respective partition identifier. Transitivity
gives:
a<bAb=<c= a=c

That is, one of the following configuration must occur:

l.a<bAb<c= a<c
2.a<bAb=c= a<c
3.a=bAb<c= a<c
4. a=bAc<b=c<a
5,a=bAb=c= a=c
6. hb<canc<b=c<a

7.b<aAnb=c=c<a

Converting 1. into our encoding gives:
Pxy A Pyz = Pxz (A1)

To generalize this constraint to tmepossible elements, we must then consider the different possible
values forx, y, z we can havx <yorx>y, x<zorx>z andy < zorz<y. We start by focusing
only on the case where< y < z. (A.1) is written:

Vi<i<k<j<n, pik A Pkj = Pij (A.2)

This equation can be converted in an affine form in a deterministic fashimngan use a Boolean table
to ensure the constraint defines an equivalent logic as the implicationprenedconverted in an affine
form corresponds to the basic transitivity ptoefficients inequalities shown in the definitionaf

Converting 5. into our encoding gives:

ey N\ &z = €z (A.3)

For this case, ik <y < z, then (A.3) is written:

ViI<i<j<k<n, & A€k =6k (A.4)

A. CORRECTNESSPROOF FORO 145

If y < x< z then (A.3) is written:

Vi<i<j<k<n, &jAeax=e€y, (A.5)

These equations once converted in an affine form correspond toghettzansitivity ofe coefficients.

Converting 3. into our encoding gives:

&y A Pyz = Pxz (A.6)

If X<y <z then (A.6) is written:
Vi<i<j<k<n, @&jA pik = Pjk (A.7)

If y < x <z then (A.6) is written:
ViI<i<j<k<n, & A pjk = Pik (A.8)

Converting 2. into our encoding gives:
&z A\ Pxy = Pxz (A.9)

If x<z<y,then (A.9) is written:

VI<i<k<j<n, e&j A Pk = Pij (A.10)

Equations (A.7), (A.8) and (A.10) correspond to the complex transitivitystraints on thep and e
variables.

Converting 6. into our encoding gives:

Sxz N\ Pyz = Sy (A.12)

If X< y<zthen (A.11) is written (thanks to the substitution coming from the mutual exclasjoation):
Vi<i<j<k<n, —&j A =pij A Pjk = Pk A €k (A.12)

This equations corresponds to the complex transitivity constraints gmdhes variables.

Several cases have not been explicitely addressed, becausedtathar equivalent to the above-
mentionned affine constraints, or non-contributing to the pruning of theespeheir enumeration and
computing their equivalence with the presented cases is left to the motivatistre

All necessary conditions for transitivity have been enforced.in

Reflexivity: Reflexivity is trivially satisfied in our encoding.
This concludes proving that all points inis a total preorder, and that all total preorders are.in

We must now prove that there is only one poinbtirper distinct total preorder.

146 A. CORRECTNESSPROOF FORO

Uniqueness: To prove so, we show there exists a bijection? — o between the set of distinct total
preorderse ando.

We first prove that it is not possible that two distinct preorders areesgmted by the same point in
0. Suppose there exists two distinct total preorggrand p, such that

f(py) =f(p2) A pr# P2

By construction of the encoding, two distinct preorders result in at l@stmodification of a variable
(&,j and/orp; j) used to encode the preorder. Hence we must have:

f(p1)=f(p2) = pr=p2

which is a contradiction.

To show that it is not possible to have two distinct point®inepresenting the same total preorder,
we again rely on our encoding definition. This concludes the proof of LeBfha [

147

Personal Bibliography

Peer-reviewed international conferences:

e Mohamed-Walid Benabderrahmane, Louis-Noél Pouchet, Albert CahéCédric Bastoul. The
Polyhedral Model is more widely applicable than you think. EFRAPS Conference on Compiler
Construction (CC'10)Paphos, Cyprus, March 2010. Springer Verlag.

e Louis-Noél Pouchet, Cédric Bastoul, Albert Cohen, and John Cavalterative optimization in
the polyhedral model: Part Il, multidimensional time. AGM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI'0Bages 90-100, Tucson, Arizona, June
2008. ACM Press.

e Louis-Noél Pouchet, Cédric Bastoul, Albert Cohen, and Nicolas Vdsilatterative optimization
in the polyhedral model: Part I, one-dimensional timeFifith International Symposium on Code
Generation and Optimization (CGO’0fages 144-156, San Jose, California, March 2007. IEEE
Computer Society Press.

