Compiler/Runtime Framework for Dynamic Dataflow Parallelization
of Tiled Programs

MARTIN KONG, The Ohio State University
ANTONIU EOP, The University of Manchester
LOUIS-NOEL POUCHET, The Ohio State University
R. GOVINDARAJAN, Indian Institute of Science
ALBERT COHEN, INRIA

P. SADAYAPPAN, The Ohio State University

Task-parallel languages are increasingly popular. Many of them provide expressive mechanisms for intertask
synchronization. For example, OpenMP 4.0 will integrate data-driven execution semantics derived from the
StarSs research language. Compared to the more restrictive data-parallel and fork-join concurrency models,
the advanced features being introduced into task-parallel models in turn enable improved scalability through
load balancing, memory latency hiding, mitigation of the pressure on memory bandwidth, and, as a side effect,
reduced power consumption.

In this article, we develop a systematic approach to compile loop nests into concurrent, dynamically
constructed graphs of dependent tasks. We propose a simple and effective heuristic that selects the most
profitable parallelization idiom for every dependence type and communication pattern. This heuristic enables
the extraction of interband parallelism (cross-barrier parallelism) in a number of numerical computations
that range from linear algebra to structured grids and image processing. The proposed static analysis
and code generation alleviates the burden of a full-blown dependence resolver to track the readiness of
tasks at runtime. We evaluate our approach and algorithms in the PPCG compiler, targeting OpenStream,
a representative dataflow task-parallel language with explicit intertask dependences and a lightweight
runtime. Experimental results demonstrate the effectiveness of the approach.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors
General Terms: Languages, Performance, Compilers, Task Parallelism

Additional Key Words and Phrases: Dataflow, point-to-point synchronization, auto-parallelization, polyhe-
dral framework, polyhedral compiler, tiling, dynamic wavefront, dependence partitioning, tile dependences

ACM Reference Format:

Martin Kong, Antoniu Pop, Louis-Noél Pouchet, R. Govindarajan, Albert Cohen, and P. Sadayappan. 2014.
Compiler/runtime framework for dynamic dataflow parallelization of tiled programs. ACM Trans. Architec.
Code Optim. 11, 4, Article 61 (December 2014), 30 pages.

DOI: http://dx.doi.org/10.1145/2687652

This work was supported in part by the European FP7 project CARP id. 287767, the French “Investments
for the Future” grant ManycoreLabs, the U.S. National Science Foundation award CCF-1321147 and Intel’s
University Research Office Intel Strategic Research Alliance program.

Authors’ addresses: M. Kong (corresponding author), L.-N. Pouchet, and P. Sadayappan, Computer Science
and Engineering Department, The Ohio State University; email: kongm@cse.ohio-state.edu; A. Pop, School
of Computer Science, The University of Manchester; R. Govindarajan, Department of Computer Science and
Automation, Indian Institute of Science; A. Cohen, INRIA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2014 ACM 1544-3566/2014/12- ART61 $15.00

DOL: http://dx.doi.org/10.1145/2687652

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

http://dx.doi.org/10.1145/2687652
http://dx.doi.org/10.1145/2687652

61:2 M. Kong et al.

1. INTRODUCTION AND MOTIVATION

Loop tiling and thread-level parallelization are two critical optimizations to exploit
multiprocessor architectures with deep memory hierarchies [Allen and Kennedy 2002].
When exposing coarse-grain parallelism, the programmer and/or parallelization tool
may rely on data parallelism and barrier synchronization, such as the for worksharing
directive of OpenMP, but this strategy has two significant drawbacks:

—Barriers involve a global consensus, a costly operation on nonuniform memory ar-
chitectures; it is more expensive than the resolution of point-to-point dependences
unless the task-dependence graph has a high degree (e.g., high fan-in reductions)
[Bosilca et al. 2012].

—To implement wavefront parallelism in polyhedral frameworks, one generally resorts
to a form of loop skewing, exposing data parallelism in a wavefront-based parallel
schedule.

An alternative is to rely on more general, task-parallel patterns. This requires ad-
ditional effort, both offline and at runtime. Dedicated control flow must spawn coarse-
grain tasks, that must in turn be coordinated using the target language’s constructs for
the enforcement of point-to-point dependences between them. A runtime execution en-
vironment resolves these dependences and schedules the ready tasks to worker threads
[Planas et al. 2009; Budimlic et al. 2010; Bosilca et al. 2012; Pop and Cohen 2013]. In
particular, runtimes that follow the dataflow model of execution and point-to-point
synchronization do not involve any of the drawbacks of barrier-based parallelization
patterns: tasks can execute as soon as the data becomes available (i.e., when depen-
dences are satisfied) and lightweight scheduling heuristics exist to improve the locality
of this data in higher levels of the memory hierarchy; no global consensus is required
and relaxed memory consistency can be leveraged to avoid spurious communications;
loop skewing is not always required, and wavefronts can be built dynamically without
the need of an outer serial loop.

Loop transformations for the automatic extraction of data parallelism have flour-
ished. Unfortunately, the landscape is much less explored in the area of task-
parallelism extraction, in particular, the mapping of tiled iteration domains to de-
pendent tasks. This article makes three key contributions:

—Algorithmic. We design a task-parallelization scheme following a simple but effective
heuristic to select the most profitable synchronization idiom to use. This scheme
exposes concurrency and makes temporal reuse across distinct loop nests (a.k.a.
dynamic fusion) possible, and further partitions the iteration domain according to the
input/output signatures of dependences. Thanks to this compile-time classification,
much of the runtime effort to identify dependent tasks is eliminated, allowing for a
very lightweight and scalable task-parallel runtime.

—Compiler construction. We implement this algorithm in a state-of-the-art framework
for affine scheduling and polyhedral code generation, targeting the OpenStream
research language [Pop and Cohen 2013]. Unlike the majority of the task-parallel
languages, OpenStream captures point-to-point dependences between tasks explic-
itly, reducing the work delegated to the runtime by making it independent of the
number of waiting tasks.

—Experimental. We demonstrate strong performance benefits of task-level automatic
parallelization over state-of-the-art data-parallelizing compilers. These benefits de-
rive from the elimination of synchronization barriers and from a better exploitation
of temporal locality across tiles. We further characterize these benefits within and
across tiled loop nests.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

Compiler/Runtime Framework for Dynamic Dataflow Parallelization of Tiled Programs 61:3
Proc ref pluto | pluto | our
. . . cores ICC | min smart | work
for (i = 1; 1 < N - 1; i++) fuse fuse
for (J = 1; J <N - 1; j+F) opt-1 | 125 | 04 |07 |09
s1: BLil[j] = (A[i1[3] + A[i][3-1] + A[i][Ll+j]+ opt8 | 125 | 27 | 39 | 47
A[1+1i)03) + A[i-1103] + A[i-11[3-1] + opt-16 | 125 | 20 | 07 6.8
A[i-1][Jj+1] + A[i+1][3-1]1 + A[i+1]1[3+11)/8; <eon-i 835 1213 183 73
£ I T xeon-4 | 8.35 | 6.22 4.99 9.45
or (i = 1; 1 < N-2j 1) xeon-8 | 835 | 715 | 6.12 | 16.55
for (j = 2; J < N-1; j++)
52: Alil [j]. = abs(B[i] .[j]_.B[iH] (3-11) + Fig. 2. Blur-Roberts kernel performance
abs (B[1+1][]] - BI1][3-11); in GFLOPS/sec for AMD Opteron 6274

and Intel Xeon E5-2650, on 1, half and

Fig. 1. Blur-Roberts kernel. all cores.

