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Abstract
Many applications feature a mix of irregular and regular computa-
tional structures. For example, codes using adaptive mesh refine-
ment (AMR) typically use a collection of regular blocks, where the
number of blocks and the relationship between blocks is irregu-
lar. The computational structure in such applications generally in-
volves regular (affine) loop computations within some number of
innermost loops, while outer loops exhibit irregularity due to data-
dependent control flow and indirect array access patterns. Prior ap-
proaches to distributed memory parallelization do not handle such
computations effectively. They either target loop nests that are com-
pletely affine using polyhedral frameworks, or treat all loops as ir-
regular. Consequently, the generated distributed memory code con-
tains artifacts that disrupt the regular nature of previously affine
innermost loops of the computation. This hampers subsequent op-
timizations to improve on-node performance.

We propose a code generation framework that can effectively
transform such applications for execution on distributed memory
systems. Our approach generates distributed memory code which
preserves program properties that enable subsequent polyhederal
optimizations. Simultaneously, it addresses a major memory bottle-
neck of prior techniques that limits the scalability of the generated
code. The effectiveness of the proposed framework is demonstrated
on computations that are mixed regular/irregular, completely regu-
lar, and completely irregular.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Code generation

Keywords Distributed Memory, Inspector/Executor, Polyhedral
Compilation, Irregular Computation

1. Introduction
Automatic parallelization of applications to target distributed mem-
ory systems remains a challenge for modern optimizing compilers.
Recent developments in polyhedral compilation techniques [12, 17,
36] have addressed this problem in the context of affine compu-
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1 #pragma parallel
2 for( k = 0; k < nf; k++ ){
3 fID = fine_boxes[k];
4 cID = ftoc[k];
5 for(i=start_y[fID]/2; i< end_y[fID]/2; i++)
6 for(j=start_x[fID]/2; j< end_x[fID]/2; j++){
7 int fy = 2*i - start_y[fID];
8 int fx = 2*j - start_x[fID];
9 int cy = i - start_y[cID];

10 int cx = j - start_x[cID];
11 phi[cID][cy][cx]=(phi[fID][fy][fx]+phi[fID][fy][fx+1]

+phi[fID][fy+1][fx]+phi[fID][fy+1][fx+1])/4.0; } }

Listing 1. Example from AMR
tations. However, many scientific computing applications are out-
side the scope of such transformations due to data dependent con-
trol flow and array access patterns. Such computations are handled
more effectively by the inspector/executor technique pioneered by
Saltz et.al. [15, 46], and extended in [35]. Here, the compiler gen-
erates an inspector to analyze and partition the computation at run
time. The generated executor uses the information collected by the
inspector to execute the original computation in parallel. While ef-
fective for non-affine computations, applying these techniques di-
rectly to affine codes results in unnecessary inspector overheads.

More challenging are codes that have a mix of both affine
and non-affine program regions, such as the example in Listing 1.
This code is representative of Adaptive Mesh Refinement (AMR)
computations in packages such as Chombo [14]. Here, the physical
domain is divided into rectangular boxes which span the domain.
Each box is further discretized using a structured grid, with values
of physical quantities associated with each grid point. To capture
sharp variation in these values, additional boxes that use a finer grid
might be employed over those regions. These boxes (referred to as
fine boxes) are co-located with boxes which use the coarser grid
(referred to as coarse boxes). The outer loop in Listing 1 (loop k)
iterates over all fine boxes and updates the values at grid points
of a coarse box using values at grid points of a co-located fine
box. Arrays such as fine boxes and ftoc are used to index into
data structures that contain data for individual boxes—e.g., arrays
start x and phi. Such arrays are known as indirection arrays.
Using such arrays makes the computation within loop k irregular
(or non-affine) since the control flow and data access pattern is
known only at run time. Loops i and j are regular (or affine)
since a standard stencil computation is used within them to update
the value of phi at a grid point. Regular loops can be analyzed
statically. Such a pattern of mixed irregular/regular computations
is quite common in scientific applications.

Loop k in Listing 1 iterates over the set of fine boxes. The com-
putation on each box can be performed independently. The loop
is therefore parallel and its iterations can even be executed across



1 loop_j=0;
2 for( k = ....)
3 for( i = ....){
4 offset = access_phi_0[loop_j] - lb[loop_j];
5 for( j = lb[loop_j] ; ...){
6 phi_l[offset+j] = phi_l[access_phi_1[body_j]]...
7 body_j++; }
8 loop_j++; }

Listing 2. Snippet of executor code from [35]

nodes of a distributed memory system. Due to data dependent loop
bounds and array access patterns, automatic parallelization using
purely static analysis cannot be employed here. Inspector/execu-
tor approaches developed in [35] can transform such codes, but
they do not effectively handle parts of the code that are regular; for
example, they do not recognize that for every iteration of loop k,
phi[cID][cy][cx] accesses a rectangular patch of the array, or
that the accesses on the right-hand side of the statement at line 11
represent a stencil operation. Without this information, expensive
run-time analysis is needed to gather needed information for dis-
tributed memory parallel execution. For example, in [35], to access
elements of a local array in a manner consistent with the origi-
nal computation, traces of index expressions are generated by the
inspector and used in the executor. Listing 2 shows a snippet of
the generated executor code. phi l is the local data array cor-
responding to phi. Arrays access phi 0 and access phi 1
store the traces (i.e., sequences of run-time values) for the index ex-
pressions used in phi[cID][cy][cx] and phi[fID][fy][fx],
respectively. Two problems are apparent even in this simplified ex-
ample. First, generating, storing, and reading the large run-time
traces for each array access expression is memory intensive and
can significantly reduce the performance and scalability of the gen-
erate code. Further, the generated executor code does not maintain
the structure of regular parts of the original code. This limits the
composability of this technique with a wide variety of powerful
optimizations for affine code regions. For example, state-of-the-art
polyhedral compilers (e.g., PolyOpt [29]) can optimize the compu-
tation within loop i in Listing 1, while the corresponding loop in
Listing 2 is outside the scope of such compilers.

The Sparse Polyhedral Framework [23, 43] aims to handle pro-
grams with a mix of affine and non-affine code regions by ex-
tending the polyhedral compilation framework. It uses uninter-
preted function symbols (UFS) to model indirect accesses. While
the framework is general enough to target a wide range of com-
putations, it requires UFSs to be invertible to generate code. Such
properties are hard to deduce statically, and typically are not true
for common uses of indirection arrays.

We propose a framework that effectively models and transforms
mixed irregular/regular computations for parallel execution on dis-
tributed memory systems. We focus on loops where the only depen-
dence between iterations are due to associative and commutative
reduction operations. In [35] such loops are refered to as partition-
able loops; we follow the same nomenclature in this paper. The de-
veloped compiler algorithms analyze the regular parts of such loops
statically. The generated inspector combines this information with
that obtained at run time for the irregular parts of the loop to ef-
fectively partition its iterations. Completely affine and completely
irregular computations are naturally expressed as special instances
of the framework. The developed compiler framework is based on
integer sets/maps/slices and has two important advantages:
1. By employing static models for regular-inner regions, it reduces

the inspector overheads by eliminating the need to generate
traces for affine array access expressions.

2. Unlike previous approaches, the executor code maintains the
structure of the regular parts of the computation, making it
amenable to further optimizations.