¢ Nicolas Vasilache, Albert Cohen, and Louis-Noél Pouchet. Automatiection of loop transfor-
mations. Inl6th International Conference on Parallel Architecture and Compilatiochféques
(PACT’07) pages 292-304, Brasov, Romania, September 2007. IEEE CompuietyJeress.

e Thomas Claveirole, Sylvain Lombardy, Sarah O’Connor, Louis-NoétRet)and Jacques Sakaro-
vitch. Inside vaucanson. Implementation and Application of Automata, 10th International Con-
ference (CIAA'05)volume 3845 ol ecture Notes in Computer Sciengages 116-128, Sophia
Antipolis, France, 2006. Springer Verlag.

Peer-reviewed international journals:

e H. Munk, E. Ayguadé, C. Bastoul, P. Carpenter, Z. Chamski, A. Colecornero, M. Duranton,
M. Fellahi, R. Ferrer, R. Ladelsky, M. Lindwer, X. Martorell, C. MiramdD. Nuzman, A. Orn-
stein, A. Pop, S. Pop, L.-N. Pouchet, A. Ramirez, D. Rédenas, E.lRdh&osen, U. Shvadron,
K. Trifunovic and A. Zaks. ACOTES Project: Advanced Compiler Tedbgies for Embedded
Streaming. Irinternational Journal of Parallel Programmin@010. Springer Verlag.

Peer-reviewed international workshops:

e K. Ibrahim, J. Jaeger, Z. Liu, L.N. Pouchet, P. Lesnicki, L. Djoudi, DtBau, F. Bodin, C. Eisen-
beis, G. Grosdidier, O. Pene, and P. Roudeau. Simulation of the Latticea@@Bechnological
trends in computation. h4th Workshop on Compilers for Parallel Computing (CPC’09), Zurich,
Switzerlang January 2009.

148 PERSONAL BIBLIOGRAPHY

e Louis-Noél Pouchet, Cédric Bastoul, John Cavazos, and AlbertrCdheote on the performance
distribution of affine schedules. Bnd Workshop on Statistical and Machine learning approaches
to ARchitectures and compilaTion (SMART’08pteborg, Sweden, January 2008.

e Louis-Noél Pouchet, Cédric Bastoul, and Albert Cohen. Iterative opditioiz in the polyhe-
dral model: the one-dimensional affine scheduling case2nbh HIPEAC Industrial Workshgp
Eindhoven, the Netherlands, October 2006.

Research Reports:

e Louis-Noél Pouchet, Uday Bondhugula, Cédric Bastoul, Albert CobheRamanujam, and P. Sa-
dayappan. Hybrid iterative and model-driven optimization in the polyhedoalel. Report 6962,
INRIA Research Report, June 2009.

e Mohamed-Walid Benabderrahmane, Cédric Bastoul, Louis-Noél PouamtAlbert Cohen. A
conservative approach to handle full functions in the polyhedral modetpoR 6814, INRIA
Research Report, January 2009.

Other publications:

e Louis-Noél Pouchet, Cédric Bastoul, and Albert Cohen. Letsee: tla teemsformation space
explorator. Third International Summer School on Advanced Compuiriecture and Compi-
lation for Embedded Systems (ACACES’07), L'Aquila, Italia, July 2007.teexled abstract, pp
247-251.

e Louis-Noél Pouchet. When iterative optimization meets the polyhedral moael:ddnensional
date. Master’s thesis, University of Paris-Sud 11, Orsay, FraiQfs.2

149

Bibliography

[1] The liege automata-based symbolic handler (LASH). Available at
http://ww. nontefiore. ul g.ac. be/ ~boi gel ot/ research/| ash/.

[2] Ppl: The parma polyhedra librarit t p: / / www. ¢s. uni pr.it/ppl/.

[3] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M..FDBoyle, J. Thomson, M. Tous-
saint, and C. K. I. Williams. Using machine learning to focus iterative optimizatioRroc. of the
Intl. Symposium on Code Generation and Optimization (CGQ'p&jyes 295-305, Washington,
2006.

[4] J. Allen and K. Kennedy.Optimizing Compilers for Modern Architecture$lorgan Kaufmann
Publishers, 2002.

[5] L. Almagor, K. Cooper, A. Grosul, T. Harvey, S. Reeves, D. @ufianian, L. Torczon, and T. Wa-
terman. Finding effective compilation sequencesLamguages, Compilers, and Tools for Em-
bedded Systems (LCTES'Ogages 231-239, New York, 2004.

