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ABSTRACT

Technology trends are making the cost of data movement increas-
ingly dominant, both in terms of energy and time, over the cost of
performing arithmetic operations in computer systems. The fun-
damental ratio of aggregate data movement bandwidth to the total
computational power (also referred to the machine balance param-

eter) in parallel computer systems is decreasing. It is therefore
of considerable importance to characterize the inherent data move-
ment requirements of parallel algorithms, so that the minimal archi-
tectural balance parameters required to support it on future systems
can be well understood.

In this paper, we develop an extension of the well-known red-
blue pebble game to develop lower bounds on the data movement
complexity for the parallel execution of computational directed acyclic
graphs (CDAGs) on parallel systems. We model multi-node multi-
core parallel systems, with the total physical memory distributed
across the nodes (that are connected through some interconnection
network) and in a multi-level shared cache hierarchy for processors
within a node. We also develop new techniques for lower bound
characterization of non-homogeneous CDAGs. We demonstrate
the use of the methodology by analyzing the CDAGs of several
numerical algorithms, to develop lower bounds on data movement
for their parallel execution.

Categories and Subject Descriptors

F.2 [Analysis of Algorithms and Problem Complexity]: General;
B.4.4 [Hardware]: Input/Output and Data Communications—Per-

formance Analysis and Design Aids; D.2.8 [Software]: Metrics—
Complexity measures
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1. INTRODUCTION
Recent technology trends have resulted in much greater rates

of improvement in computational processing rates of processors
than the bandwidths for data movement across nodes or between
the memory/cache hierarchies within nodes in a parallel system.
This mismatch between maximum computational rate and peak
memory bandwidth means that data movement and communica-
tion costs of an algorithm will be increasingly dominant determi-
nants of performance. Although hardware techniques for data pre-
fetching and overlapping of computation with communication can
alleviate the impact of memory access latency on performance, the
mismatch between maximum computational rate and peak mem-
ory bandwidth is much more fundamental; the only solution is to

limit the total rate of data movement between components of a par-

allel system to rates that can be sustained by the interconnects at

different components and levels of a parallel computer system.

It is therefore of considerable importance to develop techniques
to characterize lower bounds on the data movement complexity of
parallel algorithms. We address this problem in this paper. We
formalize the problem by developing a parallel extension of the
red-blue pebble game model introduced by Hong and Kung in their
seminal work [16] on characterizing the data access complexity
(called I/O complexity by them) for sequential execution of com-
putational directed acyclic graphs (CDAGs). Our extended pebble
game abstracts data movement in scalable parallel computers today,
that consist of multiple nodes interconnected by a high-bandwidth
interconnection network, with each node containing a number of
cores that share a hierarchy of caches and the node’s physical main
memory.

In contrast to some other prior efforts that have modeled lower
bounds for data movement in parallel computations, we focus on
relating data movement lower bounds to the critical architectural
balance parameter of the ratio of peak data movement bandwidth
(in GBytes/sec) to peak computational throughput (in GFLOPs) at
different levels of a parallel system. We develop techniques for de-
riving lower bounds for data movement for CDAGs under the par-
allel red-blue pebble game, and use these techniques to analyze a
number of numerical algorithms. Interesting insights are provided
on architectural bottlenecks that limit the performance of the algo-
rithms.

This paper makes several contributions:
• It develops an extension of the red-blue pebble game that

effectively models essential characteristics of scalable paral-
lel computers with multi-level parallelism; (i) multiple nodes
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with local physical memory that are interconnected via a
high-speed interconnection network like Infiniband or a cus-
tom interconnect (e.g., IBM BlueGene system [17], or Cray
XE6 [10]), and (ii) many cores at each node, that share a
hierarchy of caches and the node’s physical main memory.
• It develops a lower bound analysis methodology that is ef-

fective for analyzing non-homogeneous CDAGs using a de-
composition approach.
• It develops new parallel lower-bounds analysis for a number

of numerical algorithms.
• It presents insights into implications on different architec-

tural parameters in order to achieve scalable parallel execu-
tion of the analyzed algorithms.

2. BACKGROUND: THE RED-BLUE PEB-

BLE GAME

2.1 Computational Model
The model of computation we use is a computational directed

acyclic graph (CDAG), where computational operations are repre-
sented as graph vertices and the flow of values between operations
is captured by graph edges. Two important characteristics of this
abstract form of representing a computation are that (1) there is no
specification of a particular order of execution of the operations:
the CDAG abstracts the schedule of operations by only specifying
partial ordering constraints as edges in the graph; and (2) there is
no association of memory locations with the source operands or
the result of any operation. We use the notation of Bilardi & Pe-
serico [5] to formally describe CDAGs. We begin with the model
of CDAG used by Hong & Kung.

DEFINITION 1 (CDAG-HK).
A computational directed acyclic graph (CDAG) is a 4-tuple C =
(I,V,E,O) of finite sets such that: (1) I ⊂ V is the input set and

all its vertices have no incoming edges; (2) E ⊆V ×V is the set of

edges; (3) G = (V,E) is a directed acyclic graph; (4) V \ I is called

the operation set and all its vertices have one or more incoming

edges; (5) O⊆V is called the output set.

2.2 The Red-Blue Pebble Game
Hong & Kung used this computational model in their seminal

work [16]. minimal number of I/O operations needed while opti-
mally playing the The Red-Blue pebble game. game uses two kinds
of pebbles: a fixed number of red pebbles that represent small fast
local memory (could represent cache, registers, etc.), and an arbi-
trarily large number of blue pebbles that represent the large slow
main memory. Starting with blue pebbles on all inputs nodes in the
CDAG, the game involves the generation of a sequence of steps to
finally produce blue pebbles on all outputs. A game is defined as
follows.

DEFINITION 2 (RED-BLUE PEBBLE GAME [16]).
Given a CDAG C = (I,V,E,O) such that any vertex with no incom-

ing (resp. outgoing) edge is an element of I (resp. O), S red pebbles

and arbitrary number of blue pebbles, with a blue pebble on each

input vertex, a complete calculation is any sequence of steps using

the following rules that results in a final state with blue pebbles on

all output vertices:

R1 (Input) A red pebble may be placed on any vertex that has a

blue pebble (load from slow to fast memory),

R2 (Output) A blue pebble may be placed on any vertex that has a

red pebble (store from fast to slow memory),

R3 (Compute) If all immediate predecessors of a vertex of V \ I

have red pebbles, a red pebble may be placed on that vertex

(execution or “firing” of operation),

R4 (Delete) A red pebble may be removed from any vertex (reuse

storage).

The number of I/O operations for any complete calculation is the
total number of moves using rules R1 or R2, i.e., the total number
of data movements between the fast and slow memories. The in-
herent I/O complexity of a CDAG is the smallest number of such
I/O operations that can be achieved, among all possible complete
calculations on that CDAG. An optimal calculation is a complete
calculation achieving the minimal number of I/O operations.

2.3 S-partitioning for Lower Bounds on I/O
Complexity

This red-blue pebble game provides an operational definition for
the I/O complexity problem. However, it is not practically feasi-
ble to generate all possible complete calculations for large CDAGs.
Hong & Kung developed a novel approach for deriving I/O lower
bounds for CDAGs by relating the red-blue pebble game to a graph
partitioning problem defined as follows.

DEFINITION 3 (S-PARTITIONING OF CDAG [16]).
Given a CDAG C, an S-partitioning of C is a collection of h subsets

of V such that:

P1 ∀i 6= j, Vi∩V j = /0, and
⋃h

i=1 Vi =V

P2 there is no cyclic dependence between subsets

P3 ∀i, ∃D ∈ Dom(Vi) such that |D| ≤ S

P4 ∀i, |Min(Vi)| ≤ S

where a dominator set of Vi, D ∈ Dom(Vi) is a set of vertices such

that any path from I to a vertex in Vi contains some vertex in D; the

minimum set of Vi, Min(Vi) is the set of vertices in Vi that have all

its successors outside of Vi; and |Set| is the cardinality of the set

Set.

