Combined lterative and Model-driven Optimization

in an Automatic Parallelization Framework

Louis-Noél Pouchet! Uday Bondhugula® Cédric Bastoul® Albert Cohen?
J. Ramanujam* P. Sadayappan'

! The Ohio State University
2 IBM T.J. Watson Research Center
3 ALCHEMY group, INRIA Saclay / University of Paris-Sud 11, France
4 Louisiana State University

November 17, 2010
IEEE 2010 Conference on
Supercomputing
New Orleans, LA

OHIO

UNIVERSITY

Introduction: SC'10

Overview

Problem: How to improve program execution time?

» Focus on shared-memory computation

> OpenMP parallelization
> SIMD Vectorization
» Efficient usage of the intra-node memory hierarchy

» Challenges to address:

» Different machines require different compilation strategies
» One-size-fits-all scheme hinders optimization opportunities

Question: how to restructure the code for performance?

OSU/IBM/INRIA / LSU 2

The Optimization Challenge: sc’'10

Objectives for a Successful Optimization

During the program execution, interplay between the hardware ressources:
» Thread-centric parallelism
» SIMD-centric parallelism
» Memory layout, inc. caches, prefetch units, buses, interconnects...

— Tuning the trade-off between these is required

A loop optimizer must be able to transform the program for:
» Thread-level parallelism extraction
> Loop tiling, for data locality
» Vectorization

Our approach: form a tractable search space of possible loop
transformations

OSU/IBM/ INRIA / LSU 3

The Optimization Challenge: sc’'10

Running Example

Original code

Example (tmp =A.B, D = tmp.C)

for (il = 0; 11 < N; ++il)
for (31 = 0; j1 < N; ++31) {

R: tmp[il] [j1] = O;
for (k1 = 0; k1 < N; ++k1)
S8 tmp[il] [j1] += A[il][k1] * B[k1][jl];
} {R,S} fused, {T,U} fused

for (i2 = 0; i2 < N; ++i2)
for (j2 j2 < N; ++32) {
[

= 0;
g D[i2][32] = O;
for (k2 = 0; k2 < N; ++k2)
g D[i2] [j2] += tmp[i2] [k2] * C[k2][j2];

| Original Max. fusion Max. dist Balanced
4x Xeon 7450/ 1CC 11 1x
4 x Opteron 8380/ ICC 11 1x

OSU/IBM/INRIA / LSU 4

The Optimization Challenge:

sC’10

Running Example

Cost model: maximal fusion, minimal synchronization
[Bondhugula et al., PLDI'08]

Example (tmp =A.B, D = tmp.C)

parfor (c0 = 0; c0 < N; cO0++) {
for (¢l = 0; cl < N; cl++) {
R: tmp[c0] [c1]=0;
T5 D[c0] [c1]=0;
for (c6 = 0; c6b < N; cb6++)
$3 tmp[cO0] [cl] += A[c0][c6] * B[c6][cl];
parfor (c6 = 0;c6 <= cl; c6++)
U: D[c0][c6] += tmp[cO][cl-c6] * C[cl—-c6][cb];
} {R,S,T,U} fused
for (cl = N; cl < 2*N - 1; cl++)
parfor (c6 = cl-N+1l; c6 < N; c6+t)
U: D[c0] [c6] += tmp[c0][1-c6] * C[cl-c6][cb];
}
v

| Original Max. fusion Max. dist Balanced
4x Xeon 7450 /1CC 11 1x 2.4x
4x Opteron 8380/ ICC 11 1x 2.2%

OSU/IBM/INRIA / LSU

The Optimization Challenge:

Running Example

Maximal distribution: best for Intel Xeon 7450
Poor data reuse, best vectorization

Example (tmp =A.B, D = tmp.C)

parfor (il = 0; il < N; ++il)
parfor (jl = 0; jl < N; ++j1)
R: tmp[il] [j1] = O;
parfor (il = 0; il < N; ++il)
for (k1 = 0; k1 < N; ++k1)
parfor (jl = 0; j1 < N; ++31)
S8 tmp[il] [J1] += A[il] (k1] * B[k1][j1];
{R} and {S} and {T} and {U} distributed

parfor (i2 = 0; 12 < N; ++i2)
parfor (j2 = 0; j2 < N; ++32)
T: D[i2][32] = 0;
parfor (i2 = 0; 12 < N; ++i2)
for (k2 = 0; k2 < N; ++k2)
parfor (j2 = 0; j2 < N; ++32)
U: D[i2][] += tmp[i2] [k2] * C[k2][j2];
| Original Max. fusion Max. dist Balanced
4x Xeon 7450/ 1CC 11 1x 2.4%x 3.9x
4 x Opteron 8380/ I1CC 11 1x 2.2x 6.1x