[6] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops.3id ACM SIGPLAN Symp. on
Principles and Practice of Parallel Programmingages 39-50, June 1991.

[7] Utpal Banerjee.Loop Transformations for Restructuring Compilers, the Foundatidfisiwer,
1993.

[8] D. Barthou, J.-F. Collard, and P. Feautrier. Fuzzy array datadloalysis. 40:210-226, 1997.

[9] A. I. Barvinok. Computing the ehrhart polynomial of a convex latticdympe. Discrete and
Computational Geometyy12(1):35-48, December 94.

[10] C. Bastoul. Code generation in the polyhedral model is easier tharthyjok. InIEEE Intl.
Conf. on Parallel Architectures and Compilation Techniques (PACT'pdyes 7-16, Juan-les-
Pins, France, September 2004.

[11] C. Bastoul.Improving Data Locality in Static Control Program®hD thesis, University Paris 6,
Pierre et Marie Curie, december 2004.

[12] C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam. Puttingpguaigl transformations
to work. INnLCPC’16 Intl. Workshop on Languages and Compilers for Parallel Caiing, LNCS
2958 pages 209-225, College Station, October 2003.

[13] C. Bastoul and P. Feautrier. Improving data locality by chunking.Inth Conf. on Compiler
Construction (ETAPS CC 12yolume 2622, pages 320-335, Warsaw, Poland, April 2003.

150 BIBLIOGRAPHY

[14] Cédric Bastoul and Paul Feautrier. Adjusting a program tramsftion for legality. Parallel
processing lettersl5(1):3-17, March 2005.

[15] Anna Beletska. Extracting synchronization-free parallelism with the slicing framewofhD
thesis, Politecnico Di Milano, 2009.

[16] Anna Beletska, Wlodzimierz Bielecki, Albert Cohen, and Marek Rat{o. Synchronization-free
automatic parallelization: Beyond affine iteration-space slicingL@#®C’22 Intl. Workshop on
Languages and Compilers for Parallel Computii@ctober 2009.

[17] Mohamed-Walid Benabderrahmane, Cédric Bastoul, Louis-Noéttret, and Albert Cohen. A
conservative approach to handle full functions in the polyhedral motghnical Report 6814,
INRIA Research Report, January 2009.

[18] F. Bodin, T. Kisuki, P. M. W. Knijnenburg, M. F. P. O'Boyle, and Eohou. lterative compilation
in a non-linear optimisation space. W. on Profile and Feedback Directed Compilati¢taris,
October 1998.

[19] Bernard Boigelot and Jean-Francgois Degbomont. Partial projeofigets represented by finite
automata, with application to state-space visualization.LARA '09: Proceedings of the 3rd
International Conference on Language and Automata Theory and Apipins pages 200-211,
Berlin, Heidelberg, 2009. Springer-Verlag.

[20] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy,am&ujam, A. Rountev, and
P. Sadayappan. Automatic transformations for communication-minimized pagti@tizand lo-
cality optimization in the polyhedral model. International conference on Compiler Construction
(ETAPS CC)April 2008.

[21] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. SagayapA practical automatic
polyhedral program optimization system. ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementatiaiune 2008.

[22] J.Cavazos, J. E. Moss, and M. F. P. O'Boyle. Hybrid optimizatidvkich optimization algorithm
to use. In(CC’06), Vienna, Austria, April 2006.

[23] John Cavazos and J. Eliot B. Moss. Inducing heuristics to deciagher to schedule. IRLDI
'04: Proceedings of the ACM SIGPLAN 2004 conference on Progiamtanguage design and
implementationpages 183—-194, New York, NY, USA, 2004. ACM.

[24] Chun Chen, Jacqueline Chame, and Mary Hall. CHILL: A frameworkcbmposing high-level
loop transformations. Technical Report 08-897, U. of Southern Caldp2008.

[25] S.N. Chernikov. The convolution of finite systems of linear inequaliti&s. vychisl. Mat. mat.
Fiz., 5:3 - 20, 1969.

[26] N.V. Chernikova. Algorithm for finding a general formula for thenaoegative solutions of a
system of linear inequalitietlSSR Computational Mathematics and Mathematical Phys885.

[27] K. Chow and Y. Wu. Feedback-directed selection and charaatenzof compiler optimizations.
In 2nd Workshop on Feedback-Directed Optimizatienael, November 1999.