Corresponding to any complete calculation on that CDAG us-
ing S red pebbles, Hong & Kung showed a construction for a 2S-
partition of a CDAG, with a tight relationship between the number
of vertex sets h in the 2S-partition and the number of I/O moves q

in the complete calculation, as follows.

THEOREM 1 (PEBBLE GAME, I/O AND 2S-PARTITION [16]).
Any complete calculation of the red-blue pebble game on a CDAG

using at most S red pebbles is associated with a 2S-partition of the

CDAG such that S× h ≥ q ≥ S× (h− 1), where q is the number

of I/O moves in the complete calculation and h is the number of

subsets in the 2S-partition.

The tight association from the above theorem between any com-
plete calculation and a corresponding 2S-partition provides the fol-
lowing key lemma that served as the basis for Hong & Kung’s ap-
proach to deriving lower bounds on the I/O complexity of CDAGs.

LEMMA 1 (LOWER BOUND ON I/O [16]). Let H(2S) be the

minimal number of vertex sets for any valid 2S-partition of a given

CDAG (such that any vertex with no incoming – resp. outgoing

– edge is an element of I – resp. O). Then the minimal number,

Q, of I/O operations for any complete calculation of the CDAG is

bounded by: Q≥ S× (H(2S)−1)

This key lemma has been useful in proving I/O lower bounds for
several CDAGs [16] by reasoning about the maximal number of
vertices that could belong to any vertex-set in a valid 2S-partition.
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3. ENABLING BOUNDS FOR COMPOSITE

CDAGS: THE RBW PEBBLE GAME
Application codes are typically constructed from a number of

sub-computations using the fundamental composition mechanisms
of sequencing, iteration and recursion. For instance, the conju-
gate gradient method, described in Sec. 5.2, consists of sequence
of sparse matrix-vector product, vector dot-product and SAXPY
operations, for every iteration. Applying the I/O lower bounding
techniques directly on the CDAG of such composite application
codes can produce very weak lower bounds. For instance, consider
the following code segment.

1 I n p u t s : p, q, r, s : V e c t o r s o f s i z e N

2 Outpu t : sum : S c a l a r

3 A = p×qT

4 B = r× sT

5 C = AB

6 sum = ∑
N
i=1 ∑

N
j=1 Ci j

The computational complexity of this computation can be sim-
ply obtained by adding together the computational costs of the
constituent steps, i.e., N2 +N2 + 2N3 +N2 arithmetic operations.
In contrast, the data movement complexity for this computation
cannot so simply be obtained by adding together the data move-
ment lower bounds for the individual steps. Let us consider data
movement costs in a two-level memory hierarchy with unbounded
main memory and a limited number of words (S) in fast storage
– this might represent the number of registers in the processor, or
scratchpad memory or cache memory. It is known [16, 18, 3] that
an asymptotic lower bound on data movement between (arbitrarily
large) slow memory and fast memory for matrix multiplication of
N×N matrices is N3/2

√
2S. An outer-product of two vectors of

size N requires 2N input operations from slow memory and output
of the N2 results back to slow memory, i.e., total I/O of 2N +N2,
independent of the fast memory capacity S. Similarly, the last step
has a data movement complexity of N2 +1 I/O operations between
slow and fast memory. But a lower bound on the data movement
complexity of the total computation cannot be obtained by simply
adding together contributions for the steps. It is not even possible
to assert that the maximum among them is a valid lower bound on
the data movement complexity of the total computation. The rea-
son is that data from a previous step could possibly be passed to a
later step in fast storage without having to be stored in main mem-
ory. With 4N + 4 fast memory locations, it is feasible to perform
the above computation with a total of only 4N + 1 I/O operations,
4N to bring in the four input vectors into fast memory, and repeat-
edly recompute elements of A and B to contribute to an element
of C, and when ready, accumulate it into sum. The I/O complexity
of the composite multi-step computation is thus lower than that of
the matrix multiply step contained in it. This motivates us to split
the CDAG based on individual sub-computations, determine the
lower bound for each sub-CDAG separately, and finally compose
the result to obtain the I/O lower bound of the whole computation.
However, using the original red/blue pebble game model of Hong
& Kung, as elaborated below, it is not feasible to analyze the I/O
complexity of sub-computations and simply combine them by ad-
dition.

The Hong & Kung red/blue pebble game model places blue peb-
bles on all CDAG vertices without predecessors, since such vertices
are considered to hold inputs to the computation, and therefore as-
sumed to start off in slow memory. Similarly, all vertices without
successors are considered to be outputs of the computation, and
must have blue pebbles at the end of the game. If the vertices of a
CDAG corresponding to a composite application are disjointly par-

titioned into sub-DAGs, the analysis of each sub-DAG under the
Hong & Kung red/blue pebble game model will require the initial
placement of blue pebbles on all predecessor-free vertices in the
sub-DAG, and final placement of blue pebbles on all successor-
free vertices in the sub-DAG. The optimal calculation for each sub-
DAG will require at least one load (R1) operation for each input and
a store (R2) operation for each output. But in playing the red/blue
pebble game on the full composite CDAG, clearly it may be pos-
sible to pass values in a red pebble between vertices in different
sub-DAGs, so that the I/O complexity is less than the sum of the
I/O costs for the optimal calculations for each sub-DAG. In fact,
it is not even possible to assert that the maximum among the I/O
lower bounds for sub-DAGs of a CDAG is a valid lower bound for
the composite CDAG.

In order to enable such decomposition, a modified game called
the Red-Blue-White pebble game [14] was defined, with the fol-
lowing changes to the Hong & Kung pebble game model (the Red-
Blue-White pebble game is formally defined in Sec. 3.1):

1. Flexible input/output vertex labeling: Unlike the Hong &
Kung model, where all vertices without predecessors must
be input vertices, and all vertices without successors must be
output vertices, the RBW model allows flexibility in indicat-
ing which vertices are labeled as inputs and outputs. In the
modified variant of the pebble game, predecessor-free ver-
tices that are not designated as input vertices do not have an
initial blue pebble placed on them. However, such vertices
are allowed to fire using rule R3 at any time, since they do
not have any predecessor nodes without red pebbles. Vertices
without successors that are not labeled as output vertices do
not require placement of a blue pebble at the end of the game.
However, all compute vertices (i.e., vertices in the operation
set) in the CDAG are required to have fired for any complete
calculation.

2. Prohibition of multiple evaluations of compute vertices:

The RBW game disallows recomputation of values on the
CDAG, i.e., each non-input vertex is only allowed to evaluate
once using rule R3. Several other efforts [3, 4, 5, 26, 19, 22,
23, 25, 9, 18, 20, 21] have also imposed such a restriction on
the pebble game model. While such a model is indeed more
restrictive than the original Hong & Kung model, the restric-
tion in the model enables the development of techniques to
form tighter lower bounds [14].

3.1 The Red-Blue-White Pebble Game

DEFINITION 4 (RED-BLUE-WHITE (RBW) PEBBLE GAME).
Given a CDAG C = (I,V,E,O), S red pebbles and arbitrary num-

ber of blue and white pebbles, with a blue pebble on each input

vertex, a complete calculation is any sequence of steps using the

following rules that results in a final state with white pebbles on all

vertices and blue pebbles on all output vertices:

R1 (Input) A red pebble may be placed on any vertex that has a

blue pebble; a white pebble is also placed along with the red

pebble, unless the vertex already has a white pebble on it.

R2 (Output) A blue pebble may be placed on any vertex that has a

red pebble.