We illustrate these concepts in a motivating example in Section 2 and introduce
background material in Section 3. We present our technique in detail in Section 4,
and evaluate the combined compiler and runtime task parallelization to demonstrate
the performance benefits over a data-parallel execution in Section 5. Related work is
discussed in Section 6.

2. MOTIVATING EXAMPLE

We use the blur-Roberts kernel performing edge detection for noisy images in Figure 1
as an illustrating example, with N = 4000 and using double precision floating point
arithmetic. Figure 2 shows the performance obtained when using Intel ICC 2013 as
the compiler, using flags -03 -parallel -xhost; PLuTo variants compiled with -O3
-openmp -xhost; task variant corresponds to task-opt (See Section 5.3). The original
code peaks at 3.9 GFLOPS/sec on an AMD Opteron 6274 (although with half the cores)
and 8.35 GFLOPS/sec on an Intel Xeon E5-2650. (See Table II in Section 5 for complete
description of machines used). This program is memory bound but contains significant
data reuse potential, thus tiling is useful to improve performance. We leverage the
power of the PLuTo compiler [Bondhugula et al. 2008] to tile simultaneously for coarse-
grained parallelism and locality, considering the two fusion heuristics minfuse (cut
nonstrongly connected components at each level) and smartfuse (fuse only loops of
identical depth). For this example, the result of the third fusion heuristic of PLuTo,
maxfuse (fuse as much as possible) gives an identical output code than the smartfuse
heuristic.

The minfuse heuristic distributes all loops that do not live in the same strongly con-
nected component (SCC). Thus, it tiles and parallelizes each loop nest independently,
requiring 2 barriers, as shown in Figure 3.

Smartfuse performs a complex sequence of transformations such as multidimen-
sional retiming and peeling to enable the fusion of program statements under a com-
mon loop nest. Skewing is used for the wavefront transformation to expose coarse-grain
parallelism. The output exhibits an outermost sequential loop and a second outermost
parallel loop followed by its implicit barrier (see sketch in Figure 4). The complete code
of PLuTo variants can be found in Kong et al. [2014].

As observed in Figure 2, the performance does not increase linearly with the number
of processors; instead, it either reaches a plateau with the Intel Xeon or drastically
drops, as in the Opteron’s case.

Figure 5 illustrates the nature of the data dependences in the blur-Roberts code
and the parallelization options for static affine scheduling, as represented by state-of-
the-art polyhedral compilers such as PLuTo, versus dynamic task dataflow. The left
half of the figure shows the iteration spaces for an unfused form of the code, with
the left square representing the first loop nest and the right square the second loop

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

61:4 M. Kong et al.

parfor (ti=0; ti < ubti; ti++)
for (tj=0; tj < ubtj; tj++)
{ /* tile body of S1x*/ }

/* barrier x*/ for (w = 0; w < wmax; wt++) {

parfor (ti=0; ti < ubti; ti++) parfor (ti=fl(w); ti < f2(w); ti++)
for (tj=0; tj <= ubtj; tj++) { /# tile body =/ }
{ /+ tile body of S2x/ } /+ barrier x*/

/* barrier #*/ }

Fig. 3. Blur-Roberts kernel produced with PLuTo Fig. 4. Blur-Roberts kernel produced with PLuTo
minfuse. smartfuse.

nest, along with 2D tiling of each loop nest, working on blocks of rows of the matrices.
With PLuTo minfuse, a barrier is used between executions of tiles of the first and
second loops. With smartfuse, the two loop nests are fused, but skewing is employed
to expose coarse-grain parallelism using the parfor/barrier idiom supported in PLuTo.
After fusion, only wavefront parallelism is feasible with 2D tiling, with barriers between
diagonal wavefronts in the tiled iteration space. Thus, there is a trade-off: with minfuse,
the tiled execution of each loop nest is load balanced, but interloop data reuse is not
immediately feasible; with smartfuse, interloop data reuse is improved, but may lead to
load imbalance due to the exploitation of wavefront parallelism. We remark that other
tiling techniques such as split-tiling [Henretty et al. 2013] or diamond-tiling [Bandishti
et al. 2012] can enable better load balance than wavefront-based rectangular tiling. It,
however, still demands explicit barriers in the code between tile “phases.” In this work,
we focus exclusively on rectangular affine tiling.

With a task dataflow model, it is possible to get the best of both worlds: increased
degree of task-level parallelism as well as interloop data reuse. This occurs by creating
1D parallel tasks for each loop, and point-to-point task-level synchronizations enable
ready tasks from the second loop nest to be executed as soon as their input tasks (the
ones corresponding to the same block row and the ones on either side) have completed.
Thus, a “dynamic fusion” between the loop nests is achieved automatically, without
the problem of load imbalance from the wavefront parallelism with a static affine tile
schedule for the fused loop nests.

This problem has been recognized in the linear algebra community and specialized
solutions have been designed [Bosilca et al. 2012]. We propose a solution for affine
programs by leveraging properties of the schedule of tiles as computed by polyhedral
compilers, and utilize it to determine at compile-time the interband (among disjoint
loop nests) and intraband (within a single loop nest) dependences. Our approach
produces a fine interleaving of instances of the first and second band (outer iterations
of the tiled loop nests). Unlike classical approaches in automatic parallelization, these
dependences will then be instantiated at runtime, and fed to a dynamic task scheduler.
The three last columns in the table of Figure 2 show the performance obtained in
GFLOPS/sec when using two of PLuTo’s heuristics (see Figures 3 and 4) and comparing
these to our generated task-parallel code. As one can see, by using point-to-point
synchronization and statically mapping tile-level dependences, it is possible to
greatly improve over state-of-the-art vendor and research compilers: on Intel’s Xeon,
we achieve nearly 2x latency improvement with regard to ICC and PLuTo’s best;
whereas on AMD’s Opteron we obtain over 5x relative to the baseline and 1.5x over
PLuTo.