BIBLIOGRAPHY 151

[28] Philippe Clauss. Counting solutions to linear and nonlinear constraisgh ehrhart polyno-
mials: applications to analyze and transform scientific programfC&196: Proceedings of the
10th international conference on Supercomputipgges 278-285, New York, NY, USA, 1996.
ACM.

[29] Alan Cobham. On the base-dependence of sets of numbers reaigrby finite automatal he-
ory of Computing System3(2):186-192, June 1969.

[30] Albert Cohen, Sylvain Girbal, David Parello, M. Sigler, Olivier Temangd Nicolas Vasilache.
Facilitating the search for compositions of program transformation&Clkl International con-
ference on Supercomputingages 151-160, June 2005.

[31] Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, StevenvBgge Devika Subrama-
nian, Linda Torczon, and Todd Waterman. ACME: adaptive compilation neffildent. In
ACM SIGLPAN/SIGBED Conf. on Languages, Compilers, and Tools fiobelded Systems
(LCTES'05) pages 69-77, Chicago, IL, USA, 2005. ACM Press.

[32] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. Optimifongeduced code
space using genetic algorithms. Workshop on Languages, Compilers, and Tools for Embedded
Systemgpages 1-9, Atlanta, GA, USA, July 1999. ACM Press.

[33] Keith D. Cooper, Devika Subramanian, and Linda Torczon. Aseapiptimizing compilers for
the 21st centuryd. Supercomput23(1):7-22, 2002.

[34] George B. Dantzig and B. Curtis Eaves. Fourier-motzkin eliminationiendual. J. Comb.
Theory, Ser. A14(3):288-297, 1973.

[35] A. Darte, Y. Robert, and F. VivierScheduling and Automatic ParallelizatioBirkhauser, 2000.

[36] Alain Darte and Guillaume Huard. Loop shifting for loop parallelizationecfnical Report
RR2000-22, ENS Lyon, May 2000.

[37] Alain Darte, Robert Schreiber, and Gilles Villard. Lattice-based meratbogation.IEEE Trans.
Comput, 54(10):1242-1257, 2005.

[38] Alain Darte, Georges-Andre Silber, and Frederic Vivien. Comlgmetiming and scheduling
techniques for loop parallelization and loop tilingarallel Proc. Letters7(4):379-392, 1997.

[39] P. Feautrier. Parametric integer programmiR&IRO Recherche Opérationnel2(3):243-268,
1988.

[40] P. Feautrier. Dataflow analysis of scalar and array referedodls J. of Parallel Programming
20(1):23-53, February 1991.

[41] P. Feautrier. Some efficient solutions to the affine scheduling prolghart I: one dimensional
time. Intl. J. of Parallel Programming21(5):313—-348, October 1992.

[42] P. Feautrier. Some efficient solutions to the affine scheduling prolpart 11: multidimensional
time. Intl. J. of Parallel Programming21(6):389—420, December 1992.

[43] P. Feautrier. Scalable and modular scheduling. Technical R&ppEcole Normale Supérieure
de Lyon, Laboratoire de I'lnformatique du Parallélisme, April 2004.

152 BIBLIOGRAPHY

[44] Franz Franchetti, Yevgen Voronenko, and Markus Puschelrm&boloop merging for signal
transforms. INACM SIGPLAN Conf. on Programming Language Design and Implerienta
(PLDI'05), pages 315-326. ACM Press, 2005.

[45] B. Franke and M. O'Boyle. Array recovery and high level tf@ansations for dsp applications. In
CPC’10 Intl. Workshop on Compilers for Parallel Computgrages 29-38, Amsterdam, January
2003.

[46] Marc Le Fur. Scanning parameterized polyhedron using foamigzkin elimination. Concur-
rency: Practice and Experienc8(6):445-460, November 1996.

[47] Grigori Fursin. Collective tuning initiative: automating and acceleratlagelopment and opti-
mization of computing systems. Proceedings of the GCC Developers’ Sumgduine 2009.

[48] Grigori Fursin, Albert Cohen, M. O’Boyle, and Olivier Temam. Aaptical method for quickly
evaluating program optimizations. Intl. Conf. on High Performance Embedded Architectures
and Compilers (HIPEAC'05)number 3793 in LNCS, pages 29-46, Barcelona, November 2005.
Springer-Verlag.