R3 (Compute) If a vertex v does not have a white pebble and all

its immediate predecessors have red pebbles on them, a red

pebble along with a white pebble may be placed on v.

R4 (Delete) A red pebble may be removed from any vertex (reuse

storage).

In the modified rules for the RBW game, all vertices are required
to have a white pebble at the end of the game, thereby ensuring
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that the entire CDAG is evaluated. Non-input vertices without pre-
decessors do not have an initial blue pebble on them, but they are
allowed to fire using rule R3 at any time – since they have no pre-
decessors, the condition in rule R3 is trivially satisfied. But if all
successors of such a node cannot be fired while maintaining a red
pebble, “spilling” and reloading using R2 and R1 is forced because
the vertex cannot be fired again using R3.

Definition 3 is adapted to this new game so that Theorem 1 and
thus Lemma 1 can hold for the RBW pebble game.

DEFINITION 5 (S-PARTITIONING OF CDAG – RBW GAME).
Given a CDAG C, an S-partitioning of C is a collection of h subsets

of V \ I such that:

P1 ∀i 6= j, Vi∩V j = /0, and
⋃h

i=1 Vi =V \ I

P2 there is no cyclic dependence between subsets

P3 ∀i, |In(Vi)| ≤ S

P4 ∀i, |Out(Vi)| ≤ S

where the input set of Vi, In(Vi) is the set of vertices of V \Vi that

have at least one successor in Vi; the output set of Vi, Out(Vi) is

the set of vertices of Vi also part of the output set O or that have at

least one successor outside of Vi.

The proof of Theorem 1 under the RBW pebble game is provided
in [14].

For (sub-)graphs without input/output sets, the application of S-
partitioning will however lead to a trivial partition with all vertices
in a single set (e.g., h = 1). A careful tagging of vertices as vir-
tual input/output nodes will be required for better I/O complexity
estimates, as described below.

3.2 Decomposition
Definition 4 allows the partitioning of a CDAG C into sub-CDAGs

C1,C2, . . . ,Cp, to compute lower bounds on the I/O complexity
of each sub-CDAG IO(C1), IO(C2), . . . , IO(Cp) independently and
simply add them to bound the I/O complexity of C. This is stated in
the following decomposition theorem, whose proof may be found
in [14].

THEOREM 2 (DECOMPOSITION).
Let C = (I,V,E,O) be a CDAG. Let V1,V2, . . . ,Vp be an arbitrary

(not necessarily acyclic) disjoint partitioning of V (i 6= j ⇒ Vi ∩
V j = /0 and

⋃p
i=1 Vi = V ) and C1,C2, . . . ,Cp be the induced par-

titioning of C (Ii = I ∩Vi, Ei = E ∩Vi ×Vi, Oi = O∩Vi). Then

∑
p
i=1 IO(Ci)≤ IO(C). In particular, if LBi is a lower bound on the

I/O cost of Ci, then ∑
p
i=1 LBi is a lower bound on the I/O cost of C.

We state the following corollary and theorem, which are useful
in practice for deriving tighter lower bounds. The complete proofs
can be found in [14].

COROLLARY 1 (INPUT/OUTPUT DELETION). Let C and C′

be two CDAGs: C′=(I∪dI,V ∪dI∪dO,E ′,O∪dO), C=(I,V,E ′∩
V×V,O). Then IO(C′) can be bounded below by IO(C) as follows:

IO(C)+ |dI|+ |dO| ≤ IO(C′) (1)

There are cases where separating input/output vertices leads to
very weak lower bounds. This happens when input vertices have
high fan out such as for matrix-multiplication: if we consider the
CDAG for matrix-multiplication and remove all input and output
vertices, we get a set of independent chains that can each be com-
puted with no more than 2 red pebbles. To overcome this prob-
lem, the following theorem allows us to compare the I/O of two
CDAGs: a CDAG C′ = (I′,V,E,O′) and another C = (I,V,E,O)

built from C′ by just transforming some vertices without predeces-
sors into input vertices, and some others into output nodes so that
I′ ⊂ I and O′ ⊂ O. In contrast to the prior development above,
instead of adding/removing input/output vertices, here we do not
change the vertices of a CDAG but instead only change the label-
ing (tag) of some vertices as inputs/outputs in the CDAG. So the
CDAG remains the same, but some input/output vertices are rela-
beled as standard computational vertices, or vice-versa.

THEOREM 3 (INPUT/OUTPUT (UN)TAGGING – RBW).
Let C and C′ be two CDAGs of the same DAG G = (V,E): C =
(I,V,E,O), C′=(I∪dI,V,E,O∪dO). Then, IO(C) can be bounded

below by IO(C′) as follows (tagging):

IO(C′)−|dI|− |dO| ≤ IO(C) (2)

Reciprocally, IO(C′) can be bounded below by IO(C) as follows

(untagging):

IO(C)≤ IO(C′) (3)

Some algorithms will benefit from decomposing their CDAGs
into non-disjoint vertex sets. For instance, when we have com-
putations that are surrounded by an outer time loop, a common
technique to derive their lower bound is to decompose the CDAG,
where vertices computed during each outer loop iteration are placed
in separate sub-CDAGs. In such cases, when the vertices, V ′, com-
puted in iteration t are used as inputs for iteration t +1, by placing
V ′ in the sub-DAGs corresponding to both iterations t and t + 1,
we could obtain a lower bound that is tighter by at least a constant
factor.

Before we state the non-disjoint decomposition theorem, we in-
troduce needed definitions here. Given a DAG G= (V,E) and some
vertex x ∈ V , the ancestor set, Anc(x) is the set of vertices from
which there is a non-empty directed path to x in G (x 6∈ Anc(x));
the descendant set, Desc(x) is the set of vertices to which there is
a non-empty directed path from x in G (x 6∈ Desc(x)). For some
Vi ⊂ V , InSet(Vi) is the set of vertices of Vi, that have atleast one
predecessor outside Vi.

THEOREM 4 (NON-DISJOINT DECOMPOSITION).
Let C = (I,V,E,O) be a CDAG and x ∈V be some vertex. Let V2 =
Desc(x) and C2 = (I2,V2,E2,O2) be the induced sub-graph (I2 =
I∩V2, E2 = E ∩V2×V2, O2 = O∩V2). Let Va =V \Desc(x). The

sub-graph C1 = (I1 = I∩V1,V1,E1,O1 =O∩V1) is built as follows:

(1) start with vertices V1 =Va∪ InSet(Desc(x)) and edges E1 =E∩
Va×Va; (2) Add an edge from x to each vertex in InSet(Desc(x)),
i.e., ∀d ∈ InSet(Desc(x)),E1 = E1 ∪ x× d. Then, IO(C1,S+ 1)+
IO(C2,S) ≤ IO(C,S), where, IO(C,S) represents the I/O cost for

computing C with S red pebbles.

PROOF. Consider a complete calculation P of C with S red peb-
bles. We let QL1 be the number of R1 transitions (loads) in C as-
sociated to the vertices of V \ [Desc(x) + x]. We let QS1 be the
number of R2 transitions (stores) in C associated to the vertices of
V \Desc(x). We let Q2 be the number of R1 and R2 transitions
(loads/stores) in C associated to a vertex in Desc(x). We have that
IO(C,S)>= QL1 +QS1 +Q2. The idea of the proof is to show that
QL1 +QS1 >= IO(C1,S+1) and that Q2 >= IO(C2,S).