Compared to prior work, the proposed framework advances the
state of the art. Unlike polyhedral techniques for distributed mem-
ory parallelization of affine codes [12, 17, 36], it handles a much
broader class of computations. Importantly, this generality comes
“for free.” State-of-the-art polyhedral techniques can be easily in-
corporated into the developed framework with little or no overhead,
as demonstrated experimentally. On the other hand, compared to
modern inspector/executor techniques, exemplified by [35], our
framework avoids a major bottleneck: the need to generate traces of
access expressions for the regular-inner regions of the code. In the
worst case, such traces exhaust the available memory and make it
impossible to run the application. Our approach eliminates this bot-
tleneck and improves the scalability of the code generated through
inspector/executor techniques, as evident in our experiments. The
result is a unified framework that can handle both irregular and reg-
ular program regions seamlessly.

In summary, the contributions of this work are as follows:
• A framework that can effectively model computations which

exihibit an outer irregular/inner regular pattern;
• A code generation approach to improve the inspector/executor

scalability for distributed memory parallelization by eliminat-
ing the use of large memory intensive traces;

• A transformation approach that preserves regular code regions
in the generated code, enabling composability with polyhedral
optimizations; and

• Experimental evaluation on mixed regular/irregular, completely
regular, and completely irregular codes, demonstrating the ef-
fectiveness of the transformation framework.

2. Data Structures for Distributed Computations
Partitionable loops are annotated by the user as #pragma parallel,
as shown in line 1 of Listing 1. Annotated loops cannot be nested
within each other. All loops are assumed to have unit increments.
Loop bounds and array index expressions are assumed to depend
only on (1) iterator values, (2) values stored in read-only arrays,
referred to as indirection arrays, and (3) scalars that not modified
within the loop. Standard compiler techniques can be used to trans-
form loops, like loop k in Listing 1, to satisfy these requirements.

We first define all the data structures needed to generate the final
code executed in a distributed environment, namely,
• for a given processor, the set of iterations of the partitionable

loop(s) it executes;
• for a given processor and the iterations it executes, the set of

data elements accessed;
• for each data element, the processor owning that data.

Using classical inspector/executor approaches, several sets (typ-
ically in form of arrays) needed for the execution of the computa-
tion are populated using an inspector. On the other hand, when the
computation can be fully analyzed and partitioned statically, use of
an inspector is unnecessary since these sets can be derived at com-
pile time. Instead of developing a framework that addresses one or
the other based on the feature of the input program, we propose
a unifying framework based on integer sets and maps that capture
all the information needed to generate the distributed-memory pro-
grams. It captures in a single formalism, whether an inspector is
needed to populate these sets or not, and even when an inspector is
needed only for some parts of them.

2.1 Integer Sets and Maps
The two fundamental data structures used to represent computa-
tions and communications are sets of integer points and maps be-
tween two sets of integer points.



1 for (i = 0; i < N; ++i)
2 for (j = lb[i]; j < ub[i]; ++j)
3 S: c[i] += A[j] + B[col[j]];

Listing 3. Sample SpMV Kernel
2.1.1 Integer Sets
A convenient way to represent the dynamic instances of a statement
execution surrounded by for loops is to associate an integer point
in a multi-dimensional space for each statement instance, such that
its coordinates represent the value of the surrounding loop iterators
for that instance. This is a classical concept in affine compilation,
refered to as the iteration domain of a statement. A similar set of
integer points is used to describe the set of data elements accessed.
Here, the coordinates of each point captures the value used in the
subscript function of an array reference.

Definition 1 (Integer Set). An integer set S is a set of integer points
~x ∈ Zd. The dimensionality of the set is noted d, its cardinality is
noted #S. With ~x : (i1, ..., id) we note:

S : {(i1, ..., id) | constraints on i1, ..., id}
Standard operations on sets can be used, such as difference \, in-

tersection ∩ and union ∪, as well as computing its image through a
map/function. However, computing the result of these operations at
compile time depends on the structural properties of the set. There
exist numerous sub-categories of integer sets, each of which have
different properties regarding the ability to compute them at com-
pile time. When the constraints are a conjunction of affine inequali-
ties involving only the variables ii and parameters (constants whose
value is not known at compile time), then the set is a polyhedron
and all operations can be computed statically. A set defined using
disjunctions of affine inequalities is a union of convex polyhedra.
The intersection of a polyhedron and an integer affine lattice results
in a Z-polyhedron [18], which can also be computed statically us-
ing the Integer Set Library (ISL) [45]. For irregular computations,
where the constraints involve affine inequalities of variables, pa-
rameters and functions whose value depends only on the value of
their arguments, some operations may be computable at compile
time with the Sparse Polyhedral Framework [23] using UFS, and
an inspector. Finally, an inspector can be used to compute arbitrary
sets as well.

2.1.2 Set Slicing
One key operation to reason about distributing a computation is
slicing, i.e., taking a particular subset of a set. An integer set slice
SI is a subset of S that is computed using another integer set I.

Definition 2 (Integer Set Slice). Given an integer set S, the integer
set slice SI is SI = S ∩ I.

Slicing can be used to extract polyhedral subsets from an ar-
bitrary integer set. To achieve this we focus on a particular kind of
slicing where the set I is a polyhedron made only of affine inequal-
ities of the variables and parameters not occurring in the original
computation but which we introduce for modeling purposes. For
example, the iteration domain for the statement S in Listing 3, i.e.,
the set of dynamic instances of S can be written:

S = {(i, j) | 0 ≤ i < N ∧ lb[i] ≤ j < ub[i]}
The expressions lb[i] and ub[i] are not parameters: they may

take different values for different values of i. However, for a given
i, these expressions are constants and can be viewed as parameters.
Let us now define the slice I1, for p1 ∈ Z, as I1 = {(i, j) | i =
p1}. The set I1 is a set of two-dimensional integer points, with
the first dimension set to a fixed but unknown value. The second
dimension is unrestricted; this polyhedron is in fact a cone. The

slice SI1 is defined as follows:

SI1 = S ∩I1 = {(i, j)|0 ≤ i < N ∧ lb[i] ≤ j < ub[i]∧ i = p1}
(1)

This set now necessarily models a single point (e.g., a single
loop iteration) along the first dimension. Two different iterations of
the outer loop can be modeled by introducing another parameter
p2 ∈ Z, with p1 6= p2 for a slice I2 where i = p2, to get:

SI2 = {(i, j) | 0 ≤ i < N ∧ lb[i] ≤ j < ub[i] ∧ i = p2}
Consequently, a set containing two arbitrary but different iterations
of the outer loop is simply the union SI1 ∪ SI2 with (p1 > p2) ∨
(p1 < p2) as additional constraints. Two consecutive iterations can
be modeled the same way, with p2 = p1 + 1.

In addition to the ease of modeling subsets of loop iterations
(typically arising from the iterations of the partitionable loop(s)
to be executed on a processor), these slices have a key property:
when fixing i to a unique value, the subset obtained is now a
standard polyhedron. This is because the expressions lb[i] and ub[i]
are necessarily constants for a fixed value of i. We can now view
them as parameters as well, say lb[p1] and lb[p2], and observe that
a (union of) slice(s) containing a single iteration of the outer loop
is now a (union of) classical polyhedra, which can be manipulated
at compile time using tools like ISL. We do not require the use of
uninterpreted functions, and enable polyhedral optimization on the
computation to be executed on a particular processor, at the sole
expense of extensively using unions of convex sets.

