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Abstract

Sparse matrix-vector multiplication (SpMV) is a widely used ker-
nel in scientific applications as well as data analytics. Many GPU
implementations of SpMV have been proposed, proposing different
sparse matrix representations.

However, no sparse matrix representation is consistently supe-
rior, and the best representation varies for sparse matrices with dif-
ferent sparsity patterns. In this paper we study four popular sparse
representations implemented in the NVIDIA cuSPARSE library:
CSR, ELL, COO and a hybrid ELL-COO scheme. We analyze sta-
tistical features of a dataset of 27 matrices, covering a wide spec-
trum of sparsity features, and attempt to correlate SpMV perfor-
mance with each representation with simple aggregate metrics of
the matrices. We present some insights on the correlation between
matrix features and the best choice for sparse matrix representa-
tion.

Categories and Subject Descriptors C.4 [Performance of
Systems]: Modeling techniques

General Terms Performance

Keywords SpMV, GPU, Characterization

1. Introduction

Sparse matrix-vector multiplication is at the heart of numer-
ous scientific methods, including iterative solvers on sparse
linear systems [3]. A number of previous studies have fo-
cused on efficient implementation of the SpMV operation,
on multi-core CPUs and GPUs [1, 2,4, 6,7, 13, 15, 18-21].

GPU implementations of SpMV is attractive because of
the high internal GPU bandwidth and massive computation
power available. Efforts to integrate sparse computations
include NVIDIA cuSPARSE [9], which we focus on in this
work. A particularly challenging aspect of optimizing SpMV
is that the performance profile depends not only on the
characteristics of the target platform, but also on the sparsity
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structure of the matrix, as we show in this paper. Despite
the significant advances in performance of SpMV on GPUs,
selecting the most efficient sparse representation for a given
matrix remains a significant challenge.

We focus on four representations implemented in the
NVIDIA cuSPARSE library [9]: CSR [5], ELLPACK (ELL)
[16], COO, and a hybrid ELL-COO (HYB) [6], on an
NVIDIA K40c GPU. We gathered a set of 27 sparse matri-
ces, covering a spectrum of application domains and sparsity
features. We evaluate the SpMV kernel performance of each
of the four schemes implemented in cuSPARSE, for each
matrix in our dataset, to determine which representation per-
forms best. By analyzing and correlating sparsity features to
the best performing representation, we seek insights on how
to determine a priori the sparse representation delivering
the highest SpMV kernel GFLOP/s. We make the following
contributions:

¢ a performance evaluation of 4 SpMV representations im-
plemented in the NVIDIA cuSPARSE library, on a high-
end K40c GPU;

e a study of the correlation between sparse matrix features
and the best kernel GFLOP/s for each representation;

e an empirical rule to select a priori the best representation
on the studied dataset, based on the density and standard
deviation of the number of non-zero elements per row.

The paper is organized as follows. Sec. 2 presents SpMV
formats; Sec. 3 discusses the sparse matrix dataset we use;
Sec. 4 characterizes the SpMV kernel performance for all
covered cases; Sec. 5 discusses the selection of the best
representation, and future work; related work is discussed
in Sec. 6; we conclude in 7.

2. Background
2.1 Sparse Matrix-Vector Computations

SpMV is a Level-2 BLAS operations between sparse matri-
ces and dense vectors, described by Equation 1.

y=axop(Ad) xz+pBxy (1

In our study, « = S = 1, A is a two-dimensional
sparse matrix, x and y are one-dimensional dense vectors,
and op() is the identity operation. Thus, the SpMV equation
is simplified as y = A x x + y. Looking at the element-wise
operation, where a; ; € A, we have:
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Figure 1. Sparse storage representations for matrix A in COO, CSR, ELL and HYB.
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The SpMV algorithm by nature has low arithmetic inten-
sity (i.e. AI which is defined as total flops per total DRAM
bytes moved). It is typically bandwidth-bound, and due to
the excellent GPU bandwidth, it has been a good candidate
for GPGPU implementations [10]. For an n xn sparse matrix
with total of nnz non-zero values, the algorithm performs
2 x nnz flops for which a total of nnz + 2 x n words are
moved. When nnz >> n the AI moves towards % as shown
by Equation 3.
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Sparsity in the matrix A leads to irregularity (and thus
lack of locality) when accessing a; ; elements. Thus, even
with optimal reuse for = and y elements, it is the accesses
to matrix A (and thus the low arithmetic intensity) of SpMV
that will significantly impact final execution time of a kernel.