Let us first prove that QL1 +QS1 >= IO(C1,S+1). We consider
the restriction of P to V1. This is not a complete calculation for
C1 yet, as the predecessors of the vertices in InSet(Desc(x)) need
not be the same in C1 as in C. We have one additional red pebble
that we can dedicate to stay on x. Hence, all the R1 (load) and R4
(delete) transitions associated to vertex x, after the execution of x

in P , can be removed. This gives a complete calculation for C1 as
follows:
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• As the sub-graph induced by Va is a sub-graph of C, all transi-
tions associated to vertices of V \ [Desc(x)+x] plus the tran-
sition R3 (compute) of x are valid (this part of the complete
calculation from P has been unchanged).
• For the vertices in InSet(Desc(x)), the only transitions are

R3/R2 (compute/ store) and is valid as all the associated tran-
sitions of its predecessors in Va are unchanged (apart from x

which holds a red pebble as soon as it is computed). The cost
of this complete calculation (with S+ 1 red pebbles) for C1

is QL1 +QS1.
This proves the inequality.

Let us now prove that Q2 >= IO(C2,S). We consider the re-
striction of C to the vertex of C2 = Desc(x). This is a complete
calculation for C2 of cost Q2 which proves the second inequality.
✷

3.3 Min-Cut for I/O Complexity Lower Bound
In [14], we developed an alternative lower bounding approach.

It was motivated from the observation that the Hong & Kung 2S-
partitioning approach does not account for the internal structure of
a CDAG, but essentially focuses only on the boundaries of the par-
titions. In contrast, the min-cut based approach captures internal
space requirements using the abstraction of wavefronts. This sec-
tion describes the approach.
Definitions: We first present needed definitions. Given a graph
G = (V,E), a cut is defined as any partition of the set of vertices
V into two parts S and T = V − S . An s− t cut is defined with
respect to two distinguished vertices s and t and is any (S ,T ) cut
satisfying the requirement that s ∈ S and t ∈ T . Each cut defines
a set of cut edges (the cut-set), i.e., the set of edges (u,v) where
u ∈ S and v ∈ T . The capacity of a cut is defined as the sum of the
weights of the cut edges. The minimum cut problem (or min-cut)
is one of finding a cut that minimizes the capacity of the cut. We
define vertex u as a cut vertex with respect to an (S ,T ) cut, as a
vertex u ∈ S that has a cut edge incident on it. A related problem
of interest for this paper is the vertex min-cut problem which is one
of finding a cut that minimizes the number of cut vertices.

We consider a convex cut (Sx,Tx) associated to x as follows: Sx

includes x∪Anc(x); Tx includes Desc(x); in addition, Sx and Tx

must be constructed such that there is no edge from Tx to Sx. With
this, the sets Sx and Tx partition the graph G into two convex parti-
tions. We define the wavefront induced by (Sx,Tx) to be the set of
vertices in Sx that have at least one outgoing edge to a vertex in Tx.
Schedule Wavefront: Consider a complete calculation P that cor-
responds to some scheduling (i.e., execution) of the vertices of the
graph G = (V,E) that follows the rules R1–R4 of the Red-Blue-
White pebble game (see Definition 4 in Sec. 3.1). We view this
complete calculation P as a string that has recorded all the transi-
tions (applications of pebble game rules). Given P , we define the
wavefront WP (x) induced by some vertex x ∈ V at the point when
x has just fired (i.e., a white pebble has just been placed on x) as
the union of x and the set of vertices u ∈ V that have already fired
and that have an outgoing edge to a vertex v ∈V that have not fired
yet. Viewing P as a string, WP (x) is the set of vertices x and those
white-pebbled vertices to the left of x in the string associated with
P that have an outgoing edge in G to not-white-pebbled vertices
that occur to the right of x in P . With respect to a complete cal-
culation P , the set WP (x) defines the memory requirements at the
time-stamp just after x has fired.
Correspondence with Graph Min-cut Note that there is a close
correspondence between the wavefront WP (x) induced by some
vertex x ∈ V and the (Sx,Tx) partition of the graph G. For a valid

convex partition (Sx,Tx) of G, we can construct a complete calcu-
lation P in which at the time-stamp when x has just fired, the subset
of vertices of V that are white pebbled exactly corresponds to Sx;
the set of fired (white-pebbled) nodes that have a successor that
is not white-pebbled constitute a wavefront WP (x) associated with
x. Similarly, given wavefront WP (x) associated with x in a pebble
game instance P , we can construct a valid (Sx,Tx) convex partition
by placing all white pebbled vertices in Sx and all the non-white-
pebbled vertices in Tx.

A minimum cardinality wavefront induced by x, denoted W min
G (x)

is a vertex min-cut that results in an (Sx,Tx) partition of G defined
above. We define wmax

G as the maximum value over the size of all
possible minimum cardinality wavefronts associated with vertices,
i.e., define wmax

G = maxx∈V

(∣

∣W min
G (x)

∣

∣

)

.

LEMMA 2. Let C = ( /0,V,E,O) be a CDAG with no inputs. For

any x ∈V , 2
(∣

∣W min
G (x)

∣

∣−S
)

≤ IO(C).

In particular, 2
(

wmax
G −S

)

≤ IO(C).

4. PARALLEL I/O LOWER BOUNDS
In this section, we develop an approach to model data movement

complexity for parallel execution. We describe our abstraction of
a parallel computer, define a pebble game adapted for character-
izing lower bounds for parallel computation, and then present the
methodology for developing parallel lower bounds.

4.1 Parallel Machine Model
Our abstraction of a parallel computer is shown in Fig. 1. The

model seeks to capture the essential characteristics of large-scale
parallel systems, which exhibit multi-level parallelism and a hier-
archical storage structure. The parallel computer has a set of Nnodes

multi-core nodes connected by an interconnection network. Each
node has a number of cores and a hierarchy of storage elements: a
set of private registers (at level 1) for each core, a private L1 cache
per core (at level 2), and a hierarchy of zero or more additional lev-
els of cache (through level L-1), and a shared main memory (at level
L). The total number of storage entities at level l is denoted Nl , and
the capacity of each entity at level l is Sl words. The hierarchical
structure means that each storage entity at level l is connected to
a unique storage entity at level l+1, and an integral multiple (usu-
ally a power of 2) of entities at level l-1. The total number of main
memory modules NL equals the number of nodes Nnodes in the sys-
tem.

Figure 1: Model of parallel system

300



4.2 P-RBW: The Parallel Red-Blue-White Peb-
ble Game

In this sub-section, we present the framework for developing
lower bounds on the data movement complexity for parallel exe-
cution. In particular, we consider two types of data movement:

1. Movement across the levels of the storage hierarchy within a

node, called vertical data movement;
2. Movement between nodes, called horizontal data movement.
The model used here may be viewed as an extension of the Mul-

tiprocessor Memory Hierarchy Game (MMHG) game proposed by
Savage and Zubair [24], which modeled “vertical” data movement
in a shared storage hierarchy but not the “horizontal” movement of
data between the memories of nodes in the parallel system. Thus,
whereas Savage’s model assumes a common shared level of mem-
ory that can be directly accessed by all processors, we model a
collection of shared-memory multiprocessor nodes coupled by an
interconnection network. As demonstrated later in Sec. ??, this
distinction allows better modeling of fundamental data movement
constraints of parallel algorithms on intra-node memory bandwidth
(between off-chip main memory and on-chip cache(s) on a node)
versus interconnection network bandwidth (e.g., Gigabit Ethernet
of Infiniband used to connect nodes in a scalable parallel system).

With the Parallel RBW (P-RBW) game, a different set of red
pebbles is associated with each storage entity in the parallel system
– we can consider there to be different shades of red, one per dis-
tinct storage entity. Associated with the storage entities at a level
l in the hierarchy, we have Nl distinct shades of red pebbles, each
associated with one of the Nl distinct storage entities in the system
at that level. The rules of the P-RBW are stated below, and en-
code the constraints on movement of data in the parallel computer:
i) vertical data movement can occur between physically connected
entities in the storage hierarchy (Rules R4 and R5), and ii) data can
be moved via the interconnection network between the memories
of any pair of nodes (Rule R3).