OSU/IBM/INRIA / LSU

The Optimization Challenge:

sC’10

Running Example

Balanced distribution/fusion: best for AMD Opteron 8380
Poor data reuse, best vectorization

Example (tmp =A.B, D = tmp.C)

parfor (cl = 0; cl < N; cl++)
parfor (c2 = 0; c2 < N; c2++t)
R: Clel][c2] = 0;
parfor (cl = 0; cl < N; cl++)
for (c3 = 0; c3 < N;c3++) {
Ty E[cl] [c3] = 0;
parfor (c2 = 0; c2 < N;c2++)
S: Clcl]l[e2] += A[cl][c3] * Ble3][c2];

}

parfor (cl

0; cl < N; cl++)

{S,T} fused, {R} and {U} distributed

for (c3 = 6 c3 < N; c3++)
parfor (c2 = 0; c2 < N; c2++)
U: E[cl] [c2] += C[cl]l[e3] * D[c3][ec2]; y
| Original Max. fusion Max. dist Balanced
4x Xeon 7450/ 1CC 11 1x 2.4x 3.9% 3.1x%x
4 x Opteron 8380/ ICC 11 1x 2.2% 6.1x 8.3

OSU/IBM/INRIA / LSU

The Optimization Challenge: sc’'10

Running Example

Example (tmp =A.B, D = tmp.C)

parfor (cl
parfor (c

R: Clcl] [c
parfor (cl
lc

r

0; cl < N; cl++4)
= 0; c2 < N; c2++)
1 =0;
0; cl < N; cl++4)
c3 < Njc3++) {
= 0;

for (c3 8

Ty E[cl]]
parfo c2 = 0; c2 < N;c2++)

S: Clcl]] += A[cl][c3] * B[c3][c2];

} {S,T} fused, {R} and {U} distributed

parfor (cl 0; cl < N; cl++)

for (c3 c3 < N; c3++)
2 =0; c2 < N; c2++)
c2] += C[cllle3] * D[c3][c2];

c2
2
0;
3
(
[

\ Original Max. fusion Max. dist Balanced
4x Xeon 7450/ 1CC 11 1x 2.4x 3.9x 3.1x
4x Opteron 8380/ ICC 11 1x 2.2% 6.1x 8.3%

The best fusion/distribution choice drives the quality of the optimization

OSU/IBM/INRIA / LSU

The Optimization Challenge: sc’'10

Loop Structures

Possible grouping + ordering of statements

> {{R}, {SL {T}, {Ulk; {{R}, {S}, {U}, {T}): ...

> {{R,S} {T}, {Ul}; {{R}, {S}, {T,UlL; {{R}, {T.U}, {S}E {{T.U}, {R}, {S}};...
> {{R.S,T}, {U}}; {{R} {S,T.U}}; {{S}, {R,T.U}}...

> {{R.S,T.Ulk;

Number of possibilities: >> n! (number of total preorders)

OSU/IBM/INRIA / LSU 5

The Optimization Challenge: sc’'10

Loop Structures

Removing non-semantics preserving ones

> {{R}, {SL{T} {UIL; {{R}, {ShAUL (T} ...

> {{R.S}, {T}, {UlL {{R}, {Sh {T.UR {{R}, {T.UL {SHE {{T.ULL (R}, {S}:...
> {{R,S,T}, {Ul}; {{R} {S,T.U}}; {{S}, {R.T.U}};...

» {{R,S,T,U}}

Number of possibilities: 1 to 200 for our test suite

OSU/IBM/INRIA / LSU 5

The Optimization Challenge: sc’'10

Loop Structures

For each partitioning, many possible loop structures

> {{R}, {S}, {T}, {U}
> For S:{i,j,k}; {i,k.j}; {k, i, 4 (k. s ..
» However, only {i, k,j} has:

> outer-parallel loop
> inner-parallel loop
> lowest striding access (efficient vectorization)

OSU/IBM/INRIA / LSU 5

The Optimization Challenge: sc’'10

Possible Loop Structures for 2mm

v

4 statements, 75 possible partitionings

v

10 loops, up to 10! possible loop structures for a given partitioning

v

Two steps:

» Remove all partitionings which breaks the semantics: from 75 to 12
» Use static cost models to select the loop structure for a partitioning: from
dltol

v

Final search space: 12 possibilites

OSU/IBM/INRIA / LSU 6

The Optimization Challenge: sc’'10

Workflow — Polyhedral Compiler

Original
Source
Code

Vendor
Compiler

C/C++/Fortran =« PoCC/Pluto C code w/ = Intel ICC Optimized
= ROSE/PolyOpt = OpenMP = GNUGCC binary
« (LLVM/Polly) = Vector .
= (GCC/ Graphite)