2.2 Sparse Matrix Representations

To improve space utilization as well as temporal local-
ity, many storage representations for the sparse matrix A
have been proposed. The cost of transforming the input ma-
trix into a more complex representation introduces a “pre-
processing” phase which is normally amortized for itera-
tive SpMV operations (e.g. iterative linear solvers). In this
work, we do not take into account this pre-processing time
and focus only on the performance of the SpMV opera-
tion. However such pre-processing may become unafford-
able if the input matrix changes frequently during the overall
computation. Some of the well-established representations

(for iterative and non-iterative SpMV) are implemented and
maintained in the NVIDIA cuSPARSE library [9] which we
explain in further details next.

2.2.1 Coordinate Representation (COO)

COO is most natural way of storing a sparse matrix by using
three dense vectors: one to store the non-zero values, and
two auxiliary vectors for storing column and row indexes of
every non-zero elements. Figure 1 demonstrates how a given
matrix A can be transformed into COO representation. For
a given matrix with nnz non-zero values, the total memory
space required for COO is 3 X nnz (as listed in Table 1).

2.2.2 Compressed Sparse Row Representation (CSR)

Depending on the sparsity of the A matrix, it is possible
to have very few rows with many data points (e.g. power-
law matrices). For such cases, storing a row index for every
element will be inefficient. Instead, one can only store the
number of data points in each row. Inspired by this, CSR
compresses the row index array such that non-zeros of row ¢
as well as their column indexes can be found respectively
at values and col_index vectors, and in index r where
row_of fsetfi] < r < row_of fset[i + 1]. As one of the
simplest and most widely used representation, CSR only
requires 2 X nnz + m + 1 of sparse to store values and
row/col indexes (as shown in Figure 1). CSR-Vector [5,
6] is the currently available implementation of CSR in the
cuSPARSE library [9].

2.2.3 ELLPACK Representation (ELL)

For the sparse matrices with similar nnz non-zeros per row,
ELL [16] was proposed to convert the matrix into a rectan-
gular shape by shifting the non-zero values in each row to
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Figure 2. Matrix features: %nnz, ;1 and o (sorted by increasing p, logscale)

the left. Then, each row is zero-padded such that all the rows
have the same width as the row with the largest number of
non-zeros. In addition to the padded values matrix, the rep-
resentation requires an index matrix to store the correspond-
ing row/col index for every non-zero element (as shown in
Figure 1). As listed in Table 1, the ELL representation could
be space inefficient, especially when there are very few wide
rows and many very narrow ones.

2.2.4 Hybrid COO-ELL Representation (HYB)

HYB is a combination of ELL and COO representations.
The idea is to partition the matrix into two parts: a dense
part to be processed with ELL and a sparse part where
COO could be most effective. Depending on the non-zero
distribution of the matrix, a “cut-off” point is defined (i.e.
k parameter) such that first £ non-zero from each row are
dedicated to the ELL part. If a row has less than k& non-
zeros, then it is zero-padded (shown in Figure 1). Note that
the choice of the cut-off point is matrix-dependent and could
impact the overall performance.

Representation Space Required
COO 3 X nnz
CSR 2xnnz+m+1
ELL 2 X m X mazxr_nnz
HYB 2xmxk+3x(nnz—X)

Table 1. Memory space required for every storage represen-
tation, in single-precision (4-byte). Matrix A is m x n with
nnz nonzero values. k is the cut-off point for ELL/COO par-
titioning in HYB where X nonzero values left for COO.