[49] Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea Namold&iad Yom-Tov, Ayal Zaks,
Bilha Mendelson, Phil Barnard, Elton Ashton, Eric Courtois, Francodi@d=dwin Bonilla, John
Thomson, Hugh Leather, Chris Williams, and Michael O’Boyle. Milepost geachine learning
based research compiler. Proceedings of the GCC Developers’ Sumine 2008.

[50] Grigori Fursin and Olivier Temam. Collective optimization. Pnoceedings of the International
Conference on High Performance Embedded Architectures & CompiitiPEAC 2009) January
2009.

[51] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohernyi@®arello, Marc Sigler, and
Olivier Temam. Semi-automatic composition of loop transformatidngernational Journal of
Parallel Programming34(3):261-317, June 2006.

[52] David E. GoldbergGenetic Algorithms in Search, Optimization and Machine Learniugison-
Wesley Longman Publishing Co. Inc., Boston, MA, USA, 1989.

[53] M. Griebl. Automatic parallelization of loop programs for distributed menachitectures. Ha-
bilitation thesis. Facultat fur mathematik und informatik, universitat Pass&4, 20

[54] M. Griebl, P. Faber, and C. Lengauer. Space-time mapping and tiledpelpful combination.
Concurrency and Computation: Practice and Experierdd3):221-246, March 2004.

[55] M. Griebl, C. Lengauer, and S. Wetzel. Code generation in the gudytioodel. Inintl. Conf. on
Parallel Architectures and Compilation Techniques (PACT, $8)ges 106-111, 1998.

[56] Armin Groflinger, Martin Griebl, and Christian Lengauer. Introdgaion-linear parameters to
the polyhedron model. IRroc. 11th Workshop on Compilers for Parallel Computers (CPC 2004)
July 2004.

[57] Gautam Gupta and Sanjay Rajopadhye. The z-polyhedral modBPdRP '07: Proceedings of
the 12th ACM SIGPLAN symposium on Principles and practice of paraltgramming pages
237-248. ACM Press, 2007.

BIBLIOGRAPHY 153

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff. Automatelextion of compiler
options using non-parametric inferential statistics.|HEE Intl. Conf. on Parallel Architectures
and Compilation Techniques (PACT'0)ages 123-132, Saint Louis, MO, USA, 2005. IEEE
Computer Society.

Tien Huynh, Catherine Lassez, and Jean-Louis Lassez. Rilas8aes on the projection of poly-
hedral setsJournal Annals of Mathematics and Artificial Intelligen&$4):295-315, December
92.

F. Irigoin and R. Triolet. Supernode partitioning. ROPL '88: Proceedings of the 15th ACM
SIGPLAN-SIGACT symposium on Principles of programming langugmeses 319-329, New
York, NY, USA, 1988. ACM.

Francgois Irigoin, Pierre Jouvelot, and Rémi Triolet. Semantical inbegzlural parallelization:
an overview of the pips project. €S '91: Proceedings of the 5th international conference on
Supercomputingpages 244-251, New York, NY, USA, 1991. ACM.

Richard M. Karp, Raymond E. Miller, and Shmuel Winograd. Theaaigation of computations
for uniform recurrence equationd. ACM 14(3):563-590, 1967.

W. Kelly. Optimization within a Unified Transformation FramewoiRhD thesis, Univ. of Mary-
land, 1996.

W. Kelly. Optimization within a unified transformation framework. TechhiReport CS-TR-
3725, Department of Computer Science, University of Maryland at ColRagk, 1996.

W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple maspimIntl. Symp. on the
frontiers of massively parallel computatiopages 332—341, McLean, VA, USA, February 1995.

K. Kennedy and K. McKinley. Maximizing loop parallelism and improvirata locality via loop
fusion and distribution. Inanguages and Compilers for Parallel Computimages 301-320,
1993.

T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O'Boyle. Combinedeszion of tile sizes and unroll
factors using iterative compilation. IEEE Intl. Conf. on Parallel Architectures and Compilation
Techniques (PACT 00Qpages 237-246, Philadelphia, PA, USA, 2000. IEEE Computer Society.

I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multi-level blockiin ACM SIGPLAN’97
Conf. on Programming Language Design and Implementapages 346-357, Las Vegas, June
1997.

P. Kulkarni, W. Zhao, D. Whalley, X. Yuan, R. van Engelen, Kll®an, J. Hiser, J. Davidson,
B. Cai, M. Bailey, H. Moon, K. Cho, Y. Paek, and D. Jones. Vista: Vperactive system for
tuning applicationsACM Transactions on Embedded Computing Systdimappear.