Our technique can be summarized as follows. We first compute tile-level constructs
that are the input to an algorithm that selects stream idioms to be used for each
tile dependence or to a partition routine that splits the loop nests into classes that
share identical input/output dependence patterns. This algorithm chooses when to

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

Compiler/Runtime Framework for Dynamic Dataflow Parallelization of Tiled Programs 61:5

Skewed and tiled

1-dimensional iteration space
Inter-band using smart fusion
parallelism

enabling

dynamic fusion i
Fig. 5. Illustration of benefit of task dataflow over static affine scheduling.

extract parallelism across disjoint loops, while the partition routine allows creation of
a dynamic wavefront of tiles. Then a static task graph is constructed to prune redundant
dependences and to decorate it with dependence information. Finally, code is generated
for the OpenStream runtime.

3. BACKGROUND

The principal motivation for research in dataflow parallelism comes from the inability
of the Von Neumann architecture to exploit large amounts of parallelism, and to do
so efficiently in terms of hardware complexity and power consumption. In dataflow
languages and architectures, the execution is explicitly driven by data dependences
rather than control flow [Johnston et al. 2004]. Dataflow languages offer functional
and parallel composition preserving (functional) determinism. So-called threaded
or task-parallel dataflow models operate on atomic sequences of instructions, or
tasks, whereas early dataflow architectures leveraged data-driven execution at the
granularity of a single instruction.

3.1. OpenStream

We selected the task-parallel dataflow language OpenStream [Pop and Cohen 2013], a
representative of the family of low-level (C language) task-parallel programming mod-
els with point-to-point intertask dependences [Planas et al. 2009; Budimlic et al. 2010;
Cavé et al. 2011]. OpenStream stands out for its ability to materialize intertask depen-
dences explicitly using streams, whereas the majority of the task-parallel languages
rely on some form of implicit dependence representation (e.g., induced from memory
regions in StarSs or OpenMP 4 [Planas et al. 2009]). The choice of an explicit de-
pendence representation reduces the overhead of dynamically resolving dependences.
For a detailed presentation, refer to Pop and Cohen [2013], and to the formal model
underlying the operational semantics of OpenStream [Pop and Cohen 2012].

Like the majority of task-parallel languages, an OpenStream program is a dynami-
cally built task graph. Unlike the majority of streaming languages, OpenStream task
graphs do not need to be regular or static. They can be composed of a dynamically
evolving set of tasks communicating through dataflow streams. The latter are strongly
typed, first-class values: they can be freely combined with recursive computations and
stored in dynamic data structures. Programming abstractions and patterns allow con-
struction of complex, fully dynamic, possibly nested task graphs with unbounded fan-in
and fan-out communications. OpenStream also provides syntactic support for common
operations such as broadcasts.

Programmer annotations are used to specify regions, within the control flow of a
sequential program, that may be spawned as concurrent coroutines and delivered to a
runtime execution environment. These control flow regions inherit the OpenMP task
syntax. Without input/output stream annotations, OpenStream tasks have the same
semantics as OpenMP tasks. For example, Figure 6 shows the OpenStream version of
dgemm kernel. Each instance of the outer loop outputs a token to band_stream_ii. The

IThe source code repository and web site for OpenStream can be found at http://www.openstream.info.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

http://www.openstream.info

61:6 M. Kong et al.

for (int ii = 0
#pragma omp tas
for (int jj -
for (int kk =
for (int i = 16
for (int j = 16 * 33;

ji 3 <= min(nj - 1, 16 * 33 + 15); § += 1) for (int k = 16 * kk; &
Cli10j] += ((alpha * A[i][k]) * BIk][31);

for (int j =
CLil[j] *= beta;

Fig. 6. OpenStream example: gemm kernel tiled and parallelized with interband idiom.

second task, following the first loop nest, waits for tokens on band_stream_ii, and then
proceeds. This pattern implements dataflow concurrency in OpenStream and avoids
barrier synchronization.

While OpenStream is very expressive and can be used to express nondeterministic
computations, the language comes with specific conditions under which the functional
determinism of Kahn networks [Kahn 1974] is guaranteed by construction. These
conditions enforce a precise interleaving of data in streams derived from the control
flow of the program responsible for spawning tasks dynamically, hereafter called the
control program. In the following, we will assume the control program is sequential,
which is a sufficient condition to enforce determinism.

OpenStream Task Idioms. In this work, we leverage multiple programming patterns
present in modern task-parallel languages.

(1) Input and output clauses: they extend the OpenMP task syntax and allow explicit
specification of the point-to-point synchronizations between tasks via streams. By
default, all streams are operated through a window of stream elements accessible
to a given task. The horizon of the window is the number of stream elements
accessible through it. The burst size of a window corresponds to the number of
elements read/written from/to input/output streams at a given task activation. The
default burst size is 1. The input clause can be specialized further into the two
following clauses.

(2) Peek operation: Similar to the input clause, but it does not advance the stream’s
window, that is, the window’s burst size is zero. It enables the reuse of stream
elements across multiple task activations, which is particularly useful when im-
plementing broadcast operations.

(3) Tick operation: A collection of peek operations may be followed by a tick operation,
to advance the window to new stream elements.

(4) Soft-barrier, point-to-point barrier or data-flow barrier: it is an empty program
statement that waits for a fixed or parametric number of elements from one or
more streams. Once all its input dependences are satisfied, an element is written
to each of its output streams. Then, the tasks waiting for these elements may read
them with peek operations.

3.2. The Polyhedral Model

The polyhedral framework is a flexible and expressive representation for imperfectly
nested loops with statically predictable control flow. Loop nests amenable to this alge-
braic representation are called static control parts (SCoP) [Feautrier 1992; Girbal et al.
2006], roughly defined as a set of consecutive statements such that all loop bounds
and conditional expressions are affine functions of the enclosing loop iterators and
variables that are constant during the SCoP execution (but whose values are unknown
at compile-time). Numerous scientific computations exhibit those properties; they are
found frequently in image processing filters (such as medical imaging algorithms),
dense linear algebra operations, and stencil computations on regular grids.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

Compiler/Runtime Framework for Dynamic Dataflow Parallelization of Tiled Programs 61:7

Unlike the abstract syntax trees used as internal representation in traditional com-
pilers, polyhedral compiler frameworks internally represent imperfectly nested loops
and their data dependence information as a collection of parametric polyhedra. Pro-
grams in the polyhedral model are represented using four mathematical structures:
each statement has an iteration domain, each memory reference is described by an
affine access function, data dependences are represented using dependence relations/
polyhedra and finally the program transformation to be applied is represented using a
scheduling function or a schedule map. Since the operations and analyses performed
in this work heavily rely on the map and set representation of the Integer Set Library
(ISL) [Verdoolaege 2010], we briefly describe and give examples of these structures
using the set and map notations. In addition, we also recapture two concepts that will
be used in Section 4, Bands of Tiles and the Polyhedral Reduced Dependence Graph.

Iteration Domains. They represent the set of dynamic (runtime) executions of a
syntactic statement, typically enclosed in a loop nest. Each program statement is
associated with an iteration domain defined as a set of integer tuples, one for each
dynamic execution of the statement. These tuples capture the value of the surrounding
loop iterators when the associated statement instance is executed at runtime. For the
two statements S1 and S2 in blur-Roberts we have:

(S1[i,jleZ?:1<i,j<N—-1; S2[i,jleZ?:1<i<N—-2A2<j<N-1}.