3. Sparse Matrices Evaluated
3.1 Dataset of Sparse Matrices

The 27 sparse matrices are selected from the Williams and
LAW groups in the UFL repository [11] as well as some
other groups. These matrices have been used in previous
studies [1, 2, 6, 7, 20]. The matrices represent a vast range of
sparsity (i.e. diagonal, blocked, banded-diagonal, etc) from
different application domains. Table 2 shows key character-
istics of the evaluated sparse matrices including name, size
(number of rows and columns), non-zero distribution param-
eters (i.e. total number of non-zeros, min/max of non-zero
per row, mean p and standard deviation o of non-zeros per

row), and a snapshot that graphically demonstrates the spa-
tial distribution of non-zero values in the sparse matrices.

3.2 Feature Analysis

We now dig into the various features for the dataset we
consider. Figure 2 plots for 26 of the matrices the values of
three features: y, the arithmetic mean of non-zero entries in
a row, o the standard deviation of non-zero entries per row,
and %nnz the total fraction of non-zero entries in the entire
matrix. We have removed LP for easier plotting due to its
extreme value for p. The matrices are sorted by ascending
value of p, and features are shown using a log-scale.

First we observe the relatively even distribution of our
dataset along the p feature, covering well the range 3 — 100.
There are however clusters of matrices with similar y values,
as shown with matrices having almost the same y value on
this plot. On the other hand, the o distribution is not even
relative to p: for large values of 1 we have mostly o < u
cases, and for small values of ;1 we have mostly o > p
cases. It remains to be determined if these are fundamental
properties of the applications modeled by those matrices, or
if our dataset should be extended to cover more o cases.

We also plot for each matrix its associated fraction of
non-zero elements, %nnz. We observe a partial decorrelation
between the value of p and %nnz in our dataset:  is not an
accurate predictor of %nnz, as shown by the lack of ordering
of the %nnz points. However, a trend is that for the highest
values of p (the 6 matrices on the right) a higher value of
9onnz is observed: in these cases %nnz is above 0.01% that
is at least one every 10,000 matrix element is non-zero, while
this fraction is generally an order of magnitude smaller for
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Figure 3. Matrices %nonzeros (nnz)

Figure 3 plots only the %nnz feature, sorting the matrices
in increasing value of this feature. We observe also a rela-
tively even distribution of our dataset along this feature. In
later sections we will show that %nnz is actually an excel-
lent discriminant to determine which of CSR, ELL, COO or
HYB should be used to get best performance.



Matrix I Non-Zeros (NNZ) Distribution [

(Abbrv,) Row x Col [z @ [Min [ Max | 5 T o ] Spyplot
“(';ﬁ?zo)z 18.5Mx 185M | 298.IM | 00001 | 1 | 2450 | 161 | 267
ljournal-2008 SAMx54M | 790M | 00003 | 1 | 2469 | 147 37
(LJ8)
We(b‘s’;]f:;)' M IMx 1M 3IM | 00003 | 1 | 4700 | 31 | 253
indochina-2004 | 7 \\r7aM | 1940M | 00004 | 1 | 6985 | 262 | 2156
(IND)
Y&”(‘)‘i?)e 1.2Mx 1.2M 49M 0.0004 1 28644 | 43 48.3
fFICLkIr) 19Mx19M | 226M | 00007 | 1 | 26185 | 122 | 1011
m(cEzl‘,‘Ie)Pi 526Kx526K | 2M | 00008 | 2 4 4 0.1
iIEiZN(L(;“ 14Mx14M | 169M | 00009 | 1 7753 | 122 | 372
am&)\xi-zz?os 735Kx735K | 52M | 00010 | 1 10 7 39
(V“‘jilkli() 1OMx19M | 400M | 00011 | 1 | 6975 | 21.1 | 416
dlzil)’iff)lo 326K x 326K 1.6M | 00015 | 1 238 5 7.7
1?;1‘3%? 66K x 66K 105K 0.0024 1 2639 1.6 21.1
e(‘ﬁ?sof 86K x 86K 192M | 00026 | 1 | 6985 | 223 | 293
macfe(%’gé‘)”dsoo 207Kx207K | 12M | 00030 | 1 44 62 44
C?gé(l)go 326K x 326K 32M | 0.0030 1 2716 9.9 20.5
S(CéfICR”;‘ 171K x 171K 959K 0.0033 1 353 5.6 44
(%‘I{I‘i‘{‘) 69K x 69K 276K 0.0058 1 1392 4 28.3
PO, | LIMx LIV | 1139M | 00088 | 1| 11468 | 999 | 2717
C‘ZFAZCOE? 121K x 121K 26M | 00179 | 8 81 217 13.8
(gyl‘l‘\}) 218Kx218K | 11.6M | 00245 | 2 180 | s34 | 47 | .
“‘z‘SPf{tel 141K x 141K 7.8M 0.0394 | 24 102 55.5 11.1 \
(qé‘gf)‘; 49K x 49K 19M | 00793 | 39 39 39 0
consph 83K x 83K 6.0M 0.0865 1 81 72.1 19.1 \
(SPH) N
( é‘j&) 62K x 62K 4.0M 0.1028 1 78 64.2 14.1 \\
&“Xi{’) 46K x 46K 2.3M 0.1082 4 145 50.7 27.8 \
ey 4KX1.IM 113M | 02410 | 1 | 56181 | 2633 | 42093 | ——
p((llt;izlgs 36K 36K 43M | 03276 | 18 | 204 | 1193 | 319 \\\