Prasad Kulkarni, Wankang Zhao, Hwashin Moon, Kyunghwaao,Cravid Whalley, Jack David-
son, Mark Bailey, Yunheung Paek, and Kyle Gallivan. Finding effectiptimization phase se-
quences. ILCTES '03: Proc. of the 2003 ACM SIGPLAN Conf. on Language, demand tool
for embedded systenmages 12-23, San Diego, California, USA, 2003. ACM Press.

154

BIBLIOGRAPHY

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

Prasad A. Kulkarni, Stephen R. Hines, David B. Whalley, Jasodiger, Jack W. Davidson, and
Douglas L. Jones. Fast and efficient searches for effective optionizphase sequencefsCM
Trans. on Architecture and Code Optimizati@(2):165-198, 2005.

Louis Latour. From automata to formulas: Convex integer polyhdirs.00:120-129, 2004. A
journal version was submitted to LMCS latour.06.Imcs.pdf.

Louis Latour. Computing affine hulls over g and z from sets reprteseby number decision
diagrams. InTenth International Conference on Implementation and Application of Aatbom
(CIAA’05), volume 3845 of LNCS pages 213-224, 2005.

Hervé Le Verge. A Note on Cherniakova’s algorithm. ReseargioR&RR-1662, INRIA, 1992.

Hugh Leather, Edwin Bonilla, and Michael ééBoer. Automatic feature generation for ma-
chine learning based optimizing compilation.IEEE/ACM Intl. Symp. on Code Generation and
Optimization (CG0’09)2009.

Corinna Lee. UTDSP benchmark suite, 1998.
http://ww. eecg. t oronto. edu/ ~cori nna/ DSP.

Richard Lethin, Allen Leung, Benoit Meister, Peter Szilagyi, NicolasiMiche, and David
Wohliford. Final report on the the r-stream 3.0 compiler. Technicalrtegeservoir Labs, Inc.
Delivered to Air Force Research Laboratory, Rome, NY, 2008. Fat@ot F03602-03-C-0033.

W. Li and K. Pingali. A singular loop transformation framework basachon-singular matrices.
Intl. J. of Parallel Programming22(2):183-205, April 1994.

Amy W. Lim and Monica S. Lam. Maximizing parallelism and minimizing synclzation with
affine transforms. I®POPL '97: Proceedings of the 24th ACM SIGPLAN-SIGACT symposium o
Principles of programming languaggsages 201-214, New York, NY, USA, 1997. ACM Press.

S. Long and M.F.P. O'Boyle. Adaptive Java optimisation using instdrased learning. 1ACM
Intl. Conf. on Supercomputing (ICS’Q4)ages 237-246, Saint-Malo, France, June 2004.

Shun Long and Grigori Fursin. Systematic search within an optimisatiacesbased on unified
transformation frameworklJCSE Intl. Journal of Computational Science and Engineerimig
appear.

Shun Long and Grigori Fursin. A heuristic search algorithm basedinified transformation
framework. InProc. of the 2005 Intl. Conf. on Parallel Processing Workshops RBPO5), pages
137-144, Washington, DC, USA, 2005. IEEE Comp. Soc.

A.V. Lotov, V.A. Bushenkov, and G.K. KamenewWeasible Goals Method — Search for Smart
Decisions Computing Centre RAS, Moscow, 2001.

Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Impgpdiata locality with loop trans-
formations.ACM Trans. Program. Lang. Sys18(4):424-453, 1996.

Nimrod Megiddo and Vivek Sarkar. Optimal weighted loop fusion farghlel programs. In
symposium on Parallel Algorithms and Architectyneages 282—-291, 1997.

BIBLIOGRAPHY 155

[86] Antoine Monsifrot, Franç0is Bodin, and Rene Quiniou. A mach&sning approach to
automatic production of compiler heuristics. MMSA '02: Proc. of the 10th Intl. Conf. on
Artificial Intelligence: Methodology, Systems, and Applicatjgragies 41-50, London, UK, 2002.
Springer-Verlag.

[87] Andy Nisbet. GAPS: A compiler framework for genetic algorithm (GAjimised parallelisation.
In HPCN Europe 1998: Proc. of the Intl. Conf. and Exhibition on High-Parfance Computing
and Networkingpages 987-989, London, UK, 1998. Springer-Verlag.