Access Relations. For a given memory reference (e.g., B[i] [j]) access relations map
statement instances with the set of memory locations of the array (e.g., B), which are
accessed during the statement execution. Here are a few examples from the blur-
Roberts kernel:

{S1[, jl »Bli,jl:1<i,j<N-1; S1[;,jl - A —1,j - 1] :1<i,j < N-1;
S2[i,jl - Bli+1,j—1]: 1<i<N-2A2<j<N-1}

Dependence Relations. Data dependences in ISL are represented as relations in be-
tween two iteration domains, possibly of the same statement for self dependences.
The relation indicates the source and target of the dependence. Continuing with our
example, two of the four dependences between S1 and S2 on array B are:

(S1[i1, j1] — S2[i2,j2]:1 < il,j1<N—-1A1<i2<N—-2A2<j2
N-1Ail=i2 A j1=j2;
il,jl<N-1A1<i2<N-2r2<,2
N-1Ail=i2+1Aj1=,;2-1}.

Schedules. Reordering transformations are represented as relations from iteration
domains to the logical time space. The relation assigns to each point in an iteration
domain a multidimensional timestamp, which is later used to generate code. In the
final code after transformation, each point in the iteration domains will be executed,
according to the lexicographic ordering on the timestamps provided by the schedule
function [Bastoul 2004]. For instance, the following relation permutes dimensions i
and j of the first loop nest in the output code of our running example:

{S1[z, j1 = [j,il:1<i,j <N —1}.

Bands of Tiles. When the computed schedule represents a tiling transformation, a
band is a consecutive set of nonconstant dimensions (e.g., loop levels) in time space
with the property that these dimensions are permutable. A band of tiles is a band
that only considers some consecutive tile dimensions. Intuitively, one can think of
these dimensions as the ones that will become the tile loops after code generation.

S1[i1, j1] — S2[i2+1,j2—1]: 1

IANIA IATA

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

61:8 M. Kong et al.

e A e N e N
Apply PluTo tiling Extract tile-level Compute PRDG from

algorithm polyhedral abstractions > tile-level abstractions
. J . J (. J

/Gﬁ/B—\f—*ﬁ

enerate code with uild task graph from .
Partition tile-level

[<—— domains by

dependence signatures

- J

Fig. 7. Compiler stages from a sequential input code to a tile-level parallel version with point-to-point
synchronization.

point-to-point decorated PRDG and

synchronization from collect input/output

task graph info) dependence info

For instance, in Figure 3, only the tile loops are depicted. These correspond to the
dimensions of the bands of tiles and would be generated by a schedule of the form:

{S1li, j1 — [0.ti,¢].i2,j2]:1<i,j <N —1...}; S2[i, jl
— [1,ti,t,i2,j21:1<i,j<N—1...}.

The leading constant value of 0 and 1 in the range of the relations for statements S1
and S2, respectively, indicate that it is a scalar dimension (e.g., not a loop) and that the
generated code will consist of 2 bands of tiles, composed in both cases by the trailing
tile loop dimensions ¢z and ¢j.

Polyhedral Reduced Dependence Graph (PRDG). 1t is a multigraph in which each
node represents a program statement [Darte and Vivien 1997]. Edges in between nodes
capture different dependences. Nodes are labeled with iteration domains and edges are
labeled with dependence relations. In our case, a Tile-PRDG needs to be constructed
from the statement-PRDG and the computed tile schedule, as shown to follow.

Fusion Heuristics: minfuse and smartfuse. The loop structure produced by a trans-
formation can be viewed as a partition of the program under the criterion of appearing
fused in one or more outer loops. Smartfuse is the default PluTo heuristic for tiling
where statements that do not share any data reuse are placed on different partitions.
Minfuse attempts to maximize the number of partitions by setting statements into
different classes, unless they are required to appear fused under some loop level (or
same strongly connected component) [Bondhugula et al. 2008].

Macro statements. After applying a tiling algorithm such as PLuTo to an input pro-
gram, statements are naturally fused under a sequence of loops. All statements that
live under a common set of loops form a macro statement. The set of macro statements
of a tiled program depends on the tiling heuristic used (e.g., smartfuse or minfuse).

4. EXTRACTING TASK PARALLELISM

The high-level flow that we follow to extract tasks at the granularity of a tile is shown
in Figure 7. Its input is a sequential code that is first tiled with PLuTo’s algorithm.
Then the tile-level polyhedral representation (see Section 3.2) is extracted from the
original statement representation and from the tile schedule computed in the previous
stage. Next, the PRDG is obtained from this representation. The following stage
partitions the tile domains according to the dependence signatures of all neighboring
nodes. This produces a new set of domains for which a new PRDG is computed and
input/output dependence patterns are associated to each new node/domain. Finally,
code is generated and loops are decorated with OpenStream’s task syntax that
describes the input and output dependence instances for each task/tile.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

Compiler/Runtime Framework for Dynamic Dataflow Parallelization of Tiled Programs 61:9

The first stage of our method is to build a polyhedral representation of the ¢iled pro-
gram, with one (macro-)statement per tile, each having an iteration domain (i.e., cap-
turing the set of dynamic executions of each tile). A Tile-PRDG is then produced, which
captures data dependences between tiles. Next, we introduce an algorithm to select the
most profitable task-parallel idiom, in terms of number of required synchronizations
(incoming tile dependences). We present a processing step that allows extraction of task
parallelism from kernels that would otherwise use a static wavefront to expose tile-level
parallelism, as well as handle cases in which two disjoint loop nests have more than
one dependence in common. The following step consists of building a static task graph.
Finally, we briefly discuss general details pertaining to polyhedral code generation.

4.1. Tile-Level Processing

The input to this compilation flow is a C program for which a tile schedule can be
computed. In this work, we assume the PLuTo algorithm [Bondhugula et al. 2008] has
been used to enable tiling; however, we are not limited to this particular tiling algo-
rithm. We call ¢ile level the outermost or outermost and next outermost tile dimensions.
Two tile-level abstractions must be constructed from the program statement domains,
dependences and schedule: the tile domains and the tile dependences. These are de-
termined by first projecting the intratile dimensions k..n of the schedule onto the tile
dimensions 1..2 — 1 in the range of the schedule map M* of statement S:
M3, = PROJ,, _ ,(range(M®)).

This yields a tile map M}, for each statement S, where is the starting dimension
to be projected (2 for interband parallelism and 3 for intraband) and n is the number of
output dimensions of the map. The modified map is then used to compute the tile do-
main by simply intersecting the map’s domain with the set representing the statement
domain. The range of the resulting map is the tile domain.