DEFINITION 6 (PARALLEL RBW (P-RBW) PEBBLE GAME).
Let C = (I,V,E,O) be a CDAG. Given for each level 1 ≤ l ≤ L,

Nl ×Sl number of red pebbles of different shades R1
l , R2

l , · · · , R
Nl

l ,

respectively, and unlimited blue and white pebbles, with a blue peb-

ble on each input vertex, a complete calculation is any sequence of

steps using the following rules that results in a final state with white

pebbles on all vertices and blue pebbles on all output vertices:

R1 (Input) A level-L pebble, Ri
L can be placed on any vertex that

has a blue pebble; a white pebble is also placed along with

the shade of red pebble, unless the vertex already has a white

pebble on it.

R2 (Output) A blue pebble can be placed on any vertex that has a

level-L pebble on it.

R3 (Remote get) A level-L pebble, Ri
L can be placed on any vertex

that has another level-L shade pebble R
j
L.

R4 (Move up) For 1≤ l < L, a level-l red pebble, Ri
l can be placed

on any vertex that has a level-(l+1) pebble R
j
l+1 where Ri

l is

in a cache that is a child of the cache that holds R
j
l+1.

R5 (Move down) For 1 < l ≤ L, a level-l red pebble, R
j
l can be

placed on any vertex that has a level-(l − 1) pebble Ri
l−1

where Ri
l−1 is in a cache that is a child of the cache that

holds R
j
l .

R6 (Compute) If a vertex v does not have a white pebble and all its

immediate predecessors have level-1 red pebbles of shade p

on them, then a level-1 red pebble R
p
1 along with a white peb-

ble may be placed on v; here p is the index of the processor

that computes vertex v.

R7 (Delete) Any shade of red pebble may be removed from any

vertex (reuse storage).

4.3 I/O Lower Bound for Vertical Data Move-
ment

The hierarchical memory can enforce either the inclusion or ex-
clusion policy. In case of inclusive hierarchical memory, when a
copy of a value is present at a level-l, it is also maintained at all the
levels l +1 and higher. These values may or may not be consistent
with the values held at the lower levels. The exclusive cache, on
the other hand, does not guarantee that a value present in the cache
at level-l will be available at the higher levels. The following re-
sult is derived for the inclusive case. But, they also hold true for
the exclusive case, where the difference lies only in the number of
red pebbles that we consider in the corresponding two-level pebble
game.

THEOREM 5 (VERTICAL I/O COST).
Let C = (I,V,E,O) be a CDAG. Consider any complete calcula-

tion on C using the rules of P-RBW pebble game; for this complete

calculation, consider the level-l storage j with the maximum num-

ber of R4/R5 transitions with its children at level-(l−1). Then, the

corresponding amount of data movement between the level-l stor-

age j and its children is at least IO1(C,Sl−1 ×Nl−1)/Nl , where

IO1(C,S) is the I/O lower bound of C for a single processor with

fast memory of size S.

PROOF. Consider a complete calculation of C using the rules
of P-RBW game that minimizes the overall amount of I/O between
levels k < l and level l storage. This amount of I/O will be bounded
by IO1(C,Sl−1×Nl−1). Consider one of the Nl caches with the
maximum amount of I/O. It will be bounded by IO1(C,Sl−1 ×
Nl−1)/Nl . ✷

It is possible to obtain tighter results for the cases that use S-
partitioning techinique to derive the vertical I/O lower bounds. The
following theorem extends the S-partitioning techinque to the ver-
tical case.

THEOREM 6 (S-PARTITIONING BASED VERTICAL I/O COST).
Let C = (I,V,E,O) be a CDAG. Consider any complete calculation

on C using the rules of P-RBW game; for this complete calcula-

tion, consider the level-l storage j whose group of processors P
j

l
perform the maximum number of R6 (compute) transitions. Then,

the corresponding amount of data movement between the level-

l storage j and its children is at least
(

|V |
U(C,2Sl−1)×Nl

− Nl−1

Nl

)

×
Sl−1 ≈ |V |×Sl−1

U(C,2Sl−1)×Nl
, where, |V | is the total number of vertices in

C, U(C,2S) is the largest vertex-set in any 2S-partition of C.

PROOF. Consider a complete calculation that minimizes the over-
all amount of I/O between levels k < l and level-l storage. Consider
the group of P/Nl processors that do the maximum computation.
They do at least |V |/Nl amount of work. Let us consider the par-
tition of those P/Nl processors into Nl−1/Nl sets of P/Nl−1 pro-
cessors that share the same level-(l− 1) storage unit. Each set of
processors (that we denote by Pi

l−1, 0 < i≤ Nl−1/Nl) does at least

αi× |V |Nl
amount of work where ∑i αi = 1. We let V i be the subset

of vertices of C fired by Pi
l−1.

Let us denote Sl−1 by S to simplify the notations. The goal is
to show that each Pi

l−1 performs at least
[∣

∣V i
∣

∣/U(C,2S)−1
]

× S
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I/O to its level-l storage, where, U(C,2S) is the largest 2S-partition
(RBW pebble game) of CDAG C. Consider a complete calculation
of C with RBW game with S red pebbles. Consider the partitioning
of the complete calculation P into P1, · · · ,Ph used in the proof of
Theorem 1 for RBW. We let V i

j be the set of vertices of V i fired

in P j (
⋃h

j=1 V i
j = V i; ∀ j 6= j′V

i
j ∩V i

j′ = /0). With the usual reasoning

we can prove that |In(V i
j)| ≤ 2S and |Out(V i

j)| ≤ 2S, i.e., each V i
j is

a 2S-partition of C. Thus for each j, |V i
j | ≤U(C,2S). Now from

a complete calculation for P-RBW game, we can build a complete
calculation for RBW game. By construction, each V i

j is associated
to at least S I/O to level-l storage in the complete calculation for
the P-RBW game. Thus the total amount of I/O for Pi

l−1 is at least
[

∣

∣V i
∣

∣/|V i
j |−1

]

×S≥
[∣

∣V i
∣

∣/U(C,2S)−1
]

×S. Finally,

∑
Nl−1/Nl

i=1

(

|V i|
U(C,2Sl−1)

−1

)

×Sl−1 =∑
Nl−1/Nl

i=1

(

αi×(|V |/Nl)
U(C,2Sl−1)

−1
)

×Sl−1

=
(

|V |
U(C,2Sl−1)×Nl

− Nl−1

Nl

)

×Sl−1 ≈ |V |×Sl−1

U(C,2Sl−1)×Nl
. ✷

4.4 I/O Lower Bound for Horizontal Data Move-
ment

The following theorem extends the S-partitioning technique to
the horizontal case.

THEOREM 7 (S-PARTITIONING BASED HORIZONTAL I/O COST).
Let C = (I,V,E,O) be a CDAG. Consider any complete calcula-

tion on C using the rules of P-RBW game; for this complete cal-

culation, consider the level-L storage i whose group of proces-

sors Pi
L perform the maximum number of R6 (compute) transitions.

The corresponding amount of remote get transitions are at least
(

|V |
U(C,2SL)×NL

−1
)

× SL, where, |V | is the total number of vertices

in C, U(C,2S) is the largest vertex-set in any 2S-partition of C.