OSU/IBM/INRIA / LSU 7

The Optimization Challenge: sc’'10

Contributions and Overview of the Approach

v

Empirical search on possible fusion/distribution schemes
Each structure drives the success of other optimizations

» Parallelization
> Tiling
» Vectorization

v

v

Use static cost models to compute a complex loop transformation for a
specific fusion/distribution scheme

v

Iteratively test the different versions, retain the best
> Best performing loop structure is found

OSU/IBM/INRIA / LSU 8

Program transformations, and optimizations: sc’'10

Polyhedral Representation of Programs

Static Control Parts
» Loops have affine control only (over-approximation otherwise)

OSU/IBM/INRIA / LSU 9

Program transformations, and optimizations: sc’'10

Polyhedral Representation of Programs

Static Control Parts
» Loops have affine control only (over-approximation otherwise)
> lteration domain: represented as integer polyhedra

for (i=1l; i<=n; ++i)
. for (j=1; j<=n; ++j)
. if (i<=n-j+2)
.os[i] = ...

<

Dgy =

—_

_ e e
—omo
e —e
|
Nomom
—

R ——
v
o
A
il
s

1 2 n n+2 1
lteration domain of Sy

OSU/IBM/INRIA / LSU 9

Program transformations, and optimizations: sc’'10

Polyhedral Representation of Programs

Static Control Parts
» Loops have affine control only (over-approximation otherwise)
> lteration domain: represented as integer polyhedra

» Memory accesses: static references, represented as affine functions of
Xs and p

X$2
fGER)=[1 0 0 0].(»n
1

for (i=0; i<n; ++i) {
. s[i] = 0; Xs2
. for (3=0; j<n; ++3) Ald)=] 4 (1) 8 8} n
. . s[i] = s[il+al[i][31*x[3]; 1
} —
Xs2
AER)=[0 1 0 0], n
1

OSU/IBM/INRIA / LSU 9

Program transformations, and optimizations: sc’'10

Polyhedral Representation of Programs

Static Control Parts
» Loops have affine control only (over-approximation otherwise)
> lteration domain: represented as integer polyhedra

» Memory accesses: static references, represented as affine functions of
Xs and p

» Data dependence between S1 and S2: a subset of the Cartesian
product of Dg; and Ds; (exact analysis)

Sl iterations

for (i=1; i<=3; ++i) { 1 -1 0 0
: T 0 0 -1 .
. s[i] = 0; 1 0 0 3 is) o 0\\®
« for (3=1; J<=3; ++3) og5p:| 0 1 0 1 B = 5 jteration @
.. s[i] = s[i] + 1; 0 -1 0 3) =0
0 0 1 -1 @
} 0 0 -1 3 e

OSU/IBM/INRIA / LSU 9

Program transformations, and optimizations: sc’'10

Search Space of Loop Structures

> Partition the set of statements into classes:
> This is deciding loop fusion / distribution
> Statements in the same class will share at least one common loop in the
target code
> Classes are ordered, to reflect code motion

> Locally on each partition, apply model-driven optimizations

» Leverage the polyhedral framework:

» Build the smallest yet most expressive space of possible partitionings
[Pouchet et al., POPL11]

» Consider semantics-preserving partitionings only: orders of magnitude
smaller space

OSU/IBM/INRIA / LSU 10

Program transformations, and optimizations: sc’'10

Model-driven Optimizations: Tiling

Two steps: pre-transform to make tiling legal, then tile the loop nest

Tiling in our framework:

>

>

>

Partition the computation into blocks
Resulting blocks can be executed with sync-free or pipeline parallelism

Seamless integration in the polyhedral framework (imperfectly nested
loops, parametric tiling)

Systematic application of the pre-transformation (Tiling Hyperplane
method [Bondhugula et al., PLDI'08])
We tile the transformed loop nest only if:

> There is at least O(N) reuse
> the loop depth is > 1

OSU/IBM/INRIA / LSU 1

Program transformations, and optimizations: sc’'10

Model-driven Optimizations: OpenMP
parallelization

» Assume pre-transformation for tiling already done

» By definition, existing parallelism is brought on outer loops

> Property of the Tiling Hyperplane
» We drive the optimization to obtain this property on a specific subset of
statements

» Simply mark outer parallel loops with #pragma omp parallel for
> First parallel outer tile loop, if any

OSU/IBM/INRIA / LSU 12

Program transformations, and optimizations: sc’'10

Model-driven Optimizations: Vectorization

Focus on additional loop transformations, not codegen-related

> Vectorization requires a sync-free parallel inner-most loop

» Candidate parallel loops can be moved inward
> Multiple choices!