Table 2. Set of matrices used in this study (nnz: non-zero, 14 mean, o standard deviation)

4. Kernel Performance Characterization tions such as SpMV) as well as its peak compute capability
of 4.3 TFLOP/s (single-precision fused multiply-add).

41 E imental Protocol
xpertmentat £ rotoco The kernels are compiled by the NVIDIA C Compiler

In this study, we use one of the recent NVIDIA Tesla GPUs (nvcc) version 6.5, with the maximum compute capability
from the Kepler generation, Tesla K40c, as described in Ta- supported (i.e. 3.5 for the Kepler GPUs). We have also en-
ble 3. This GPU is characterized by its peak global memory abled standard optimizations using —O3 switch.

bandwidth of 288 GB/s (which helps memory-bound opera-



[ GPU Model | TeslaK40c |
Architecture Kepler GK110B
Compute capability 35
#SMXs, cores per SMX 15,192
Warp size 32
Max threads / CTA,SMX 1024,2048
Sh-mem (KB) per CTA 48
L2 cache (KB) 1536
Total global memory (MB) 12288
Peak off-chip BW (GB/s) 288
Peak GFLOP/s (DP FMA) 1430

Table 3. GPU hosted the experiments.

We have selected four major sparse representations on
GPUs available from the NVIDIA cuSPARSE library [9].
Each matrix is first read in Matrix Market representation
[14] and stored in COO. We then convert COO to CSR
from which every other representation used in this study
has been generated. In our experiments we capture the time
for transforming CSR into a target representation, and also
the time consumed transferring data between CPU and GPU
and the time spent executing the kernel. In this study, we
focus only on the kernel performance (GFLOP/s), for each
representation. The question we are eventually interested
in answering is: given the sparsity features of the matrix,
what is the most compute-efficient representation for SpMV
usage. We focus on SpMV schemes where the sparse matrix
fits in the GPU’s global memory.

We report performance in terms of computation rate (as
number of floating point operations per second in GFLOP/s).
Each SpMYV experiment was repeated 100 times and the av-
erage (arithmetic mean) is reported. Below, we first charac-
terize the kernel performance, for each representation con-
sidered. We then compare the effectiveness of each repre-
sentation on the same matrix later in Sec. 5.

4.2 Kernel Performance for CSR

Figure 4-A plots the GFLOP/s achieved by the SpMV com-
putation for all matrices in our dataset, where matrices are
sorted by increasing g value. Figure 4-B plots the same data,
but sorted by increasing o value.

We observe that CSR achieves a performance above 10
GFLOP/s for more than 16 of the matrices, however a per-
formance below 6 GFLOP/s is achieved for 7 of them. Al-
though there are clear outliers, the GFLOP/s trend mainly
follows the p value: the higher the mean number of non-
zeros per row, the higher the GFLOP/s achieved by CSR.
This trend however is not verified for o: there is no particu-
lar ordering of performance shown in Fig. 4-B.