PROOF. We let V i be the subset of vertices of C fired by the
set of processors Pi

L. Let us denote SL by S for simplicity. Con-
sider a complete calculation P on C using RBW game with S red
pebbles. Consider the partitioning of this complete calculation into
P1, · · · ,Ph used in the proof of Theorem 1 for RBW. We let V i

j be

the set of vertices of V i fired in P j (
⋃h

j=1 V i
j = V i; ∀ j 6= j′V

i
j ∩V i

j′ =

/0). With the usual reasoning we can prove that
∣

∣

∣
In(V i

j)
∣

∣

∣
≤ 2S and

∣

∣

∣
Out(V i

j)
∣

∣

∣
≤ 2S, i.e., each V i

j is a 2S-partition of C. Thus for each

j, |V i
j | ≤U(C,2S). Now from a complete calculation for P-RBW

game, we can build a complete calculation for RBW game. By con-
struction, each V i

j is associated to at least S I/O operations in the
complete calculation for P-RBW game. Thus the total amount of

I/O for Pi
L is at least

[

|V i|/|V i
j |−1

]

×S≥
[∣

∣V i
∣

∣/U(C,2S)−1
]

×S.

Since the group Pi
L performs maximum number of computations,

∣

∣V i
∣

∣≥ |V |/NL. Hence, the total amount of remote get of processors

Pi
L is at least

(

|V |
U(C,2SL)×NL

−1
)

×SL. ✷

5. ILLUSTRATION OF USE
Lower and upper bound analysis of algorithms can help us iden-

tify whether an algorithm is bandwidth bound at different levels of
the memory hierarchy. Lower bound results can be related to archi-
tectural parameters. Consider a multi-node/multi-core system with
P processors. Let Nl be the total storage capacity (in data elements)
available at level l. Consider a memory unit at level l, Mi

l , that in-

curs the maximum communication. Mi
l , is shared by the processor

set Pi
l , such that

∣

∣Pi
l

∣

∣ = P/Nl . Let B i
l denote the total available

memory bandwidth between Mi
l and all its children at level l−1.

Let C = (I,V,E,O) be the CDAG of the algorithm being ana-
lyzed and Ci

l ⊂C be the sub-CDAG executed by the processors Pi
l .

The time taken for execution of C is given by T ≥max(T i
l ,Tcomp),

where, T i
l denotes the communication time at Mi

l and Tcomp denotes
the computation time for C. For the algorithm to be not bound by
memory bandwidth at level l,

T i
l ≤ Tcomp (4)

Let IOi
l denote the amount of data transferred between Mi

l and all

its children at level l−1 for the execution of Ci
l . Then,

T i
l =

IOi
l

B i
l

≥ LBi
l

B i
l

(5)

where, LBi
l denotes the lower bound on the amount of data transfer

at memory unit Mi
l for any valid execution of Ci

l . The computation
time of C is given by (F below indicates processor performance in
floating-point arithmetic operations per second per core)

Tcomp =
W

P
× 1

F
(6)

where, W is the total number of arithmetic operations. From Equa-
tions (4), (5) and (6), we have,

LBi
l

B i
l

≤ W

P
× 1

F
or

LBi
l

W
≤ B i

l

P
× 1

F

As P =
∣

∣Pi
l

∣

∣×Nl ,

LBi
l ×Nl

W
≤ B i

l
∣

∣Pi
l

∣

∣×F
(7)

The term at the right-hand side of Equation (7) is the machine bal-
ance value for the machine at level-l. Any algorithm that fails to
satisfy the Equation (7), will be invariably bandwidth bound at
level-l.

Through similar argument, given that UBi
l is the upper bound on

the minimum amount of data transfer required by the algorithm at
memory unit Mi

l , we can show that if the algorithm is bandwidth
bound, then it definitely satisfies the condition,

UBi
l ×Nl

W
≥ B i

l
∣

∣Pi
l

∣

∣×F
(8)

Hence, if an algorithm fails to satisfy Equation (8), we can safely
conclude that there is at least one execution order of C that is not
constrained by the memory bandwidth at level l.

In particular, we are interested in understanding the memory
bandwidth requirements (1) between the main memory and last
level cache (LLC) within each node, and, (2) between different
nodes, for various algorithms. For simplicity, we assume that the
LLC is shared by all the cores within a node, which is common in
practice.

Considering the particular case of data movement between LLC
and the main memory, Equation (7) becomes,

LBvert ×Nnodes

W
≤ Bvert

Ncores×F
(9)

where, LBvert is the vertical data movement lower bound, Bvert is
the total bandwidth between DRAM and LLC, Nnodes represents
the number of nodes in the system, and Ncores represents the num-
ber of cores within each node. Similarly, considering the inter-node
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communication, Equation (8) becomes,

UBhoriz×Nnodes

W
≥ Bhoriz

Ncores×F
(10)

where, UBhoriz and Bhoriz represent the upper bound on the hori-
zontal data movement cost and inter-processor communication band-
width, respectively.

Specifications for some of the computing systems are shown in
table 1.

Table 1: Specifications of various computing systems

Machine Nnodes Mem.

(GB)

LLC

(MB)

Vertical

balance

(words /

FLOP)

Horiz.

balance

(words /

FLOP)

IBM BG/Q 2048 16 32 0.052 0.006
Cray XT5 9408 16 6 0.0256 0.005

5.1 Example: Solving the Heat Equation
Many compiute intensive applications involve the numerical so-

lution of partial differential equations (PDEs). As an example, con-
sider the heat flow on a long thin bar of unit length, of uniform
material and insulated, so that heat can enter and exit only at the
boundaries (Fig. 2(a)). Let u(x, t) represent the temperature at po-
sition 0 ≤ x ≤ 1, and time t ≥ 0. The objective is to determine
the change in temperature over time (u(x, t)). The governing heat

equation that describes this distribution of heat is given by the PDE:

du(x, t)

dt
= α× d2u(x, t)

dx2

where, α is the thermal diffusivity of the bar. (For mathematical
treatment, it is sufficient to consider α = 1).

x=0 x=1 i=0 i=4 i=8

(a) (b)

boundary boundary

Figure 2: One-dimensional heat flow problem

Since the problem is continuous, to numerically solve the heat
equation, it needs to be discretized (through finite difference ap-
proximation) to reduce it to a finite problem. In the discretized
problem, the values of u(x, t) are only computed at discrete points at
regular intervals of the bar, called the computational grid or mesh.
The state variables at these grid points are given by u(x(i), t(m)),
where x(i) = i×h, 0≤ i≤ n+1 = 1/h and t(m) = m× k; h and k

are the grid spacing and timestep, respectively. Fig. 2(b) shows an
example grid obtained by discretizing the one-dimensional bar.

The governing equation, after discretization, yields the following
equation at grid point i and timestamp m+1.

−a

2
×U(i−1,m+1)+(1+a)×U(i,m+1)− a

2
×U(i+1,m+1) =

a

2
×U(i−1,m)+(1−a)×U(i,m)+

a

2
×U(i+1,m)

where, U(p,q) = u(x(p), t(q)) and a = k/h2. Hence, the solution
to the problem involves solving a linear system of n− 1 equations
at each timestamp till convergence. Each timestamp m+ 1 is de-
pendant on values of the previous timestamp m.

This linear system can be represented in tridiagonal matrix form
as follows:












1+a − a
2

− a
2

1+a − a
2

− a
2

1+a − a
2

. . .
. . .

. . .
− a

2
1+a − a

2

− a
2

1+a













×













U(1,m+1)
U(2,m+1)
U(3,m+1)

...
U(n−1,m+1)

U(n,m+1)













=













b(1,m)
b(2,m)
b(3,m)

...
b(n−1,m)

b(n,m)













(11)
where, b(i,m) represents the right-hand side of the i-th equation at
timestamp m+1. Solving this linear system of the form Ax = b for
vector x provides the solution to the original problem. In general,
for a d-dimensional problem, the coefficient matrix is of size nd-by-
nd , while the vectors are of size nd . In practice, the elements of the
matrix are not explicitly stored. Instead, their values are directly
embedded in the program as constants thus eliminating the space
requirement and the associated I/O cost for the matrix.