2.1.3 Integer Maps
The second data structure we use associates, or maps, integer points
to other integer points. These are typical used to represent data
elements accessed by a loop iteration.

Definition 3 (Integer Map). A mapM defines a function from an
integer set of dimension d to another integer set of dimension e,
written as:

M : {(i1, ..., id)→ (o1, ..., oe) | ~o =M(~i)}

where~i : (i1, ..., id) and ~o : (o1, ..., oe)

Similar to integer sets, the tractability of the map depends on
the form of the function M . If M can be represented as a matrix
of integer coefficients (e.g., M is a multidimensional affine func-
tion) and is applied to a polyhedral set, then the output of the map
(i.e., the set of points which are the image of the input set by the
map) can be computed statically, as a union of integer sets (e.g.,
Z-polyhedra). For example, consider the map representing the re-
lationship between the iteration space and the data space for the
reference A[j], expressed as DA : {(i, j) → (o1) | o1 = j}. To
represent the set of data accessed by the entire computation for this
reference, we note DA(S) : {(o1) | o1 = j ∧ ~x ∈ S}. Here ~x ∈ S
is only a notation shortcut for the inequalities on i and j defining
S. For a particular slice SI1 , this set is polyhedral. Therefore, the
set of distinct data elements accessed by this reference can be com-
puted at compile time. A code scanning exactly this set can then be
generated, using polyhedral code generators like CLooG [1].

The map for the reference B[col[j]] is DB : {(i, j) →
(o1) | o1 = col[j]}. col[j] is not an affine function since its value
for different j is unknown at compile time. Consequently, the data
spaceDB(S) : {(o1) | o1 = col[j]∧~x ∈ S}will require an inspec-
tor to be properly computed. Therefore the need for an inspector
can be determined by building the data space for each reference
and observing if the sets and maps of interest are not polyhedral
sets or affine maps.

We conclude with the definition of the data space of an array
which is simply the union of the data spaces touched by each
reference to this array.



Definition 4 (Data space for an array). Given an array A and a
collection of n references to it D1

A, ...,Dn
A. To each reference k is

associated an iteration set SDk
A

. The set of distinct array elements
accessed by the computation is FA :

⋃n
i=1D

i
A(SDi

A
).

2.2 Partitioning Computation and Data
We are now equipped to define all the sets needed to model a dis-
tribution of the computation. We rely extensively on set operations
as well as slicing whenever appropriate to capture the partitioning
of loop iterations and data communication.

2.2.1 Iteration Partitioning
The set Kq defines the set of iterations of a partitionable loop that
are to be executed on a particular processor q. Depending on how
the distribution scheme is determined (cyclic, block-cyclic, etc. or
using run-time hypergraph partitioning) the set Kq of iterations of
the partitioned loop(s) executed by q may be a consecutive subset
of the loop iterations (thereby defined using affine inequalities)
or an arbitrary, non-consecutive subset such as with hypergraph
partitioning [42].

First, we construct a slice of the original iteration domain, SI~p
by computing an intersection of the original iteration space S with a
set I~p. In set I~p, iteration space dimensions whose iterators are used
in the index expression of array accesses appearing in constraints
of the various sets and map descriptions are fixed to a newly
introduced parameter p (e.g., i = p if the iterator i appears in a loop
bound expression such as lb[i]). This allows all such expressions
to be treated as parameters for a slice. All such dimensions will
be refered to as the irregular dimensions of the computation. If
the number of such dimensions is r, the set I~p is a cone of same
dimensionality as S, with the values of the r irregular dimensions
each set to a newly introduced vector of parameter ~p ∈ Zr . The
set C contains all the different ~pi needed to cover the full iteration
space of the irregular dimensions with one distinct ~pi per distinct
iteration~i of the irregular loop(s), with the property that ~pi 6= ~pj
for ~i 6= ~j. The original complete iteration space is therefore the
union of all slices,

S =
⋃
~p∈C

SI~p (2)

In a parallel execution, each process executes a subset of the slices
from the original computation, defined as ~p ∈ Cq ⊆ C. The local
iteration space Sq is simply the union of all slices executing on q,

Sq =
⋃

~p∈Cq
SI~p (3)

The set Cq is constructed fromKq by taking one distinct ~pi ∈ C per
distinct element k ∈ Kq , and adding the constraint that p1i = k (p1

is the value of the first dimension of ~p). A key observation is that
if the computation is affine, the set Kq can be computed statically.
For example, if the outermost loop is block partitioned the set Kq

can be expressed as Kq = {k : b1 ≤ k < b1 + B} where b1 is a
newly introduced parameter and B is the block size. The set Cq is
reduced to a single parameter:

Cq = {~p : b1 ≤ p1 < b1 +B}
Consequently the slice I~p will contain B iterations, and the above
union can be fully computed statically.

2.2.2 Data Partitioning and Ghost Communication
In our execution model, the data is partitioned amongst the pro-
cesses such that each process has all data needed to execute the set
of iterations of the partitionable loop(s) mapped to it. If DA is an
integer map used to represent accesses to array A, for each slice of

the iteration space, the elements of array A accessed by it can be
computed as,

FA,I~p = DA(SI~p) (4)

Eq (4) represents a slice of the local data space of array A. A
union of these slices gives the local data space on a process.

F q
A =

⋃
~p∈Cq

DA(SI~p) (5)

For affine computations, since Cq can be defined statically (as
in Eq 2.2.1 when the loop is block-partitioned), F q

A can also be
computed statically.

In general, the same data element might be accessed by itera-
tions mapped to two or more different processes. In such cases, one
of the processes is assigned as the owner of the element and the
location of the element on the other processes are treated as ghosts.
The location at the owner contains the correct value of the data el-
ement, with ghost locations storing a snapshot of the value at the
owner. Since the partitioned loops are parallel, these elements are
either read from or are updated through commutative and associa-
tive operations. The loop itself can be executed in parallel without
any communication as long as
• The ghost locations corresponding to elements that are read

within the loop are updated with the value at the owner before
the loop execution

• The ghost locations corresponding to elements that are updated
within a loop are initialized to the identity of the update operator
used (0 for ’+’, 1 for ’*’) before the loop execution. After the
loop execution, the ghost locations contain partial contributions
to the final value and are communicated to the owner process
where values from all ghost locations are combined.
To setup the communication between processes, we define a set

Oq
A which contains all the elements of array A that are owned

by process q. This set could either be decided at compile time
(using block or cyclic distribution of array elements), or could be
computed based on run time analysis that uses the iteration-to-
data affinity [35]. Since each array element has a unique owner,
Oq

A ∩ O
q′

A = φ if q 6= q′. Note that the choice of the set Oq
A does

not change the communication volume as long asOq
A ⊆ F

q
A ∀ 0 ≤

q < N .
On a process q, the set of ghost locations for array A which are

owned by process q′ can be computed as follows:

Gq,q′

A = F q
A ∩ O

q′

A (6)

This gives the elements of array A on process q that are
• Received from process q′ if A is read in the partitioned loop
• Sent to process q′ if A is written in the partitioned loop.