Tile dependences are constructed in a similar way. Given a dependence map M5~T

describing a dependence from statement S to statement 7', and the tile maps M3,

and M7, computed, the tile dependence M3 T is (M3,)™' o MS=T o MT, | where o is
the composition of maps. At this stage, we remove existent nonforward dependences,
that is, those that have the exact same source and target tile coordinates (same tile
instance). This type of dependence could emerge after the projection step, in which
case the dependence was forward in some of the projected out dimensions. From the
task-parallel dataflow perspective, these dependences are part of the task body of each
tile instance, and do not represent any real flow of data. We do so by computing identity
maps of the tile domain (e.g., from a domain 7' _0[¢#¢, ii] we produce the map 7' _0[¢#¢, ii] —
T 0l[tt, ii]) and subtracting them from the original dependence maps, prior intersection
with the tile domain. Nonforward dependences do not arise when considering interband
dependences (due to the leading scalar dimension in the schedule). However, they do
appear in single bands (e.g., Seidel kernel), and must therefore be pruned.

In addition, all tile dependences that share the same source and the same target can
be further simplified by: (1) combining pairs of basic maps within a single map by using
the map coalescing ISL functions (this simplifies the representation); (2) if a new tile
dependence is a subset of a previous dependence, we do not include it; (3) conversely,
if a new tile dependence is a superset of previous tile dependences, we remove the
previous ones and add only the new one; (4) if a tile dependence partially intersects
with some other tile dependence, we take their union.

Finally, each tile dependence represented by a map (in ISL terminology) is massaged
by detecting equalities, removing redundancies, and making them disjoint (basic maps
that constitute a map are not guaranteed to be disjoint unless invoking an explicit ISL

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

61:10 M. Kong et al.

for (t = 0; t < tsteps; t++){ [tsteps, n] -> (T_0[0, 0, i2, i3] -> T_0[0, 0, 02, 03] : i2 >= 0 and n >= 3
) ; and 03 <= 1 + i3 and 02 <= 1 + i2 and 202 <= i3 and 1603 <= 30 + n + 32i2 and
for (i = 1; 1 <= n-2; i++) 16i3 <= -5 + 2tsteps + n and 1603 <= -4 + 2tsteps + n and 16i3 <= 29 + n + 3212
for (3 = 1; 3 <= n-2; j++) | |70 1602 <= 1+ coteps and 1632 <= 2 + tsteps and 03 >= i3 and o2 >= i2 and
. . . . 1603 <= 12 + n + 16i3 and 3202 >= -27 - n + 1613 and 1603 <= 28 + n + 3202;
S1: B[i][J] = (A[L1][J] + T 000, 0, i2, i3] -> T 0[0, 0, 02, 03] : 1603 <= -4 + 2tsteps + n and 16i2 <=
A[1103-11 + A[i][3+1] + 2 + tsteps and 16i3 <= 28 + n + 32i2 and 1603 <= 30 + n + 32i2 and i2 >= 0 a
. .) . 03 >= 202 and 02 >= i2 and n >= 3 and 3202 >= -26 - n + 16i3 and 03 >= i3 and
A[i+1][3] + A[i-11[3])~* 1603 <= 28 + n + 3202 and 1613 <= -6 + 2ts +noand 03 <= 1 + i3 and 02 <= 1
0.2; + 12 and 1602 <= -1 + tsteps and i3 >= 2i2; T_0(0, 0, i2, i3] -> T_0(0, 0, i2,
03] : 1603 <= -3 + 2tsteps + n and 1612 <= -1 + tsteps and o3 >= i3 and 1603
<= 29 4 n + 3202 and i2 >= 0 and 16i3 <= -4 + 2tsteps + n and i3 >= 2i2 and n
for (i = 1’ i <= H—Z; i++) >= 3 and 16i3 <= 28 + n + 3212 and 03 <= 1 + i3; T_0[0, 0, i2, i3] -> T_0[0, O,
.) . 02, 03] : 1603 <= -3 + 2tsteps + n and 1612 <= -2 + tsteps and 1613 <= 29 + n +
for (j = 1; J <= n-2; j++) 3212 and 1603 <= 31 + n + 32i2 and i2 >= 0 and 202 <= i3 and 1603 <= 29 + n +
S2: A[1][3] = BIi1[3]; 3202 and n >= 3 and 02 >= i2 and 03 >= i3 and 3202 >= -27 - n + 16i3 and 16i3
} <= -5 + 2tsteps + n and 03 <= 1 + i3 and 02 <=1 + i2 and 1602 <= -1 + tsteps
Fig. 8. Jacobi-2d kernel. Fig. 9. Jacobi-2d tile dependences.

function) [Verdoolaege 2010]. An additional pruning stage is later performed during
the task-graph construction to remove dependence polyhedra that are already captured
through transitive dependence relations.

Here we introduce the kernel Jacobi-2d (Figure 8), which we use to explain the
partitioning steps. In Figure 9, we show 4 tile dependences computed from 9 statement
dependences. These tile dependences will be further processed in order to make them
uniform and proceed with the partitioning stage.

4.2. Partitioning

Domain partitioning is required in two scenarios: (1) when extracting interband par-
allelism, two nodes in the PRDG can share more than one normalized dependence
(e.g., in blur-Roberts kernel), thereby needing different treatment for each dependence;
(2) when the task graph consists of a single band of tiles, that is, a single node in the
PRDG. We note that when partitioning domains for the former case, we only target the
outermost tile dimension; for the latter case, we work on the two outermost dimensions
if dependences are uniform. Our approach for exposing task-level parallelism from a
polyhedral program representation is to implement a partitioning scheme that groups
tiles of a loop nest’s iteration domain into classes; each class is associated with a single
signature of incoming and outgoing, intertile (or intratile) dependences. This single
signature in turn enables the generation of OpenStream directives and tasks with
well-defined input/output clauses.

Our partitioning scheme takes as input the bands of permutable dimensions result-
ing from the PLuTo algorithm. However, any tiling algorithm that outputs a similar
structure can also be used instead. We make the two following assumptions:

(1) Tile dependences of all statements within a permutable band must be subsumed
by that of a single (macro-)statement,
(2) All statements must live under a common and nondisjoint tile schedule space.

The first assumption is guaranteed by design of the PLuTo algorithm, which effec-
tively groups statements in tiled parts of the schedule, where all dependences may be
collected as if the band were formed of a single, fused, macrostatement. The second one
allows us to propagate the partition generated from a leading statement domain into
the follower domains in the band. This is discussed next.

Definition 4.1 (Leading Domain and Follower Domains). The iteration domain I° of
a statement S that belongs to a tiled band is called the leading domain if

(i) The depth of this domain is maximal within the band (at the chosen granularity,
i.e., of one dimension for interband and two dimensions for wavefront).

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

Compiler/Runtime Framework for Dynamic Dataflow Parallelization of Tiled Programs 61:11

;
©)
O

.

..

&b

Fig. 10. Potential signatures generated by uniform dependences (gray denotes signatures that do not appear
in the Jacobi-2d kernel).

(i1)) The domain with maximal depth is unique within the band. This implies that all
tile dependences within the band are subsumed by the leading domain.