Many iterative methods have been developed to efficiently solve
such large linear systems of equations. The following section de-
rives the vertical and horizontal data movement bounds for some of
these iterative linear system solvers using the results from Sections
3 and 4 and compares it against the machine balance values.

5.2 Conjugate Gradient (CG)
The Conjugate Gradient method [15] is suitable for solving sym-

metric positive-definite linear systems. CG maintains 3 vectors at
each timestep - the approximate solution x, its residual r = Ax−b,
and a search direction p. At each step, x is improved by searching
for a better solution in the direction p.

Each iteration of CG involves one sparse matrix-vector product,
three vector updates, and three vector dot-products. The complete
pseudocode is shown in Fig. 3.

1 x i s t h e i n i t i a l g u e s s
2 p← r← b−Ax
3 do
4 v← Ap / / SpMV
5 b← (r.r) / / Dot−prod
6 a← b/(p.v) / / Dot−prod
7 x← x+ap / / AXPY
8 r← r−av / / AXPY
9 g← (r.r)/b / / Dot−prod

10 p← r+gp / / AXPY
11 until ( (r.r) i s s m a l l )

Figure 3: Conjugate Gradient method

5.2.1 Vertical data movement cost

In this sub-section, we provide the lower bound for the amount
of data movement between different levels of hierarchy for CG.

THEOREM 8 (MIN-CUT BASED I/O LOWER BOUND FOR CG).
For a d-dimensional grid of size nd , the minimum I/O cost to solve

the linear system using CG, Q, satisfies Q≥ 6ndT/P, when nd≫ S;

where, T represents the number of outer loop iterations, and P is

the number of processors.

PROOF. Let C be the CDAG for CG. Consider the vertex υx,
corresponding to computation of the scalar a at line 6. The 2nd

predecessor vertices of υx, corresponding to elements of vectors p

and v, have disjoint paths to the Desc(υx) (due to computations
in lines 7 and 8, respectively). This gives us a wavefront of size
∣

∣W min
G (υx)

∣

∣ = 2nd . Similarly, considering the vertex, υy, corre-
sponding to the computation of scalar g, at line 9, we obtain a
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wavefront of size
∣

∣W min
G (υy)

∣

∣ = nd , due to the disjoint paths from
the predecessors r to Desc(x) (due to the computation at line 10).

Recursively applying Theorem 4 on the complete CDAG C, pro-
vides us T sub-CDAGs, C1, C2, . . . ,CT , corresponding to each
outer loop iteration. (Vertices corresponding to the elements of
vector p computed at line 10 are shared between neighboring sub-
CDAGs). Further, non-disjointly sub-dividing each of these sub-
CDAGs, Ci, into Ci|x andCi|y (vertices corresponding to the compu-
tation of vector r from line 8 are shared between Ci|x andCi|y ), to

decompose the effects of wavefronts W min
G (υx) and W min

G (υy), we
obtain a lower bound of,

Q ≥ T × (2(2nd −S))+T × (2(nd −S))

= T × (2(3nd −2S))

which tends to 6ndT when nd ≫ S. Finally, application of Theo-
rem 5 provides a lower bound of 6ndT/P for the parallel case. ✷

5.2.2 Horizontal data movement cost

Consider the block partitioning of the input grid among the pro-

cessors, with block size along each dimension B = n/N
1/d

nodes. Each
processor holds the input data corresponding to its local grid points
and computes the data needed by those grid points. Computation of
the sparse matrix-vector product, at line 4 in Fig. 3, requires send
and receive of values at the ghost cells of size (B+2)d−Bd at each
timestep with the neighboring processors. If Q is the minimum I/O
cost for executing CG, then,

Q ≤ 2× ((B+2)d−Bd)×T

= 2× (Bd +

(

d

1

)

Bd−121 +

(

d

2

)

Bd−222

+ · · ·+
(

d

d−1

)

B12d−1 +

(

d

d

)

B02d −Bd)×T

= O(4dBd−1T )

5.2.3 Analysis

Equations (9) and (10) provided us conditions to determine the
vertical and horizontal memory constraints of the algorithms. We
will use them to show that the running time of CG is mainly con-
strained by the vertical data movement. We consider a three-dimensional
problem (d = 3) for the analysis.
Operation count: The vector dot-product at line 6 requires 2nd

operations. The computation of (r.r), at lines 9, 11 and 5, requires a
single vector dot-product of operation count 2nd . The vector update
operations at lines 7, 8 and 10 have operation count of 2nd each.
The SpMV operation at line 4 is a stencil computation that requires
2.(2d + 1).nd operations. This provides a total operation count of
24n3T for a three-dimensional problem.

The vertical I/O lower bound per node, LBvert = 6n3T/Nnodes.
Hence,

LBvert ×Nnodes

W
=

(

6n3T/Nnodes

)

×Nnodes

24n3T
=

6

24
= 0.25

This value is higher than the vertical machine balance value of var-
ious machine (refer table 1), leaving Equation (9) unsatisfied. This
shows that CG will be unavoidably bandwidth bound along the ver-
tical direction for the problems that cannot fit into the cache. The
only way to improve the performance would be to increase the main
memory bandwidth.

On the other hand, let us consider the horizontal data movement
cost.

UBhoriz×Nnodes

W
=

12B2T ×Nnodes

24n3T

=
12

(

n/N
(1/3)
nodes

)2
Nnodes

24n3
=

N
(1/3)
nodes

2n

This value is much lower than the horizontal machine balance val-
ues of various machines for the problem size typically encountered
in practice, indicating that it is the intra-node memory bandwidth
that is much more of a fundamental bottleneck than inter-node com-
munication for CG.

5.3 Jacobi Method
Jacobi’s method involves stencil computation, starting with an

initial guess for the unknown vector x and iteratively replacing the
current approximate solution at each grid point by a weighted aver-
age of its nearest neighbors on the grid. Hence, the information at
one grid point can only propogate to its adjacent grid points in one
iteration. Thus, it takes at least n steps to propogate the information
throughout the grid and reach to the solution.

5.3.1 Vertical data movement cost

In this section, we derive the I/O lower bound for Jacobi compu-
tation on a d-dimensional grid. We provide the proof for a 2D-grid
below, which can be generalized to a grid of d-dimensions as shown
later.

THEOREM 9 (I/O LOWER BOUND FOR JACOBI).
For the two-dimensional 5-points Jacobi computation of size n×
n with T − 1 time steps, the minimum I/O cost, Q, satisfies Q ≥

N2T

4P
√

2S
, where, P is the number of processors.

PROOF. The CDAG for the Jacobi computation has the prop-
erty that all inputs can reach all outputs through vertex-disjoint
paths. These vertex-disjoint paths will be called lines, for sim-
plicity. Let F(d) denote a monotonically increasing function such
that for any two vertices u and v on the same line that are at least
distance d apart, F(d) has the following properties: (1) none of
these F(d) vertices belong to the same line; (2) Each of these ver-
tices belongs to a path connecting u and v. In [16, Theorem 5.1],
Hong & Kung showed that for any CDAG C that satisfies the above
mentioned properties, its largest vertex-set in any 2S-partition of C,
U(C,2S) = 2.(F−1(2S) + 1), and the serial I/O lower bound, Qs

can be bounded by Qs ≥ L/(2.(F−1(2S)+1)), where L is the total
number of vertices on the lines. From the structure of CDAG for
2D-Jacobi computation, it can be seen that F−1(2S) = 2

√
2S− 1.