To complete the setup for communication, we also need to
compute the set of all ghost locations on process q′ that are owned
by process q. This can be computed as:

Oq,q′

A = F q′

A ∩ O
q
A (7)

Oq,q′

A gives the elements of array A on process q that are
• Sent to process q′ if A is read in the partitioned loop
• Received from process q′ if A is written in the partitioned loop

Computing Oq,q′

A requires computing the data space for iter-
ation space slices mapped to process q′ on process q. Since this
process has to be repeated for all q′ ∈ {[0, N − 1] − q}, this re-
quires enumerating all the iterations space slices in C on all the
processes. To avoid this, since Gq,q′

A = Oq′,q
A , each process com-

putes only Gq,q′

A and communicates this information to process q′

for all q′ ∈ {[0, N − 1] − q}. Process q′ uses this information to
compute Oq′,q

A .



Algorithm 1: GenerateInspector(A)
Input : A : AST of the annotated parallel loop
Output: AI : AST of the inspector

1 begin
2 AI = φ ;
3 [N ,R] = FindIrregularDimensions(A) ;
4 if N 6= φ then
5 AI = MakeCopy(A) ;
6 InsertCheckLocalIteration(AI ) ;
7 P = InsertTemporaryVariables(AI ,N ,R) ;
8 I = ComputeAffineIterationSpace(AI ,N ,R,P ) ;
9 foreach a ∈ Arrays(A) do

10 Da = ComputeAccessMap(AI ,N ,R,P ,a) ;
11 Fa = ComputeImage(Da,I) ;
12 FO

a = ProjectOutInnerDimensions(Fa) ;
13 if IsMultiDimensional(a) then
14 F I

a = ParameterizeOuterDimension(Fa) ;
15 InsertCodeToComputeBounds(AI ,F I

a ,FO
a ) ;

16 InsertCodeForExactUnion(AI ,a,FO
a ) ;

17 foreach e ∈ ArrayIndexExpression(a,AI ) do
18 o = e.OuterDimension ;
19 if ¬IsOfDesiredForm(o) then
20 InsertCodeToCreateTrace(o) ;

21 RemoveRegularLoopsAndStatements(AI ,R) ;
22 GenerateGaurdsForIndirectionArrayAccesses(AI ) ;

23 returnAI ;

1 t1=start_y[fine_boxes[k]]; t2=start_x[fine_boxes[k]];
2 t3=end_y[fine_boxes[k]]; t4=end_x[fine_boxes[k]];
3 t5=start_y[ftoc[k]]; t6=start_x[ftoc[k]];
4 t7=fine_boxes[k]; t8=ftoc[k];

Listing 4. Temporary Variables for Listing 1

The above formulation assumes that each process communi-
cates with all other processes. In reality for many scientific com-
puting applications each process communicates with only a subset
of processes, i.e. the Gq,q′

A is non-zero for only a few values of q′.

3. Generation of Inspector/Executor Code
Once the iteration space has been partitioned by distributing its
slices amongst processes (Section 2.2.1), to partition the data the
data space for each array is computed using Eq (5). This data space
represents the local array on each node and has to be computed
by an inspector due to use of indirection arrays. For presentation
purposes, each annotated loop is assumed to be perfectly nested.
Imperfectly nested loops can be handled by considering each state-
ment to be perfectly nested within its surrounding loops with dif-
ferent statements embedded within the same iteration space during
code-generation.

3.1 Local Data Space of Arrays : Inspector Code
Algorithm 1 generates the inspector code. For a given annotated
loop AST, function FindIrregularDimensions marks a loop as being
irregular if the value of its iterator is used in index expressions of
indirection array accesses. Since we target computations that are
irregular outer loops and regular inner loops, loops surrounding an
irregular loop are marked as irregular as well. In presence of one
or more irregular loops, 1) the iteration space slices mapped to a
process can be computed only at runtime, and 2) while the data
space for a single slice can be computed statically using Eq (4), the
union of these slices has to be evaluated at runtime by the inspector.
When the annotated loop is affine, no inspector is needed since the
iteration and data partitioning is computed statically.

The AST of the inspector code is constructed by first replicat-
ing the AST of the annotated loop. The loop body of the outermost
loop is enclosed within a conditional that executes only those iter-
ations that belong to set Kq (line 6). Since all indirect accesses are
invariant with respect to the loops that constitute the regular por-
tions of the computation, the value of all such expressions can be
stored in temporary variables just before the outermost regular loop
(line 7). All indirect accesses are be replaced with references to the
corresponding temporary variable. Listing 4 shows the temporary
variables used, and the expressions in Listing 1 they replace. The
point in the inspector AST immediately after these statements enu-
merates elements of Cq , and can be used to analyze the iteration
space slices mapped to a process.

The iteration space slice representing the regular portion of
the AST can be expressed using affine constraints involving the
temporary variables added at line 7. This is computed at line 8 by
ComputeAffineIterationSpace. For Listing 1, a slice would be,

IP := {(k, i, j)|k = p1 ∧ t1/2 ≤ i < t3/2 ∧ t2/2 ≤ j < t4/2}
To compute the local data space for each array, the integer map

representing accesses to it is built at line 10. For a single reference,
such as phi[cID][cx][cy] in Listing 1, this map would be

D1
phi := {(k, i, j)→ (l, a, b)|l = t8 ∧ a = i− t5 ∧ b = j − t6}

Such a map is built for each access of the array. A union of these
maps is computed statically and is applied to the iteration space
slice, Ip at line 11 of Algorithm 1. The resulting set represents a
slice of the data space for an array (Eq 4).

D1
phi(Ip) :={(l, a, b) | l = t8 ∧ t1/2− t5 ≤ a < t3/2− t5

∧ t2/2− t6 ≤ b < t4/2− t6} (8)

The union of data space slices can be computed at runtime by
maintaining, for each array, a set of elements accessed on a process.
For all 1D arrays, line 16 inserts code to add elements of the set
computed at line 11 to this set, at runtime.

For large multi-dimensional arrays, computing an exact union
of all elements accessed is very expensive. This cost can be re-
duced by recognizing that usually outer dimensions of such ar-
rays are accessed using indirection arrays, while inner dimensions
are accessed using affine expressions. For example, the access
phi[cID][cy][cx] in Listing 1 results in the outer dimension
being accessed using indirections, but for a given iteration of loop
k, a rectangular patch of the inner dimensions of the array are ac-
cessed (see Eq (8)). Therefore, for a multi-dimensional array, the
union of data space slices on a process is computed as follows,
• The exact union of the set of all the outermost indices of the

array accessed by each slice is computed.
• For each index of the outer dimension, a bounding box ap-

proach is used to compute the union for all the inner dimension
indices touched for an outer dimension index.

Since an exact union is computed only for the outer dimension
indices, the cost of computing the union is drastically reduced.

To use this approach, the outer dimension of the data space slice
computed at line 11 is parameterized by applying the following
map at line 14.

PO = {(o1, o2, . . . , oe)→ (o2, . . . , oe) | o1 = po}
The resulting expression computes the set of indices of inner di-
mensions accessed for every outer dimension index, po, by a par-
ticular data slice. Applying PO to result of Eq 8 gives

PO((D1
phi(Ip)) := {(l, a, b) | l = t8 ∧ l = po ∧

t1/2− t5 ≤ a < t3/2− t5 ∧ t2/2− t6 ≤ b < t4/2− t6}
Above, the slice of data on a process accesses only elements of
a particular outer-dimension index of array phi. The expression



for the lexicographic minimum and maximum of above expression,
parametrized using the variables added at line 7, is computed stati-
cally at line 15. The inspector code uses this expression to compute
the lexicographic minimum and maximum across all data slices
mapped to a process at runtime. The set of outer dimension indices
of an array accessed on a process can be computed by projecting out
the inner dimensions of the data space slice computed at line 11. By
construction, this is a single point parametrized by the temporary
variables added at Line 7. The union of these points is computed at
runtime by the inspector. The code for this is generated at Line 16.