» To be efficient, favor stride-1 access for the inner-loop

> The loop iterator appears only in the last dimension of the array
> Loop permutation changes the stride of memory accesses
» Use a static cost model [Trifunovic et al., PACT’09]

OSU/IBM/INRIA / LSU 13

Experimental Results:

sC’10

Summary of the Optimization Process

description #loops #stmts #refs #deps #part. #valid Variability Pb. Size
2mm Linear algebra (BLAS3) 6 4 8 12 75 12 v 1024x1024
3mm Linear algebra (BLAS3) 9 6 12 19 4683 128 v 1024x1024
adi Stencil (2D) 11 8 36 188 545835 1 1024x1024
atax Linear algebra (BLAS2) 4 4 10 12 75 16 v 8000x8000
bicg Linear algebra (BLAS2) 3 4 10 10 75 26 v 8000x8000
correl Correlation (PCA: StatLib) 5 6 12 14 4683 176 v 500x500
covar Covariance (PCA: StatLib) 7 7 13 26 47293 96 v 500x500
doitgen Linear algebra 5 3 7 8 13 4 128x128x128
gemm Linear algebra (BLAS3) 3 2 6 6 3 2 1024x1024
gemver Linear algebra (BLAS2) 7 4 19 13 75 8 v 8000x8000
gesummy Linear algebra (BLAS2) 2 5 15 17 541 44 v 8000x8000
i Matrix nor { 6 7 17 34 47293 1 512x512
jacobi-2d Stencil (2D) 5 2 8 14 3 1 20x1024x1024
[Matrix 4 2 7 10 3 1 1024x1024
ludemp Solver 9 15 40 188 10] 2 20 v 1024x1024
seidel Stencil (2D) 3 1 10 27 1 1 20x1024x1024

OSU/IBM/INRIA / LSU

Table: Summary of the optimization process

Experimental Results: sc’'10

Experimental Setup

We compare three schemes:
» maxfuse: static cost model for fusion (maximal fusion)

» smartfuse: static cost model for fusion (fuse only if data reuse)

> lterative: iterative compilation, output the best result

OSU/IBM/INRIA / LSU 15

Experimental Results: sc’'10

Performance Results - Intel Xeon 7450 - ICC 11

Performance Improvement - Intel Xeon 7450 (24 threads)

pocc-maxfuse m—
S pocc-smartfuse s -

% iterative mm—
g_ 4

17

]

gl l

O

O

s 2t

E

5 1f -
Q

R R - T 9990@@/0\9.
o %, %, 0, %, o 8, 98, So. D S
/b/))/b/b %* O G/ L/~ /\9@ ®@ 2%, \9/)) /))\S‘ Oé,; %/); %/
/%0,5 90 20
%y
%

OSU/IBM/INRIA / LSU 16

Experimental Results: sc’'10

Performance Results - AMD Opteron 8380 - ICC 11

Performance Improvement - AMD Opteron 8380 (16 threads)

pocc-maxfuse mmm—m --
pocc-smartfuse e
iterative mm——-

Perf. Imp / ICC -fast -parallel
O P N W b O O N O ©

OSU/IBM/INRIA / LSU 17

Experimental Results: sc’'10

Performance Results - Intel Atom 330 - GCC 4.3

Performance Improvement - Intel Atom 230 (2 threads)

2 39L pocc-maxfuse mmmm
£ pocc-smartfuse s
g iterative n—
o 25

™

Q 20

™

<

o 15

(@)

O

-~ 10 |-

Q.

E

£ 5T

(O]

D_ -

OSU/IBM/INRIA / LSU 18

Experimental Results: sc’'10

Assessment from Experimental Results

@ Empirical tuning required for 9 out of 16 benchmarks
@ Strong performance improvements: 2.5x - 3x on average

@ Portability achieved:

> Automatically adapt to the program and target architecture
» No assumption made about the target
» Exhaustive search finds the optimal structure (1-176 variants)

@ Substantial improvements over state-of-the-art (up to 2x)

OSU/IBM/INRIA / LSU 19

Experimental Results: sc’'10

Frameworks for Polyhedral Compilation

IBM XL / Poly

GCC / Graphite (now in mainstream 4.5)
LLVM / Polly

R-Stream (Reservoir Labs, Inc.)

ROSE / Polyopt (DARPA PACE project)

vV v.v. vy

v

Numerous affine program fragments in computational applications

» Our goal: drive programmers to write polyhedral-compliant
programs!

OSU/IBM/INRIA / LSU 20

Experimental Results: sc’'10

Conclusions

Take-home message:

Fusion / Distribution / Code motion highly program- and
machine-specific

Minimum empirical tuning + polyhedral framework gives very good
performance on several applications

Complete, end-to-end framework implemented and effectiveness
demonstrated

Future work:
» Further pruning of the search space (additional static cost models)
» Statistical search techniques

OSU/IBM/INRIA / LSU 21

	Introduction
	The Optimization Challenge
	Program transformations, and optimizations
	Experimental Results