Hence, U(C,2S) = 4
√

2S, and from Theorem 6, the parallel I/O
cost, Q≥ n2T/(4P

√
2S). ✷

With the similar reasoning, the I/O lower bound can be extended
to higher dimensions, leading to the I/O cost of Q≥ ndT/(4P(2S)1/d),
for a d-dimensional grid. The well-known tiled Jacobi implemen-
tation (of tile size S) with scheduling for wavefront parallelism has

an I/O cost of Q ≤ (4d + 2)ndT/(PS1/d). Hence, the parallel I/O
lower bound derived above is asymptotically tight.

5.3.2 Horizontal data movement cost

The well-known distributed memory tiled Jacobi implementa-
tion incurs data communication cost at the boundaries due to the
exchange of ghost cell values, similar to the Conjuagte Gradient
method. Hence, the upper bound on the horizontal data movement
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cost for the Jacobi method, Q=O(4dBd−1T ), where, B= n/N
1/d

nodes
is the block size along each dimension.

5.3.3 Analysis

We consider a three-dimensional problem (d = 3) for the analysis
in this section. The operation count for a three-dimensional 7-point
Jacobi method is 7n3T . The vertical I/O lower bound per node,
LBvert = n3T/(4(2S)1/3Nnodes). Hence,

LBvert ×Nnodes

W
=

(

n3T/4.(2S)1/3.Nnodes

)

×Nnodes

7n3T
=

1

35.3×S1/3

For an LLC of size S = 6 MB (i.e., 0.75 MWords), LBvert = 3×
10−4 words/FLOP. This value falls below the vertical machine bal-
ance parameter of various architectures (refer Table 1). Now, con-
sidering the vertical I/O upper bound per node,

UBvert = 14ndT/(S1/dNnodes).

UBvert ×Nnodes

W
=

(

14n3T/S1/3.Nnodes

)

×Nnodes

7n3T
=

2

S1/3

For S = 0.75 MWords, UBvert = 0.022 words/FLOP. This value
falls sightly below the vertical machine balance parameters shown
in Table 1, showing that the Jacobi method need not be necessarily
bandwidth bound along the vertical direction, as opposed to CG.

Similarly, for the horizontal case,

UBhoriz×Nnodes

W
=

12B2T ×Nnodes

7n3T
=

1.714×N
(1/3)
nodes

n

As in the case of CG, this value is much lower than the horizon-
tal machine balance values of different machines for the common
problem sizes, indicating that the horizontal data movement is not
a bottleneck.

This shows that even though Jacobi method might require more
iterations to converge, its lower ratio of I/O cost to the computa-
tional cost along both vertical and horizontal directions might make
methods similar to it a more attractive alternative to CG for solving
large sparse systems of linear equations on future machines that
have more skewed machine balance parameters than current sys-
tems.

6. RELATED WORK
Hong & Kung provided the first characterization of the I/O com-

plexity problem using the red/blue pebble game and the equiva-
lence to 2S-partitioning of CDAGs [16]. Their 2S-partitioning ap-
proach uses dominators of incoming edges to partitions but does
not account for the internal structure of partitions. In this paper,
in addition to using the 2S-partitioning technique, we also use an
alternate lower bound approach that models the internal structure
of CDAGs, and uses graph mincut as the basis. In addition, Hong
& Kung’s original model does not lend itself easily to development
of effective lower bounds for a CDAG from bounds for component
sub-graphs. With a change of the pebble game model to the RBW
game, we were able to use CDAG decomposition to develop tight
composite lower bounds for inhomogeneous CDAGs.

Several works followed Hong & Kung’s work on I/O complexity
in deriving lower bounds on data accesses [2, 1, 18, 6, 5, 22, 23, 19,
20, 28, 13, 3, 4, 8, 27, 25]. Aggarwal et al. provided several lower
bounds for sorting algorithms [2]. Savage [22, 23] developed the
notion of S-span to derive Hong-Kung style lower bounds and that
model has been used in several works [19, 20, 25]. Irony et al. [18]
provided a new proof of the Hong-Kung result on I/O complexity
of matrix multiplication and developed lower bounds on commu-

nication for sequential and parallel matrix multiplication. More
recently, Demmel et al. have developed lower bounds as well as
optimal algorithms for several linear algebra computations includ-
ing QR and LU decomposition and all-pairs shortest paths problem
[3, 4, 13, 27]. Bilardi et al. [6, 5] develop the notion of access
complexity and relate it to space complexity. Bilardi and Preparata
[7] developed the notion of the closed-dichotomy size of a DAG G

that is used to provide a lower bound on the data access complex-
ity in those cases where recomputation is not allowed. Our notion
of schedule wavefronts is similar to the closed-dichotomy size in
their work. Extending the scope of the Hong & Kung model to
more complex memory hierarchies has been the subject of some
research. Savage provided an extension together with results for
some classes of computations that were considered by Hong &
Kung, providing optimal lower bounds for I/O with memory hier-
archies [22]. Valiant proposed a hierarchical computational model
[28] that offers the possibility to reason in an arbitrarily complex
parameterized memory hierarchy model.

Unlike Hong & Kung’s original model, several models have been
proposed that do not allow recomputation of values (also referred to
as “no repebbling”) [3, 4, 5, 26, 19, 22, 23, 25, 9, 18, 20, 21]. Sav-
age [22] develops results for FFT using no repebbling. Bilardi and
Peserico [5] explore the possibility of coding a given algorithm so
that it is efficiently portable across machines with different hierar-
chical memory systems, without the use of recomputation. Ballard
et al. [3, 4] assume no recomputation is allowed in deriving lower
bounds for linear algebra computations. Ranjan et al. [19] develop
better bounds than Hong & Kung for FFT using a specialized tech-
nique adapted for FFT-style computations on memory hierarchies.
Ranjan et al. [20] derive lower bounds for pebbling r-pyramids un-
der the assumption that there is no recomputation. Recently, Ranjan
et al. [21] developed a technique for binomial graphs. Very recent
work from U.C. Berkeley [8] has developed a very novel approach
to developing parametric I/O lower bounds applicable/effective for
a class of nested loop computations but is either inapplicable or
produces weak lower bounds for other computations (e.g., stencil
computations, FFT, etc.).

The P-RBW game developed in this paper extends the paral-
lel model for shared-memory architectures by Savage and Zubair
[24] to also include the distributed-memory parallelism present in
all scalable parallel architectures. The works of Irony et al. [18]
and Ballard et al. [3] model communication across nodes of a
distributed-memory system. Bilardi and Preperata [7] develop lower
bound results for communication in a distributed-memory model
specialized for multi-dimensional mesh topologies. Our model in
this paper differs from the above efforts in defining a new integrated
pebble game to model both horizontal communication across nodes
in a parallel machine, as well as vertical data movement through a
multi-level shared cache hierarchy within a multi-core node.

Czechowski et al. [11, 12] consider the relationship between the
ratio of an algorithm’s data movement cost to arithmetic work and
the machine balance ratio of memory bandwidth to peak perfor-
mance. Our analysis of algorithms in this paper involves a very
similar theme as theirs, but we develop new lower bounds analy-
ses. Further, we compare and contrast data movement demands for
horizontal across-node communication versus vertical within-node
data movement and observe that the latter is often the more con-
straining factor.

7. CONCLUSION
Characterizing the parallel data movement complexity of a pro-

gram is a cornerstone problem, that is particularly important with
current and emerging power-constrained architectures where the
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data transfer cost will be the dominant energy and performance
bottleneck. In this paper, we have presented an extension to the
Hong and Kung red-blue pebble game model to enable develop-
ment of lower bounds on data movement for parallel execution of
CDAGs. The model distinguishes horizontal data movement be-
tween nodes of a distributed-memory parallel system from verti-
cal data movement within the multi-level memory/cache hierarchy
within a multi-core node. The utility of the model and the devel-
oped lower bounding techniques was demonstrated by analysis of
several numerical algorithms and the garnering of interesting in-
sights on the relative significance of horizontal versus vertical data
movement for different algorithms.
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