Once the data space of all arrays has been computed, the set of
owned elements, Oq,q′

∗ and ghost elements, Gq,q′
∗ on each process

needs to be computed as described in Section 2.2.2. Having com-
puted the local data space, the inspector allocates an array of size
equal to this space and populates it with values from the original
array in lexicographic order.

Prefetching indirection array values. The developed ap-
proach is targeted towards applications where a single node does
not have enough memory to replicate any of the data structures. For
presentation purposes we assume all arrays (including indirection
arrays) are initially block-partitioned across processes. The specific
choice does not affect the techniques developed here. As a result, a
process might not have all the indirection array elements necessary
to compute loop bounds and array index expressions used in the
inspector code. These values have to be prefetched on each process
based on the iteration space slices being computed on it. This is
done by modifying the inspector code to incorporate the approach
developed earlier in [35]. A more detailed description is omitted
due to space constraints.

3.2 Executing Iteration Space Slices : Executor Code
Algorithm 2 shows the steps involved in generating the executor
code to execute the iteration space slices mapped to each process.

We first describe the modifications to the loops that are marked
as regular. Similar to Algorithm 1, statements to assign all indi-
rect access expressions to temporary variables are inserted just
above the outermost regular loop. The regular loops within com-
putations, which represent a slice of the iterations space, are ex-
pressed using affine inequalities involving these temporary vari-
ables, loop iterators and program parameters. Therefore, polyhe-
dral code-generation tools like CLooG [1] can be used to gener-
ate the code for the regular portions of the executor code (line 6).
The developed code-generation algorithm can seamlessly incorpo-
rate transformations, like those described in [13, 22], to optimize
these code regions of the executor. Since the focus of this paper is
not to explore the space of possible transformations but to enable
such transformations in applications that fall under the irregular-
outer regular-inner paradigm, no such transformations have been
currently implemented in our framework.

For fully affine computations (lines 9-17) the loop nest gener-
ated at line 6 replaces the entire executor code. The loop bounds
of the outermost loop are modified statically to execute only a
portion of the iteration space on each process. The data space of
all arrays on a process is computed statically as well. Sophisti-
cated techniques developed within the polyhedral compiler frame-
work [17, 36] can be incorporated within the formalism devel-
oped in Section 2. Our current implementation implements a block-
partitioning scheme described in Section 2.2.1 for affine computa-
tions. All array access expressions are modified to refer to the cor-
responding local arrays. The array index expressions are replaced
by the original expressions subtracted with the lexicographically
smallest index of the array accessed on a process.

For an input AST with one or more irregular iterators, the
function ReplaceOuterLoopBounds, modifies the bounds of the
outer-most loop to iterate from 0 to |Kq|-1, where |Kq| is com-

Algorithm 2: GenerateExecutor(A)
Input : A : AST of the annotated parallel loop
Output: AE : AST of the executor

1 begin
2 AE = MakeCopy(A);
3 [N ,A] = FindIrregularDimensions(A);
4 P = InsertTemporaryVariables(AE ,N ,A);
5 I = ComputeAffineIterationSpace(AE ,N ,A,P );
6 Anew = GenerateLoopNests(I);
7 ReplaceWithLocalArrayReferences(AE );
8 if N = φ then
9 PartitionIterationSpace(Anew);

10 ReplaceLoops(AE ,A,Anew);
11 foreach a ∈ Arrays(A) do
12 Da = ComputeAccessMap(AE ,N ,A,P ,a);
13 Fa = ComputeImage(Da,I);
14 Lmin = ComputeLexMins(Fa);
15 foreach i ∈ ArrayIndexExpression(a,AE ) do
16 inew = NewSubtractExpression(i,Lmin);
17 ReplaceExpression(i,inew);

18 else
19 ReplaceLoops(AE ,A,Anew);
20 ReplaceOuterLoopBounds(AE );
21 foreach a ∈ Arrays(A) do
22 foreach e ∈ ArrayIndexExpression(a,AE ) do
23 o = e.OuterDimension;
24 if ¬IsOfDesiredForm(o) then
25 InsertCodeToReadTrace(o);

26 if IsMultiDimensional(a) then
27 lmin = GetLexminValueExpression(a,o,e.InnerExpressions);
28 inew = NewSubtractExpression(e.InnerExpressions,lmin);
29 ReplaceExpression(e.InnerExpression,inew);

30 returnAE ;

puted by the inspector. Since the original value of the iterator is
needed within the loop body, the inspector creates a temporary ar-
ray, local k, to store the elements of Kq in increasing order.
All references to the outer-most loop iterator, k, are replaced with
local k[k]. Section 4.3 describes cases where this array can
be eliminated. The loop bound expressions of inner loops are left
as is so that their iterators assume the same values as the original
computation.

For array access expressions of the following form,

〈MapExpr〉 ::= 〈Iterator〉|〈Array〉[〈MapExpr〉

Section 4.3 describes the corresponding index expression to be
used in the executor code. For expressions used to access inner
dimensions of multidimensional arrays, the expression used in the
executor is obtained by subtracting the original expression with
the lexicographic minimum of the inner dimensions accessed for
a particular index of the outermost dimension on that process,
computed at line 15 of Algorithm 1.

Once the executor code has been generated, communication
calls necessary to exchange the values of ghost locations are in-
serted before and after the executor AST.

4. Modifying Array Index Expressions
The index expressions in the executor code generated in Section 3.2
have to be modified to access elements of local arrays in a manner
consistent with the original computation. In [35] the executor read
a trace of the original index expression, modified to access corre-
sponding locations in the local array. Sections 5.1 and 5.3 show that
the size of these traces adversely affect the scalability and perfor-
mance of the generated code. In the presented approach, this issue



is avoided by creating local indirection arrays that mimic the be-
havior of the original indirection arrays on each process.

It is helpful to recognize that indirection arrays represent an
encoding of a map from one set of entities in the computation to
another. For example, in Listing 1, the array ftoc represents a map
between boxes at a finer level of refinement and colocated boxes
which are refined at a coarser level. The outer loop k iterates over
the fine boxes and uses the array ftoc to locate the corresponding
coarse box. In unstructured grid computations, indirection arrays
represent a map from a face to the two adjacent cells. Further, the
same map, or indirection array, is used to access multiple arrays,
all of which store data associated with a particular entity. For
example, in Listing 1 the array fine boxes is used to access
elements of start y, end y, start x and end x, all of which
store information associated with a particular box. Multiple levels
of indirection represent a composition of such maps.