Any domain that is not the leading domain is a follower domain.

When Definition 4.1 does not hold, we name any statement domain with maximal
(tile) depth the leading domain, but consider its tile domain as the union of all tile do-
mains within the band that have maximal depth. In our Jacobi-2d example (Figure 8)
both statements have the same dimensionality. Therefore, we compute the tile domain
of each individual statement, take their union, and name either of the statements as
the leading domain. Definition 4.1, combined with our assumptions on the input sched-
ule, guarantees that all dependences are subsumed by the tile domain of the leading
domain. Partitioning can safely be applied to the leading domain, and then propagated
onto the follower domains. In the case that the macro-statement (statements sharing
a same band of tiles) has no self-dependence, then any statement can be chosen as the
leading domain.

Each dependence relation is identified with a unique number 1..n, for n dependence
relations. The dependence signature lists the unique identifiers of dependence relations
that are either to or from the domain.

Definition 4.2 (Dependence Signature). The dependence signature Sic° of a domain
Itfle is composed of two sets: the IN set and the OUT set. For each dependence relation
k, k is put in IN (OUT, respectively) if DT~5 (DS=T | respectively) has at least one
destination (source, respectively) in It*fle.

S165 = (IN®,0UT®}, IN® = {k:Ran(DEI=S)n I3, # o),
OUTS = {k:Dom(DES=T)n I3, # o).
It follows the definition of a disjoint partition of the iteration domain:

Definition 4.3 (Domain Partition). The partition P° of a domain I° is defined by the
following conditions:

PS=1P%}, I=U(P®)., P’nP’=0 A Sw(P°)#SG(P’), i}

where an iteration domain I° is divided into PiS disjoint domains such that they all
have different dependence signatures.

Figure 10 shows all the possible signatures that could be extracted from a 2D tile
domain having as input dependences that are parallel to the axes in the transformed
space. The actual signatures that arise after partitioning are a function of the tile sched-
ule as well as the parameters. In Figure 10, shaded circles represent signatures never
applicable to jacob-2d’s tiled code. Moreover, some partitions might not execute at run-
time due to the actual parameter values (e.g., the partition associated to signature 7).

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

61:12 M. Kong et al.

[tsteps,n]->{
T_0[0,0,12,13]->T_0[0,0,i2+1,03]: 03 >= i3 and 16i2 <= -17 +
tsteps and 16i3 <= 29 + n + 32i2 and 1603 <= 31 + n + 32i2 and i2 >= 0 and i3
>= 2 + 2i2 and o3 <= 1 + i3; T_0[0,0,12,1i3]->T_0[0,0,02,13+1]: 1602 = -1 +
tsteps and 16i2 = -1 + tsteps and 16i3 <= -19 + 2tsteps + n and 8i3 >= -1 +
tsteps and tsteps >= 1; T _0[0,0,i2,i3]->T 0(0,0,12,i341]: 16i3 <= -19 + 2tsteps
+ n and 16i2 <= -2 + tsteps and 16i3 <= 13 + n + 32i2 and n >= 3 and i2 >= 0
and 13 >= 2i2; T_0[0,0,i2, 2i2+1]-> T_0[0,0,i2+1,212+2]: i2 >= 0 and 16i2 <=
-17 + tsteps and n >= 3 }

Fig. 11. Jacobi-2d tile dependences prior to transitive reduction pruning.

[tsteps, n]->{ *T_0(0,0,12,1i3]->T_0(0,0,12+1,1i3]
T 0[0,0,i2,i3)->T_0[0,0,12+1,i3+1];
*T_01[0,0,12,1i3]->T_0(0,0,i2,13+1]
T_0[0,0,i2,13]->T_0[0,0,i2+1,13+1]
T_0[0,0,i2,13]->T_0[0,0,i2,i3+1]

T _0[0,0,i2,2i2+1]->T_01[0,0,1i2+1,2i2+2] }

Fig. 12. Jacobi-2d tile (uniform) dependences. Dependences marked with * are the nonredundant ones and
used for partitioning.

Making dependences uniform. Figure 11 shows the tile dependence map for the
jacobi-2d kernel before making all dependences uniform. In order to apply our par-
titioning algorithm, we convert all the basic maps that constitute a tile dependence
into their uniform shape. We do so by expanding the output dimensions that produce
a range of values from the input dimensions, for example, the first basic map with
constraints 03 >= i3 and 03 <= 1 + i3 is expanded into 2 basic maps. The result of
this expansion is shown in Figure 12. This step allows further pruning of dependences
by transitive reduction [Midkiff and Padua 1986, 1987] as well as removal of new
covered dependences and duplicated dependences. At this point, all output sets are
explicit functions of their input sets. This permits replacement of the tile dependence
constraints by the constraints of the (leader) tile domain. The net effect of this is that
dependences become broader, but also enables removal of redundant communication.
After this process, only two nonredundant dependences are left, each parallel to one of
the outermost axis on the transformed space. The only two required dependences are
marked with an asterisk (¥).

Algorithm 1 is used to perform domain partitioning (when required), based on Defi-
nitions 4.2 and 4.3, during the task-graph construction and after pruning transitively
covered dependences. The domain of a band could be partitioned both according to the
incoming and outgoing dependences; for example, domain S could be partitioned first
when processing dependence R — S and again partitioned when processing depen-
dence S — T, and also due to multiple dependences between two nodes (since the
PRDG is a multigraph).

Figure 15 shows the partitions generated by Algorithm 1, the respective dependence
signatures, and the distribution of the signatures around the (tile) domain. It may be
surprising to see signature 7 in this figure. However, this signature could be triggered
depending on the parameter values, specifically for this condition:

(2 % ((tsteps — 1)%16) + ((14 * tsteps + 15 x n + 2)%16) <= 13&&(tsteps — 1)%16 <= 6).

Partial tiles. A band of tiles contains a partial tile when one or more of its intratile
dimensions have a smaller cardinality than the selected tile size. Our algorithm does
not distinguish partial tiles from full tiles (tiles that have their cardinality equal to
the tile size), since we are only interested in the outer tile coordinates, and which are
only dependent on the problem size and outer tile coordinates. Furthermore, partial
tiles already have a different dependence pattern, and only appear at the end of some
domain. As such, they are naturally placed into their own signature class. A similar

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

Compiler/Runtime Framework for Dynamic Dataflow Parallelization of Tiled Programs 61:13

ALGORITHM 1: PartitionDomains (G, u, v)

Input: G: Tile-Level PRDG; u: source tile domain; v: target tile domain
Output: Updated G where nodes u and v have been decorated with their partitions
if parts(u) = ¢ then parts(u) <1I},;
if parts(v) = ¥ then parts(v) <1,;
foreach tile dependence d from u to v do
indom <—domain(d);
outdom <range(d);
foreach p in parts(u) do
s < p Nindom;
if s # ¢ then
diff <p—s;
SIG(diff) «<SIG(p);
SIG(s) «<-SIG(p) U{OUT*® =d};
remove p from parts(u);
insert s and diff in parts(w);
indom <indom — p;
end
end
foreach p in parts(v) do
s <p Noutdom;
if s # ¢ then
diff <p-—s;
SIG(diff) <SIG(p);
SIG(s) «<-SIG(p) U{IN® = d};
remove p from parts(v);
insert s and diff in parts(v);
outdom <—outdom — p;
end
end
end

handling applies to all tiles that appear in a domain border, that is, a first or last tile
instance along some dimensions.