[88] Boyana Norris, Albert Hartono, Elizabeth Jessup, and Jerenky &enerating empirically op-
timized composed matrix kernels from MATLAB prototypes. Ih. Conf. on Computational
Science (ICCS’09)may 2009.

[89] M. Palkovi. Enhanced Applicability of Loop Transformatior2hD thesis, T. U. Eindhoven, The
Netherlands, September 2007.

[90] Sébastian Pop, Albert Cohen, Cédric Bastoul, Sylvain Girbal, &elot, G.-A. Silber, and
N. Vasilache. GRAPHITE: Loop optimizations based on the polyhedral hfodeésCC. In
Proc. of the 4th GCC Developper’'s Sumnittawa, Canada, June 2006.

[91] Louis-Noél Pouchet. Fm, the Fourier-Motzkin library. Available fdownload at
http://ww«rocq.inria.fr/~pouchet/software/fm

[92] W. Pugh. The Omega test: a fast and practical integer programmiogthtg for dependence
analysis. INPACM Intl. Conf. on Supercomputing (ICS’9pages 4-13, Albuguerque, NM, USA,
August 1991.

[93] William Pugh and Evan Rosser. Iteration space slicing and its applicasi@@mmunication
optimization. InICS '97: Proceedings of the 11th international conference on Supgsating
pages 221-228. ACM Press, 1997.

[94] M. Puschel, B. Singer, J. Xiong, J. Moura, J. Johnson, DuRat. Veloso, and R. W. John-
son. SPIRAL: A generator for platform-adapted libraries of signat@ssing algorithmsJ. of
High Performance Computing and Applications, special issue on Automaticrfance Tuning
18(1):21-45, 2004.

[95] Apan Qasem and Ken Kennedy. Profitable loop fusion and tiling usiadel-driven empirical
search. IrProc. of the 20th Intl. Conf. on Supercomputing (ICS,q&ges 249-258. ACM press,
2006.

[96] F. Quilleré, S. Rajopadhye, and D. Wilde. Generation of efficiested loops from polyhedra.
Intl. J. of Parallel Programming28(5):469-498, October 2000.

[97] P. Quinton and V. Van Dongen. The mapping of linear recurregoat@ons on regular array$he
Journal of VLSI Signal Processini)(2):95-113, October 1989.

[98] J. Ramanujam. Beyond unimodular transformatiahsSupercomputing(4):365—-389, 1995.

[99] J. Ramanujam and P. Sadayappan. Tiling multidimensional iterationssf@amulticomputers.
Journal of Parallel and Distributed Computin@6(2):108-230, 1992.

156 BIBLIOGRAPHY

[100] Manman Ren, Ji Young Park, Mike Houston, Alex Aiken, and Williar@dlly. A tuning frame-
work for software-managed memory hierarchies. Intl. Conf. on Parallel Architectures and
Compilation Techniques (PACT'Q8§)ages 280-291. ACM Press, 2008.

[101] Alexander SchrijverTheory of Linear and Integer Programmingohn Wiley & Sons, 1986.

[102] Rachid Seghir and Vincent Loechner. Memory optimization by cogrgmints in integer trans-
formations of parametric polytopes. @®ASES '06: Proceedings of the 2006 international con-
ference on Compilers, architecture and synthesis for embedded syptmyes 74—82, New York,
NY, USA, 2006. ACM.

[103] S. Singhai and K. McKinley. A Parameterized Loop Fusion Algoritbomimproving Parallelism
and Cache LocalityThe Computer Journaft0(6):340-355, 1997.

[104] N. J. A. Sloane and Simon Plouffélhe Encyclopedia of Integer Sequencégademic Press,
1995.

[105] G. Stehr, H. Graeb, and K. Antreich. Analog performance esgaploration by fourier-motzkin
elimination with application to hierarchical sizing. I€RCAD '04: Proceedings of the 2004
IEEE/ACM Intl. conference on Computer-aided desigages 847—-854, Washington, DC, USA,
2004. IEEE Computer Society.

[106] M. Stephenson and S. Amarasinghe. Predicting unroll factang prervisevd classification. In
ACM Intl. Symp. on Code Generation and Optimization (CGQ’'p&apes 123aS-134, 2005.

[107] Mark Stephenson, Saman Amarasinghe, Martin Martin, and Una®/Reilly. Meta optimiza-
tion: improving compiler heuristics with machine learnisiGPLAN Notices38(5):77-90, 2003.