In the partitioned computation, each process accesses data re-
lated to a subset of the different entities from the original com-
putation. For example, partitioning the computation in Listing 1 re-
sults in each process accessing information associated with a subset
of boxes used in the original computation. As a result, the arrays
start y, end y, start x and end x have similar data space
on a process. A local indirection array, say local fine boxes,
could be used to access the local versions of all these arrays in
the executor code. These local indirection arrays encode the same
mapping as the original code, but in terms of a local numbering of
entities on a process.
〈MapExpr〉 represent a common form of array index expressions

used in scientific computing applications in which indirection ar-
rays are used as maps between entities. Here we present an ap-
proach where 〈Arrays〉s in such expressions can be replaced with
local indirection arrays in the executor code. The creation of such
arrays can be viewed as a two-step process: (1) create a local buffer
that contains all the elements of the original indirection array ac-
cessed on a process. This is already done by the inspector code
generated in Section 3.1; (2) Change the values stored in the local
indirection arrays to point to the corresponding local positions of
elements of the target array accessed. The latter presents a chal-
lenge when multiple arrays are accessed using the same indirection
array, since the change is valid only if all target arrays have the
same local data spaces. To address this issue, we first introduce ac-
cess graphs that help in capturing the levels of indirection and later
describe how they are used to achieve the second aim listed above.

4.1 Access Graphs
Information about arrays accessed using indirections, and the lev-
els of indirection used in the original code is represented using
a Directed Acyclic Graph (DAG), called an access graph. Nodes
in this graph represent arrays or iterators of loops marked as ir-
regular. For all expressions of the form 〈Array〉[〈Iterator〉], where
〈Iterator〉 corresponds to a loop marked as irregular, an edge is
added from the node representing the iterator to the node rep-
resenting the array. For array access expressions of the form
〈Array〉1[〈Array〉2[〈MapExpr〉]], an edge is added from the node
representing 〈Array〉2 to the node representing 〈Array〉1.

Expressions of the form 〈Array〉[〈MapExpr〉]s might appear in
loop bounds and inner dimensions of multi-dimensional arrays
(start x, start y, etc. in Listing 1). 〈Array〉s used here are also
indirection arrays, but their values are used in the executor as is.
To capture such uses of an indirection array, an edge is added from
the node representing the 〈Array〉 to a special node, Global. Figure 1
shows the access graph built for the code in Listing 1. Since maps in
scientific computing are rarely used in a cyclic manner, the resultant
graph is indeed a DAG.

k

fine_boxesftoc

s ta r t_xs ta r t_y end_xend_yphi

Global

Figure 1. Access Graph for Listing 1

All arrays used as indirection arrays in the computations have
one or more immediate successors in the access graph. Nodes that
have multiple immediate successors represent indirection arrays
used to access multiple arrays. Values of the local indirection array
can be modified to access the corresponding local arrays for all
its immediate successors if the data space computed by Eq (5) for
all of them is the same. This can be enforced by setting the local
data space of all the arrays represented by the immediate successor
nodes to be equal to the union of all the individual data spaces.
Since the arrays represented by the immediate successors typically
store information related to a particular entity, these arrays would
have similar local data spaces to begin with.

A trivial solution would be to add all the array nodes to one set.
This would lead to a significant over-estimation of the data space
on each process. To avoid this trivial solution, sets can be created
such that no node and its immediate predecessor belong to the same
group. Finally, a node which is an immediate predecessor to the
global node represents an indirection array whose values are not
modified in the executor. Therefore, such indirection arrays cannot
be used to access other arrays in the executor. The grouping is done
such that no array node is added to the same set as the global node.

In summary, the grouping of array nodes has to satisfy the
following three conditions,
1. All immediate successors of an array node must belong to the

same set.
2. No node should be in the same set as the global node.
3. An array node and its immediate successors must not belong to

the same set.

4.2 Grouping Nodes of the Access Graph
Algorithm 3 presents a scheme to group array nodes into sets while
satisfying the above requirements, adding new nodes whenever
necessary. Each node is assumed to have two fields, (1)group, to
denote the set which the node belongs to, and (2) Type which can
either be ArrayNode, LoopNode or GlobalNode. Initially, the field
group for all nodes is set to Unknown.

The access graph is traversed in reverse topological order. For
every node encountered, all of its immediate successors have al-
ready been assigned to groups. The algorithm tries to add all its
immediate successors to the same group as its first immediate suc-
cessor by calling the function ChangeGroupNum for each of them.
This function, described in Algorithm 4, takes as input the node
v whose group number has to be changed and the group number,
g, to change to. If the node v is the GlobalNode the function re-
turns False (condition 2). If the node has already been assigned to
a group, then at least one of its immediate predecessors has already
been visited by Algorithm 3. For all such previously visited prede-
cessors, the function returns False if any of them are also assigned
to the same group, g (condition 3). Otherwise, the node v can be as-
signed to the group if all the immediate successor of the previously
visited immediate predecessors of v, are assigned to the same group



Algorithm 3: GroupNodes(G)
Input : G = (V,E) : An access graph with group numbers Unknown
Output: G = (V,E) : Graph with nodes added into groups

1 begin
2 ngroups = 0 ; done = False ;
3 while ¬ done do
4 done = True ;
5 foreach v in ReverseTopologicalOrder(G) do
6 group = Unknown ; Unchanged set = φ ;
7 foreach s in v.successors do
8 if group = Unknown then
9 group = s.group ;

10 else if group 6= s.group then
11 processed set = v ;
12 if ChangeGroupNum(s,group,processed set) then
13 Unchanged set = Unchanged set ∪ s ;

14 if v.Type = ArrayNode then
15 if Unchanged set 6= φ then
16 r = Copy(v) ; V = V ∪ r ;
17 r.predecessors = v.predecessors ;
18 r.successors = Unchanged set ;
19 v.successors = v.successors - Unchanged set ;
20 done = False; Break ;

21 v.group = ngroups ; ngroups = ngroups + 1 ;

22 returnG ;

Algorithm 4: ChangeGroupNum(v,group,processed set)
Input : v : Node in the graph

g : Group number to be added to
processed set : Predecessors to be ignored

Output: True if the node was added to the group, False otherwise
1 begin
2 if v.Type = GlobalNode then
3 return False ;

4 if v.group = Unknown then
5 v.group = g ;
6 return True ;

7 foreach p in (v.predecessors - processed set) do
8 if p.Type = ArrayNode ∧ p.group 6= Unknown then
9 if p.group 6= g then

10 processed set.insert(p) ;
11 foreach s in p.successors do
12 if ¬ ChangeGroupNum(s,group,processed set) then
13 return False;

14 else
15 return False ;

16 v.group = g ;
17 return True ;

(condition 1). This is checked recursively. The set, processed set,
ensures that there is no infinite mutual recursion.

If the call to ChangeGroupNum at line 12 of Algorithm 3 re-
turns False, it implies that current successor, s, conflicts with the
previous successors and cannot be added to the same group. It is
removed as an immediate successor of node v being analysed, and
added as an immediate successor to a copy of node v to remove this
conflict. This modification implies that two copies of the indirec-
tion array represented by node v is needed to satisfy all the group-
ing constraints. This new graph can now be traversed for grouping
the nodes. When no conflicts are found all array nodes have been
grouped appropriately and the algorithm terminates. In the worst-
case this algorithm will create a graph where all nodes have only

one successor. Such a scenario would not be common in the kind
of applications targeted in this paper.

The values in the local indirection arrays are modified to point
to the corresponding locations in the local data space of the arrays
represented by its immediate successor. The values are not modified
when the immediate successor is the node Global.

For the graph in Figure 1, arrays ftoc and fine boxes belong
to the same group. The arrays start x, start y, end y, end x,
and phi belong to another group. Since the arrays of the second
group are enforced to have same local data space on each process, a
local indirection array local fine boxes can be used to access
all of these arrays in the executor. This local indirection array
mimics the behavior of the array fine boxes in Listing 1.