In the following two sections, we will discuss in more detail when partitioning is
required.

4.3. Task-Graph Construction

The task-graph construction takes as input the decorated PRDG. We contemplate a
single-dimensional tile band PRDG in order to limit the number of potential synchro-
nizations, which increases as one considers more tile dimensions by factors that depend
on the problem sizes as well as the chosen tile size. This still allows a sufficiently fine
interleaving between the tile instances. Thus, this stage is only performed if we have
multiple loop nests after tiling. The goal of this step is to traverse the PRDG and
consider the minimum number of edges in the task graph so that all dependences are
satisfied as well as being able to remove redundant synchronizations that can arise
from transitively covered dependences, which often appear in PRDGs composed of sev-
eral bands. Algorithm 2 shows the pruning steps performed for the dependences (edges
of the PRDG) on each array (scalars are 0-dimensional arrays) and the addition of the
relevant edges from the PRDG into the task graph. Transitively covered dependences
are found by composing the dependence relations in between PRDG nodes. For exam-
ple, given nodes R, S, and T, and dependences R — S, S — T and R — T, then
dependence R — T can be removed if it is equal to the composition R — So S — T.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

61:14 M. Kong et al.

ALGORITHM 2: ConstructTaskGraph (PRDG)

Input: PRDG: Tile-Level PRDG
Output: T: Task graph with signatures and partitioned domains
foreach written array A do
Collect dependences on array A,
Traverse the PRDG and remove transitively covered dependences on array A;
end
foreach edge u — v do
if u or v have more than 1 dependence then
| PartitionDomain(PRDG,u,v);
end
end
T < @,
foreach edge u — v € PRDG do
7, < Get Partitioned Domains of u;
7, < Get Partitioned Domains of v;
Add a node to T' for each domain in 7, and 7,;
Add edges for dependences between 7, and 7, to T';
end
return 7'

These dependences can be of type RAW, WAR and WAW. Then, Algorithm 1 is invoked
for nodes u and v of the PRDG when they have more than one dependence relation
connecting them, that is, 2 or more dependences that differ in either source or domain,
or both (such as in Blur-Roberts). Finally, the underlying task graph is constructed
from the partitioned domains attached to each node of the PRDG.

4.4. Implementing Interband Parallelism

We now use the 3mm benchmark from Polybench/C to illustrate the various implemen-
tations of interband parallelism that can be achieved. Our algorithm automatically
prioritizes the possible implementations based on data dependence features, as shown
later.

In the following, the term band can be intuitively thought as a single loop nest.
We need to decide whether two nodes connected by an edge in the task graph can be
effectively parallelized with interband (across disjoint loop nests) task parallelism, if
a soft barrier should be used to satisfy the dependences of the target node, or if a band
should be considered as a single task. We emphasize that this algorithm is designed
for a single level of intraband parallelism. Thus, it focuses exclusively on 1-dimensional
tile-level abstractions. Consider the dependence between S1 and S3 on array A; each
S3(i) depends on an S1(). Intuitively, one can think of this as a “row-to-row” mapping.
Consider now the dependence from S2 to S3 on array D. Each S3(i) requires all the
instances S2(i, j, k), a many-to-1 relation. However, when considering all instances of
S3, this becomes a many-to-many relation. Thus, depending on the desired granularity,
this may lead to oversynchronization. At the very least, each S3(i) will have to wait for
the m instances of S2(i), and could become as bad as (I x n x m) instances of S3 each
waiting for (m x n x p) instances of S2.

This highlights that additional granularity of parallelism is not for free, as synchro-
nization could increase in several orders of magnitude, and the additional benefits of
parallelism will be mitigated. This granularity criterion also serves a second purpose,
which is to exclusively restrict interband parallelism to the outermost dimensions of
nodes/bands in a dependence relation. Finally, we systematically treat untiled bands

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

Compiler/Runtime Framework for Dynamic Dataflow Parallelization of Tiled Programs 61:15
for (i=0; i<1l; i++) // <-— Band 1
for (3=0; j<m; Jj++)
for (k=0; k<qg; k++)
S1: A[i]([3] += B[i]J[k] * C[k][]];
for (i=0; i<m; i++) // <-- Band 2 g
for (j=0; j<n; j++) 1-to-1 m-to-n 1-to-1 platon
for (k=0; k<p; k+t) mapping relation mapping
S2: D[i][j] += E[i][k] * F[k][]];
for (i=0; i<l; i++) // <-- Band3
for (3=0; j<n; Jj++)
for (k=0; k<m; k++)
S§3: G[i][3j] += A[i][k] * D[k]I[]];

Fig. 14. 3mm 1-dimensional tile-PRDG (left) and task
graph (right).

Fig. 13. 3mm kernel (with removed initializa-
tions).

ALGORITHM 3: SelectTaskIdiom (G)

Input: G: Task-graph after partitioning

Output: G: Decorated task-graph

for each edge e € G do

S <« tile-level domain of dependence source; T' <« tile-level domain of dependence target;
m < dependence map S — T of edge e; m < intersect domain of m with S;

m <« intersect range of m with 7'; m <— decompose m into a union of basic maps in ISL;

if S is an untiled band then

Create a new stream single; Output a single dependence from S;

Input dependence of T with peek operation from S; Insert a tick operation after band T;
nd

Ise

if (Def. 4.4 is true for S and T') then

Create an array of streams D, one per distinct basic map in m;

Decorate e with 1-to-1 inter-band parallelism on D;

nd

else

Create a stream bar of size 1 for barrier synchronization; Insert statement barout
between nodes S and T';

Output all dependences of S to bar; Input dependences of barout from S;

Output a single dependence of barout to T'; Input dependence of T' from barout with
peek operation,;

Insert statement barin after node T with tick operation on bar;

end

end

end

[c¢]

[¢]

(e.g., those that result from multilevel reduction statements) as single tasks. The moti-
vation comes from the exponential growth in synchronizations (a factor of tile size for
each dimension) that can arise with such loops.

Algorithm 3 prioritizes the 3 types of communication from less communication (single
task), to 1-to-1 mappings, to m-to-n communication patterns that require soft barriers.
Along the process, nodes are decorated with the type of synchronization and the name
of the stream to be used; new nodes are inserted to handle barriers and tick operations.
The latter are OpenStream operations responsible for consuming data tokens that were
previously broadcasted. Figure 14 shows the 1-dimensional tile-PRDG (left) and the
result of applying our algorithm to it (right).