A key concern about the implementation of CSR [5, 6]
is the work distribution (i.e. how nonzeros are assigned to
threads). In the CSR representation, a row is assigned to a
warp of threads (i.e. group of 32). Thus, a balanced execu-
tion across threads would require matrix rows to have large-
enough nonzeros, in order to avoid divergence between the
threads in a warp. A high p with a relatively low o is ex-
pected to provide a balanced execution.

4.3 Kernel Performance for ELL

Figures 4-C:D plot similar data for the ELL representation.
Numerous matrices are reported as 0 GFLOP/s as attempting
to convert the input CSR matrices to this representation
exhausted memory in our setup. This is typical for cases with
at least one row with a very large number of non-zero (e.g.,
YOU), due to how ELL is generated.

We observe that for most of the matrices where ELL was
applicable, ELL significantly outperforms CSR. This is par-
ticularly visible for high values of the y spectrum (QCD to
SPH), however not for the highest values. For lower values
of p, CSR generally outperforms ELL. Fig. 4-D provides in-
teresting possible correlation between the ability to perform
ELL conversion in our setup and/or get good performance,
and the value of ¢: matrices for which ELL provides good
GFLOP/s are almost all for small values of 0. The ELL rep-
resentation requires building rectangular matrices (from the
input sparse matrix) by padding all the rows to be equivalent
in size to the one with maximum nnz. This leads to waste of
cycles for useless computation and and transfer (for padded
zeros). It also significantly increases the storage space (i.e.
when nonzero distribution in rows is non-uniform). Inter-
estingly however, GFLOP/s do not correlate fully with the
mazx — p metric (which gives the average padding needed),
as shown with the higher performance for WIN than for
AMZ.

4.4 Kernel Performance for COO

Figures 4-E:F plot similar data for the stand-alone COO
representation.

We observe a fairly consistent GFLOP/s achieved by
COO, but the absolute performance remains limited: it is
essentially between 6 and 12 GFLOP/s (except three lower
performing matrices). There is a partial correlation between
1 and the GFLOP/s, as for more than 2/3 of the matrices the
higher the i value the higher the GFLOP/s. However in our
experiments COO never outperformed both CSR, ELL and
HYB for any single matrix, as shown below with the HYB
results.

The nonzero-to-thread mapping in COO is done such that
every GPU thread works on a nonzero element. As a result,
it is required to perform atomic operations in order to collect
contributions of those threads working on elements from the
same row. Additionally, an non-even distribution of nonze-
ros per row (i.e. high value of o) may significantly decrease
the performance because of unbalanced executions across
threads. Solutions as segmented reduction [6, 17] have been
proposed to decrease the atomic overhead, but the perfor-
mance is still not completely invariant to the distribution of
the nonzeros per row [6].

4.5 Kernel Performance for HYB

Figures 4-G:H plot similar data for the HYB representation,
which automatically mixes ELL and COO.

We observe that the HYB representation can significantly
outperform CSR, especially for the matrices where CSR
was unable to achieve good performance, e.g. ENR and
YOU. It is expected as HYB is a hybrid combining the best
of ELL and COQO. Cases where CSR fails to deliver good
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Figure 4. Performance (GFLOP/s): matrices are sorted by increasing p (left) and by increasing stgma (right).

performance are often very well handled by either ELL or
COO. However, HYB is not systematically best either: it
is (significantly) outperformed by CSR for 4 matrices, and
outperformed by ELL in 5 other cases. While Fig. 4-G shows
a somewhat general trend of higher GFLOP/s for higher
value of p, conversely Fig. 4-H shows a partial trend of lower
GFLOP/s for higher values of 0.

The HYB representation automatically selects a cut-off
point (i.e. k) for separation of dense (i.e. ELL) and sparse
(i.e. COO) parts of a matrix. Such a parameter (which is usu-
ally found experimentally) is dependent to the target GPU as
well as the input matrix. However, we have observed that for
most of the matrices, using the i value as the cut-off point
achieves a better performance than what found by the library.
Carefully selecting such a parameter is key to success of us-
ing the HYB for a given matrix.