4.3 Modifying Index Expressions in the Executor Code
Array index expressions in the executor code generated in Sec-
tion 3.2 are modified as follows. For access expressions the form
〈Array〉1〈Array〉2[〈MapExpr〉], the 〈Array〉2 is replaced to refer to the
the copy of local indirection array represented by the immediate
predecessor of the node that represents 〈Array〉1.

Since iterators of inner loops have same values as the original
computation, array index expressions of the form 〈Iterator〉 which
use inner loop iterators have to be manipulated to point to local
elements of the array. The method used in [35] to recreate unit-
stride accesses can be adapted for this purpose. Since loops in
the input codes have unit increments, for every invocation of the
inner loop, the index expression 〈Iterator〉 evaluates to a contiguous
sequence of values. A local array is created to record the first
element of this sequence for every invocation of the loop. This
sequence can be renumbered to point to the corresponding location
in the local target array. The rest of the elements can be accessed by
adding the value of the loop iterator subtracted by the lower bound
of the current loop invocation. The size and values in the arrays to
be used can be computed by an inspector. The same sequence can
be used to access all arrays which are immediate successors of the
node corresponding to this iterator in the access graph, and belong
to the same group.

For array access expressions of the form 〈Array〉[〈Iterator〉] in
the original code, where the iterator is from the partitioned loop;
the executor code generation replaced such expressions with a
new expression of the form 〈Array〉1[〈Array〉2[〈Iterator〉]]. 〈Array〉2
represents a temporary array that contained the original values of
the iterator mapped to a process (array local k in Section 3.2). In
the access graph, the node p corresponding to this iterator would
have only one immediate successor l, the node that represents
〈Array〉2. If a successor m of this node, representing 〈Array〉1, has
no other predecessors then it can be concluded that every iteration
of the outer loop accesses only one element of 〈Array〉1. Since the
outer loop iterations are executed in order of their original index,
and array elements are laid out in order of their original index too,
these array elements can be accessed using the iterator value itself.
The node m is removed as a successor from node l and added
as an immediate successor to node p. The array expression in the
executor is changed back to be 〈Array〉[〈Iterator〉], where 〈Array〉
refers to the corresponding local array, and 〈Iterator〉 is the outer
loop iterator. The temporary array added could be eliminated if the
node l has no successors after this modification. The above holds
true for nodes representing ftoc and fine boxes in Figure 1.
Therefore, in the executor code, ftoc[k] and fine boxes[k]
are replaced by local ftoc[k] and local fine boxes[k]
respectively. A sample of the generated inspector code and executor
code is available elsewhere [2].

Finally, for array index expressions not of the form 〈MapExpr〉,
as a fallback the inspector code generated by Algorithm 1 is modi-



Nprocs 2 4 8 16 32 64 128 256
Executor(s) 895 461 244 125 63.8 32.4 16.5 8.03
Inspector(s) 2.87 2.78 1.10 0.18 0.11 0.06 0.05 3.32

Total(s) 898 464 244 125 63.9 32.5 16.6 11.3

Table 1. Mixed Irregular/Regular benchmark : Poisson equation
solver. Sequential Time = 1055s
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fied to generate a trace of this index expression. The executor code
generated by Algorithm 2 is modified to read from this trace.

5. Case Studies
We evaluated the performance of the generated distributed mem-
ory code for computations that are (1) Mixed Irregular/Regular, (2)
completely regular, and (3) completely irregular. The code gener-
ator was implemented as a source-to-source transformation within
ROSE [5] for C-codes. MVAPICH2-1.9 was used for communi-
cation between processes. The communication costs were reduced
by using ARMCI/GA-5.2 [26] for one-sided communication dur-
ing ghost updates. Intel C Compiler 13.1.2 was used to compile
the generated distributed memory code. Experiments were run on a
cluster of quad-core Intel Xeon-E5630 at clock speed of 2.53GHz,
connected using Infiniband.

All applications used for evaluation contain a sequence of par-
allel loops enclosed within one or more sequential time or con-
vergence loops. The control flow and data access pattern for the
parallel loops remains unchanged for every invocation within these
outer sequential loops. Therefore, the inspector code generated for
all the annotated parallel loops could be hoisted out of surrounding
loops to amortize its overhead.

5.1 Mixed Irregular/Regular Computation
This benchmark solves the Poisson Equation over a rectangular
domain. An example of a parallel loop from this benchmark was
shown in Listing 1. It contains 4 parallel loops enclosed within
an outer sequential time loop. The inspector code generated for
the parallel loops could be hoisted outside of this loop. The prob-
lem size used for evaluation had 1024 coarse boxes and 2048 fine
boxes. Each coarse box used a grid of size 128 × 128, while each
fine box used a grid of size 126 × 252. Table 1 shows the running
time for the executor and the total running time of the transformed
code for 1000 timesteps. The generated executor shows good scal-
ing with the inspector cost adding only a slight overhead. Since the
inspector is parallel, the cost of the inspector reduces up to 128
processes.The vectorization report generated by ICC shows that
loops that were vectorized previously are vectorized in the gen-

erated executor code too, indicating that the transformation scheme
did not introduce artifacts that affect subsequent compiler opti-
mizations. Consequently, the on-node performance of the executor
could be further enhanced by using compile time transformations
like [22, 41] that rely on the regular nature of target loops.

The code generated by the inspector/executor approach devel-
oped in [3, 35], fails to execute since the size of the traces generated
exhausts the memory on a process. To get around this, the problem
size used was reduced to 1/4th of the above. While this code is
now able to execute, the size of traces generated is still quite large.
The execution times are shown in Figure 2. The lines labeled Ex-
ecutor and Executor:trace show the execution time of the executor
generated by the proposed approach and the trace-bsaed approach
of [35], respectively. The lines labeled Total and Total:trace show
the total execution time of the generated inspector and executor
code from the two approaches. All times are reported as speedup
relative to the execution time of the original sequential code. For
2 and 4 processes, the executor code from the trace approach is
4 times slower than the executor code from the current approach.
Due to high inspector overheads, the total execution time is 8 times
slower. As the number of processes increase the size of the traces
generated per process reduces and fit in some level of cache, result-
ing in reduced stress on the bandwidth to main memory. This im-
proves the executor time of the trace based approach to be slightly
better than the executor code generated using the present approach.
This is because the former flattens indirect access, reducing the
number of memory locations accessed before getting to the actual
data. Since the present approach maintains the indirect access pat-
tern of the original code for the irregular dimensions, the number
of memory accesses is higher. The flattening though comes at a
high inspector overhead effectively nullifying the benefit gained
by parallelizing the computation. With the approach proposed in
this paper there is virtually no inspector overhead. These results
demonstrate that while the trace-based approach might be able to
effectively handle small benchmarks with smaller footprints, the
approach presented here is more scalable and can be used to effec-
tively parallelize real-world applications.

5.2 Affine Computations
Affine computations are at one extreme of the range of applications
modeled here. We evaluated the performance of the generated code
when the input computation is completely affine. For bandwidth
bound codes like FDTD and 2D Jacobi stencil [28], time tiling
is an effective approach to increase the arithmetic intensity by
increasing data reuse across iterations of the outer time loop. Tiling
for concurrent start [8], generates time tiled code where the loop
that iterates over tiles for a particular time tile are parallel, while the
loop that iterates over time tiles is sequential. This approach to time
tiling eliminates the load imbalance created by traditional schemes
that use wavefront parallelism across tiles. This scheme has been
implemented within Pluto [4] and the generated code, targeting
a single-core CPU, was used as the input to the transformation
scheme described in this paper. Being fully affine, the parallel loop
was block partitioned across processes.