[108] Ananta Tiwari, Chun Chen, Jacqueline Chame, Mary Hall, andeje. Hollingsworth. A
scalable autotuning framework for computer optimizationlPDPS’09 Rome, May 2009.

[109] S. Triantafyllis, M. Vachharajani, and D. I. August. Compiler optirtitmaspace exploration. In
J. of Instruction-level Parallelisinvolume 7, January 2005.

[110] Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajamg David I. August. Compiler
optimization-space exploration. Proceedings of the international symposium on Code genera-
tion and optimization (CGQO’03)pages 204-215, Washington, DC, USA, 2003. IEEE Computer
Society.

[111] Nicolas Vasilache.Scalable Program Optimization Techniques in the Polyhedra Mo@#D
thesis, University of Paris-Sud 11, 2007.

[112] Nicolas Vasilache, Cédric Bastoul, and Albert Cohen. Polyhemirde generation in the real
world. InProceedings of the Intl. Conf. on Compiler Construction (ETAPS CCIO8LS, pages
185-201, Vienna, Austria, March 2006. Springer-Verlag.

[113] Nicolas Vasilache, Cédric Bastoul, Sylvain Girbal, and Albert @ohéolated dependence anal-
ysis. InProceedings of the ACM Intl. Conf. on Supercomputing (ICS'G&jrns, Australia, June
2006. ACM.

[114] Nicolas Vasilache, Albert Cohen, and Louis-Noél Pouchet. #atitc correction of loop transfor-
mations. InIEEE Intl. Conf. on Parallel Architectures and Compilation TechniquesQPA7),
pages 292-302, Brasov, Romania, September 2007.

BIBLIOGRAPHY 157

[115] S. Verdoolaege, F. Catthoor, M. Bruynooghe, and G. Jass$eeasibility of incremental transla-
tion. Technical Report CW 348, Katholieke Universiteit Leuven DepamtraEComputer Science,
October 2002.

[116] Sven Verdoolaegelhe Integer Set Librany2008. http://www.kotnet.org/skimof/isl/user.html.

[117] Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent boec, and Maurice Bruynooghe.
Counting integer points in parametric polytopes using barvinok’s rationatifons.Algorithmica
48(1):37-66, 2007.

[118] Frédéric Vivien. On the optimality of Feautrier’s scheduling algorithmizuro-Par '02: Proceed-
ings of the 8th Intl. Euro-Par Conf. on Parallel Processimpgages 299-308, London, UK, 2002.
Springer-Verlag.

[119] Yevgen Voronenko, Frédéric de Mesmay, and Markus Plis€@mputer generation of general
size linear transform libraries. limtl. Symp. on Code Generation and Optimization (CGO’09)
March 2009.

[120] V. Weispfenning. Parametric linear and quadratic optimization by elimimaamber MIP-9404.
1994,

[121] T. Wiegand, G. Sullivan, and A. Luthra. Itu-t rec. h.264 — iso/ld@96-10 avc - final draft.
Technical report, Joint Video Team (JVT) of ISO/IEC MPEG and ITWTEG, May 2003.

[122] D. K. Wilde. A library for doing polyhedral operations. TechrdiBeport 785, IRISA, Rennes,
France, 1993.

[123] M. Wolf. Improving Locality and Parallelism in Nested LoopBhD thesis, Dept. of computer
science, Stanford University, California, 1992.

[124] Michael Wolf, Dror Maydan, and Ding-Kai Chen. Combining loopnsformations considering
caches and scheduling. MICRO 29: Proceedings of the 29th annual ACM/IEEE international
symposium on Microarchitecturpages 274—-286, 1996.

[125] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm.PinDI '91: ACM
SIGPLAN 1991 conference on Programming language design and ireptation pages 30-44,
New York, NY, USA, 1991. ACM Press.

[126] M. Wolfe. High performance compilers for parallel computingAddison-Wesley Publishing
Company, 1995.

[127] Pierre Wolper and Bernard Boigelot. An automata-theoretic apprtmpresburger arithmetic
constraints (extended abstract).SAS '95: Proceedings of the Second International Symposium
on Static Analysigpages 21-32, London, UK, 1995. Springer-Verlag.

[128] J. Xue. Transformations of nested loops with non-convex iterafi@aces.Parallel Computing
22(3):339-368, 1996.

[129] Y. Yaacoby and P.R. Cappello. Scheduling a system of affingnexace equations onto a systolic
array. InSystolic Arrays, 1988., Proceedings of the International Conferencpages 373-382,
May 1988.