4.6 Conclusions

This study allowed to conclude on several aspects. First,
no representation consistently dominates the other ones. In
other words, a selection of the best representation done on
a per-matrix case can lead to significantly better perfor-
mance. Second, there is a general (but not systematic) trend
of higher GFLOP/s being achieved for higher values of 1, es-
pecially when discarding the low-end and high-end of the p
range. While this is an important finding, it however does not
facilitate the actual selection of the best representation for a
particular matrix, as all four representations studied have a
similar trend. In the next section we discuss the various rep-
resentations, and show that %nnz is a good first-order metric
to determine the best representation to use.

5. Features vs. Performance
5.1 Selecting the Best Representation

It has been observed in numerous previous works that no sin-
gle representation achieves the best performance on all ma-

trices. Hence an open question is: how to select which rep-
resentation performs best, given feature information about
a matrix? The characterization we have performed in the
previous section illustrates such differences in representa-
tion, focusing exclusively on the kernel performance (we ig-
nore the pre-processing time needed to convert from one to
another representation in this study). In the following, we
correlate the %nnz feature with the best representation to
choose for a majority of matrices.

5.2 The Role of the Fraction of Non-zero Entries

Figure 5 plots the kernel performance for the three useful
schemes (CSR, ELL and HYB), for each matrix. We do
not report COO as our previous study showed COO never
outperforms all three other schemes on our dataset.

While g had a loose correlation with the GFLOP/s
achieved for all representations and o showed no clear
correlation, here we take a different approach and observe
whether there is any correlation with the proportion of non-
zero entries in the matrix.

A key observation is that, on our dataset, we can partition
the %nnz range into three sets:

S1 where %nnz € [0 — 0.00035]: this set contains UK2 and
LJ8 matrices.

S2 where %nnz € [0.00036—0.009]: this set contains WEB,
IND, YOU, FLI, EPI, IN4, AMZ, WIK, DBL, INT, EUS,
ECI, CNR, CIR, ENR and HLW matrices.

S3 where %nnz € [0.009 — 0.35]: this set contains ACC,
WIN, SHI, QCD, SPH, CAN, HAR, LP and PRO.

From this partitioning into three sets, the following rules
hold broadly: use CSR for S1, use HYB for S2, use ELL
for S3. This extremely simple model successfully selects the
best representation to use for all matrices except LP, WIN,
HLW, and IND, i.e., it correctly selects the best representa-
tion for 23 out of the 27 evaluated matrices.
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Figure 5. Comparison of performance (GFLOP/s), matrices are sorted by increasing %nnz

We can look further to the four incorrectly classified
matrices. Table 4 recalls the specific features for these three
matrices, which representation was predicted from the %nnz
model, which representation performs best and how much
performance improvement the best representation achieves
over the predicted one.

[ Matrix [ %nnz [ p | o [ Pred. | Best [ Improv. |
LP 0.241 2633 4209 ELL | HYB 22X
WIN 0.0245 53.4 4.7 ELL | HYB 1.05x
HLW 0.0088 | 99.9 | 271.7 HYB | CSR 1.45x
IND 0.0004 | 26.2 | 215.6 HYB | CSR 1.16x

Table 4. Three outliers to %nnz model

An interesting observation is that the three matrices with
highest loss in performance have the highest o values of the
entire dataset (LP, HLW and IND), and LP has the highest
1 value of the entire dataset, an order of magnitude higher
to the next highest one. On the dataset we have, it appears
that if ¢ > 200 then the %nnz rule does not work. We
also remark that for IND, although CSR outperforms the
predicted HYB, it is only by a marginal fraction. Actually
IND is at the boundary of the range between CSR and HYB.
The case of HLW is more interesting: it is at the boundary
between HYB and ELL, however CSR is the better model,
1.45x faster than HYB. It shows that although CSR seems
most appropriate for small values of %nnz, it may also be
best for higher values of %nnz when o is large. WIN is at
the boundary between HYB and ELL, and only a marginal
improvement is obtained by using HYB. However one may
note that, apart from ACC, there is usually only at best a
small advantage to ELL compared to HYB in our dataset.