Starting from the same input code, Pluto itself can be used to
generate distributed memory code. Table 2 compares the perfor-
mance of the code generated by the present approach with the dis-
tributed memory code generated by Pluto [12, 17] itself. All ar-
rays used were of size 8192× 8192. The original untiled code ex-
ecuted 1000 timesteps and a tile size of 32 was used for each loop.
For these examples, the communication pattern used by both these
codes are similar resulting in comparable performance with linear
scaling up to 256 processes. The representation used by the frame-
work developed in this paper is similar to that used in polyhderal



FDTD: Sequential Time = 486.9s
Nprocs 2 4 8 16 32 64 128 256

Executor(s) 248.1 124.6 63.0 31.7 16.4 8.6 4.7 2.8
Pluto(s) 253.1 128.3 64.5 32.6 16.6 8.8 4.9 2.9

Jacobi2D : Sequential Time = 750.5s
Nprocs 2 4 8 16 32 64 128 256

Executor(s) 382.8 191.2 96.2 48.2 24.8 13.1 7.2 4.4
Pluto(s) 362.4 182.1 92.4 47.0 24.2 13.1 7.5 4.8

Table 2. Affine Computations: Time-tiled FDTD, Jacobi2D

Nprocs 2 4 8 16 32 64 128 256
Executor(s) 1466 733 372 188 115 55.1 30.5 15.6
Inspector(s) 2.90 1.93 1.32 0.84 0.67 0.61 0.74 0.95

Total(s) 1469 735 374 188 116 55.7 31.3 16.5

Table 3. 3D BTE Solver, Sequential Time = 2833.4s

compilers like Pluto. Consequently, sophisticated techniques devel-
oped for affine computations can be easily incorporated.

5.3 Irregular Computations
Finally, we evaluate the performance of the generated parallel code
for computations that contain no affine parts. This application uses
the Finite Volume Method to discretize and solve the Boltzmann
Transport Equation (BTE) for phonons [25] used to model heat
conduction in semiconductor materials over a 3D unstructured grid
of tetrahedral cells. The computation proceeds by iterating over
bands of phonon frequencies and discretized directions of the phys-
ical domain. A system of linear equations for the entire physical
domain is solved for each band-direction pair. This is followed
by an integration phase that combines data for a particular band.
The loops that perform these computations are parallel and can be
targeted for distributed memory execution. For transient problems,
these steps are performed repeatedly within a time loop. Since this
application is written in Fortran, the transformations described in
Algorithms 1 and 2 were implemented manually. This application
represents the other extreme of the range of computations modeled
by the framework developed here.

For evaluation, we used an input grid of 2491 cells with 40 fre-
quency bands and 40 discretized directions. Deep loop nests used
in this computation result in the inspector generated by the trace-
based approach exhausting the processor’s local memory while
building the trace of index expressions. The inspector code gener-
ated by the approach presented here avoids this by using the tech-
nique developed in Section 4, which created local indirection ar-
rays on each process to mimic the behavior of indirection arrays of
the original computation. Table 3 shows the execution times of the
parallelized code for 10 timesteps. A linear scaling is achieved up
to 256 processes with minimal inspector overheads. These results
demonstrate that the techniques developed in this paper further en-
hance the scalability of inspector/executor approaches while target-
ing purely irregular applications as well by reducing the reliance on
traces to recreate index expressions.

6. Related Work
The inspector/executor approach was pioneered by Saltz et al. They
developed runtime infrastructure for distributed memory paral-
lelization of irregular applications [11, 30, 39, 40]. These were
augmented with compiler approaches that automatically generated
parallel code [6, 15, 16, 46]. These approaches relied on the Exe-
cute On Home directives of HPF, that restricted the scope of appli-
cations that could be targeted. Ravishankar et al. [35] built on this
to target a wider range of applications. Both of these approaches
can be labeled as trace-based approaches, with the latter reducing

the size of the trace by recognizing contiguous accesses within the
input code. Section 5 clearly demonstrates that the framework de-
veloped here is more scalable than such trace-based approaches.
The Sparse Polyhedral Framework [23, 43] also provides a uni-
fied framework to express affine and irregular parts of the code by
representing indirection array access using uninterpreted function
symbols (UFS). Still, transformations and code generation process
within this framework requires asserting properties of these UFS
(e.g., invertibility) at compile time, which is usually not possible.
Indeed, we believe SPF can be made more effective by reason-
ing about slices of iteration domains that can be represented using
affine inequalities and can be readily incorporated into it.

Basumallik et al. [9, 10] developed an OpenMP to MPI trans-
lator that executed OpenMP parallel loops on distributed memory
architecture. Their approach relied on replication of data structures
accessed using indirections. Such an approach is infeasible when
these data structures are too large to fit in a single processor’s mem-
ory. Additionally, the communication volume required to satisfy
dependences was equal to the size of these replicated data struc-
tures. The approach developed here generates distributed memory
code that doesn’t replicate any data, with communication required
only for ghost locations.

The Inspector/Executor approach was used by Rauchwerger
and Padua [31] to analyze if irregular loops can be parallelized
through array privatization and recognition of associative and com-
mutative reduction operations. The same framework was extended
in [33, 34] to capture dependences between iterations of a par-
tially parallel loop at runtime and generate a schedule to execute
these in wavefront fashion. August et al. [19, 27] developed com-
piler algorithms that could group instructions to form producer-
consumer relationship between these groups, which are then exe-
cuted in a pipelined fashion. Their recent work [20] could exploit
cross-invocation parallelism in loops. Zhuang et al. [47] used spec-
ulation to execute independent iterations of irregular loops in par-
allel with dependences tracked at runtime. Parasol [32, 37, 38] gen-
erated run-time checks, evaluated in increasing order of overheads
incurred, that determine if a loop is parallel or not. Both these ap-
proaches target shared memory systems. Liu et al. [24] used an in-
spector to deduce an optimal execution strategy for computational
mechanics code.

Inspector/Executor approaches have also been used to gener-
ate code to target NVIDIA GPUs. Huo et al. [21] reordered com-
putation to reduce synchronization costs for irregular reductions.
This approach was targeted towards mesh-based applications and
could handle a single-level of indirection. Anantpur et al. [7] used
an inspector to group iterations into phases that could be executed
concurrently on a GPU. Venkat et al. [44] developed extensions to
the sparse polyhedral framework to develop optimizations aimed at
GPUs.

7. Conclusion
In this paper we have developed a framework that effectively mod-
els computations that have a mix of affine and non-affine program
regions. Purely affine and completely irregular codes form two ex-
tremes of the range of computations modeled within this frame-
work. The use of affine techniques to handle the regular program
regions removes artifacts from the generated executor that ham-
per subsequent compiler optimizations. It also addresses a major
bottleneck in terms of memory usage of previous inspector/execu-
tor techniques for distributed memory parallelization of irregular
computations. This improves the scalability of generated code. The
formalism developed in this paper can be used to effectively inte-
grate future developments in distributed memory code generation
for both affine and irregular computations.
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