LP on the other hand is a case of dramatic failure of our
model: ELL gives the worst performance of the three, and
HYB is 22x faster than ELL on this code. LP has the highest
o of all, and it is interesting to note that CSR is competitive
on LP: it is only 1.3x slower than HYB.

5.3 Summary and Future Work

We have shown above how a very simple model, based on
the fraction of non-zero entries in the matrix, can actually be
used to determine which of the three representations (CSR,
ELL and hybrid COO-ELL) should be used to achieve the
best kernel GFLOP/s. This is a surprising result due to its
simplicity, but we have found clear outliers. Clearly, we

need to consider a more sophisticated model, which could
take into account other information such as the mean and
standard deviations of the number of non-zeros per row.
From the study presented in this paper, several directions for
future work are of interest:

1. The role of ¢ in the selection of the best representation
needs to be further studied. In particular, we will consider
increasing the matrix dataset considered with more ma-
trices having higher values of o, to study its correlation
with the best representation.

2. The working ranges for the three representations has been
manually derived, and is obviously very dependent on the
dataset we have considered. As future work we will em-
ploy machine learning techniques (classifiers) to system-
atically compute a decision tree to select the best rep-
resentation. It appears this decision will at least need to
take into account %nnz and o in an integrated way. But
an open question is whether this decision tree is unique
with regard to the features of the matrices, or if it also
depends on the GPU architectural parameters.

3. There is also significant interest in incorporating the pre-
processing cost for alternate representations in modeling
the choice of best representation. For instance, assuming
CSR is used as input, it may be profitable to switch
to ELL only if the SpMV kernel is iteratively invoked.
We will look into a model that determines how many
iterations of SpMV are needed to make a change of
representation worthwhile.

6. Related Work

Sparse storage representations have been studied extensively
for CPUs [18, 19] as well as GPUs [6, 8, 9] and accelerators
[13]. For the GPUs, the optimizations have been targeted
at the features of the architecture. GPU implementation of
sparse representations are significantly impacted by the work
distribution strategy (i.e. the way nonzeros are mapped to the
thread-blocks and threads).

In addition to the standard representations from NVIDIA
cuSPARSE [9] studied in this paper (i.e. COO, ELL, CSR
and HYB), other alternatives have been proposed. In gen-
eral, and from the application perspective, sparse representa-
tions have moved towards more complex data structures for
which a heavy pre-processing is required [2, 7, 12, 20, 21].



This is desirable when SpMV is run for several iterations
(as opposed to where the input matrix changes frequently,
e.g. dynamic graphs [1]). However, in addition to the data-
structure and work distribution, GPU implementations may
rely heavily on auto-tuning algorithms to find the best kernel
configuration as well as runtime parameters [15, 20].

Our objective in this paper is not to introduce any new
representation but to seek to understand how performance is
related to sparsity features of the input dataset. Although this
study was limited to the standard representations available in
NVIDIA cuSPARSE [9], such analysis and observations can
be expanded for other available representations (as future
work).

7. Conclusion

Libraries implementing efficient SpMV operations on GPUs
have been developed with a focus on efficient representation
and exploitation of matrix sparsity. NVIDIA cuSPARSE im-
plements several such representations, such as CSR, ELL-
PACK, COO and a hybrid scheme ELL-COO.

In this work we have evaluated 27 different sparse matri-
ces on each of the four cuSPARSE schemes, characterizing
the SpMV kernel performance in each case. By reasoning on
matrix features such as the mean and standard deviation of
the number of non-zeros per row, and the fraction of non-
zero elements in the matrix, we have observed a good cor-
relation between %non-zeros and the best performing repre-
sentation on our dataset, enabling a priori choice of the best
sparse representation for iterative SpMV schemes in many
of our test cases. However we found clear outliers using this
simple approach, motivating the need for future work to de-
velop more sophisticated models taking into account several
matrix features, as well as to cover a wider range of matrices
to gain statistical confidence in the classification heuristics.

Acknowledgments This work was supported in part by
National Science Foundation awards CCF-0926127, CCF-
1217353, CCF-1321147, ACI-1440749, and DMS-1418265.

References

[1] A. Ashari, N. Sedaghati, J. Eisenlohr, S. Parthasarathy, and
P. Sadayappan. Fast sparse matrix-vector multiplication on
gpus for graph applications. In SC’14, pages 781-792, 2014.

[2] A. Ashari, N. Sedaghati, J. Eisenlohr, and P. Sadayappan.
An efficient two-dimensional blocking mechanism for sparse
matrix-vector multiplication on gpus. In ICS’14, 2014.

[3] S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik,
M. G. Knepley, L. C. Mclnnes, B. F. Smith, and H. Zhang.
PETSc Web page, 2013. http://www.mcs.anl.gov/petsc.

[4] M. M. Baskaran and R. Bordawekar. Optimizing sparse
matrix-vector multiplication on gpus. In Technical report,
IBM Research Report RC24704 (W0812-047), 2008.

[5] N. Bell and M. Garland. Efficient sparse matrix-vector mul-
tiplication on CUDA. NVIDIA Technical Report NVR-2008-
004, NVIDIA Corporation, 2008.

[6] N. Bell and M. Garland. Implementing sparse matrix-vector
multiplication on throughput-oriented processors. In Confer-
ence on High Performance Computing Networking, Storage
and Analysis, 2009.

[7]1 J. W. Choi, A. Singh, and R. W. Vuduc. Model-driven au-
totuning of sparse matrix-vector multiply on GPUs. In ACM
SIGPLAN Symp. Principles and Practice of Parallel Program-
ming (PPoPP), January 2010.

[8] CUSP. The nvidia library of generic parallel algorithms
for sparse linear algebra and graph computations on cuda
architecture gpus. https://developer.nvidia.com/cusp. URL
https://developer.nvidia.com/cusp.

[9] cuSPARSE. The nvidia cuda sparse matrix li-
brary.  https://developer.nvidia.com/cusparse. URL
https://developer.nvidia.com/cusparse.

[10] J. Davis and E. Chung. Spmv: A memory-bound application
on the gpu stuck between a rock and a hard place. Microsoft
Research Technical Report MSR-TR-2012-95, Microsoft Re-
search, 2012.

[11] T. A. Davis and Y. Hu. The university of florida sparse matrix
collection. ACM Trans. Math. Softw., 38(1):1:1-1:25, Dec.
2011.

[12] J. Godwin, J. Holewinski, and P. Sadayappan.  High-
performance sparse matrix-vector multiplication on gpus for
structured grid computations. GPGPU-5, 2012.

[13] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey. Effi-
cient sparse matrix-vector multiplication on x86-based many-
core processors. International conference on supercomputing,
pages 273-282, 2013.

[14] N. I. of Standards and Technology. The matrix market format.
URL http://math.nist.gov.

[15] I. Reguly and M. Giles. Efficient sparse matrix-vector mul-
tiplication on cache-based gpus. In Innovative Parallel Com-
puting (InPar), pages 1-12, 2012.

[16] D. M. Y. Roger G. Grimes, David Ronald Kin-
caid. ITPACK 2.0: User’s Guide. 1980. URL
http://books.google.com/books?id=h8RcNAAACAAJ.

[17] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan
primitives for gpu computing. In Graphics Hardware, pages
97-106, 2007.

[18] R. W. Vuduc. Automatic performance tuning of sparse matrix
kernels. PhD thesis, University of California, January 2004.

[19] S. Williams, L. Oliker, R. W. Vuduc, J. Shalf, K. A. Yelick,
and J. Demmel. Optimization of sparse matrix-vector multi-
plication on emerging multicore platforms. Parallel Comput-
ing, 35(3):178-194, 2009.

[20] S. Yan, C. Li, Y. Zhang, and H. Zhou. yaspmv: Yet another
spmv framework on gpus. In Proceedings of the 19th ACM

SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 107-118. ACM, 2014.

[21] X. Yang, S. Parthasarathy, and P. Sadayappan. Fast sparse
matrix-vector multiplication on gpus: implications for graph
mining. Proc. VLDB Endow., 4(4):231-242, January 2011.