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

61:16 M. Kong et al.

Interband parallelism is possible and profitable between bands B1 and B3 (akin to a
row-to-row mapping). However, the algorithm deems unprofitable the number of syn-
chronizations between bands 2 and 3. Thus the task graph is modified to reflect the
insertion of a node BX that collects the output dependences from B2, and outputs a
single dependence that is reused via peek operations in B3. This is OpenStream’s broad-
cast stream idiom. After B3, it is also necessary to insert a new node BY to consume the
token that has been used by all instances of B3 (a tick operation). Experimental results
show that for this 3mm example, 1D interband parallelism (only one barrier synchro-
nization) outperforms by 41% on AMD Opteron a 2D interband parallelism approach
(no barriers, three 1-to-1 2D mappings and two many-to-many synchronizations with
peek operations). The performance between the two schemes is comparable on Intel’s
Xeon, and also in favor of 1D interband parallelism for AMD Phenom.

We now formalize the requirements for interband parallelism. Definition 4.4 estab-
lishes that a fine-grain interleaving of loop iterations between two bands can be legally
executed. Once an iteration of the source band is executed, the dependent iteration of
the target band can initiate execution.

Definition 4.4 (Interband Parallelism). Given two distinct bands A and B. Barrierless
interband parallelism is exploitable if:

(1) There is at least one point in band B that does not depend on all the points of
band A.
(2) Neither band A nor band B have dependence cycles.

Definition 4.4 is a general definition for interband parallelism. Condition 1 enforces
that some subset of the target band (possibly exhibited after domain partitioning) can
initiate early execution, that is, a barrierless behavior. Condition 2 essentially states
when a point-to-point synchronization is possible. Some of the cases that this definition
covers are:

—When all points from band A have exactly one outgoing dependence instance and all
points from band B have exactly one incoming dependence instance (e.g., between
bands B1 and B3 in Figure 14);

—When the number of dependence instances outgoing from band A are bounded by
some fixed number K4, and the number of incoming dependence instances to band
B are bounded by a fixed number Kp (e.g., in blur-Roberts kernel, K4 = Kg = 3).
Note also that not all points in both bands are required to have the same number of
incoming or outgoing dependence instances;

—With no particular relation between the cardinalities of band A and B (e.g., card(A) =
card(B), card(A) = 2 x card(B), card(A) = card(B) + K).

Definition 4.5 is used in Algorithm 3 to select when a soft barrier must be inserted
in the task graph. We recall that a soft barrier is a barrier with point-to-point synchro-
nization, that is, it does not affect all bands, but only the one that requires output data
of the source band.

Definition 4.5 (Soft-barrier synchronization). Given two bands A and B, if no barri-
erless interband parallelism can be found according to Definition 4.4 then a soft barrier
must be inserted between both bands.

4.5. Extracting Dynamic Tile-Level Wavefronts

The static partitioning scheme presented in Section 4.2 allows extraction of dynamic
wavefronts of tiles, that is, all intertile instance dependences are made explicit to
the runtime, which in turn determines the actual wavefront as tiles go executing

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

Compiler/Runtime Framework for Dynamic Dataflow Parallelization of Tiled Programs 61:17

1\ Tile_t

»

>

Fig. 15. Partition generated for Jacobi-2d with tile schedule (tt,2 * tt + ti). Circles represent tile instances
and the number within each is the signature ID (see Figure 10).

and completing. Figure 15 displays the partition produced for a 2-dimensional (tiled)
iteration domain corresponding to the Jacobi-2d running example. The arrows depict
the direction in which the data flows, in this case, one token for each tile instance.
The x-axis represents space, while the y-axis represents time. Partitioning yields 9
(tile) domains, each identified by its signature number. The appearance of a specific
2-dimensional signature depends directly on the domain’s shape. For Jacobi-2d, the
outer space dimension (tile-i) is skewed w.r.t. the time dimension and has schedule
(tt,2%tt + ti), where tt is the time tile coordinate and ti is the space tile coordinate.
Figure 10 shows the possible dependence signatures on a given 2D partitioning. The
shaded ones are signatures that do not arise in Jacobi-2d.

4.6. Code Generation

During polyhedral code generation, special care must be taken to replicate the struc-
tures of partitioned domains as well as pretty-printing OpenStream clauses from the
annotated information in the task graph. This includes the generation of input/output
clauses from the dependence signature of each node. Streams are allocated and de-
clared before the SCoP. The appropriate scalar values on the tile schedule must be set
to represent the correct interleaving of bands.

—Separating dimensions are schedule dimensions, which hold scalar values. Their
purpose is to keep separated certain domains. In general, polyhedral code generation
will attempt to fuse all possible dimensions allowed by the schedule. Thus, in order to
keep the generated partitions separated (and their code signature unique), we insert
an additional scalar dimension at position 1 (offset to 0) for each band parallelized via
dynamic wavefront. In standard polyhedral techniques, this is not common practice.
However, since the dependences of the outer dimensions will be dynamically resolved,
inserting an arbitrary and distinct scalar value for each partition remains legal.

—Stream declarations: The current implementation of OpenStream only supports 1-
dimensional arrays of streams. For each interband stream, we compute the volume of
the outermost dimension and use it as the stream array size. For dynamic-wavefront,
we assume a 2-dimensional linearized array of dimensions Dy x Dy, where Dy and D,
are the volumes obtained by projecting out all dimensions except dimension 0 for the
former and dimension 1 for the latter. However, this results in a nonaffine parametric
product. Thus, the product is computed out of the polyhedral code generation process.

—Stream indexation: Stream arrays are indexed by the outer tile coordinates, which
is either the source or target of the tile dependence: all input streams read from
their local tile coordinate and write to the tile coordinate determined by the outset
of a tile dependence. Here is where the property of having output sets that are

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

61:18 M. Kong et al.

for (int tt = 1; tt < (tsteps-1) / 16; tt++)
for (int 1i = 2*tt+2; 1ii <= 2*tt + (n-3) / 16; 1ii++)
#pragma omp task input (stream tt[(tt) * S 1 3 + 1i] >> tokenl 1,\
stream ii[(tt) * S 1 3 + ii] >> token2 1)\
output (stream tt[(tt+l) * S 1 3 + ii] << tokenl 2,\
stream_ii[(tt) * S 1 3 + 1+ii] << token2 2)
for (int jj=1ii; 3 <= ii+(n-3)/16+1; Ji++)
for (int t=max (l6*tt,-n+8*jj+2); t <= 16*tt+15; t++)
for (int i=max (16*ii,-n+16*3jj+2); i<=min(min (16*1i+15,16*jj+14),n+2*t-1); 1i++)

for (int j=max (i+1,16*jj); J <= min (16*jj+15,n+i-2); J++) |

if (n+2%t >= 142) B[-2*t+i]l[-i+3] = 0.2% (A[-2*t+i][-i+j] + A[-2*t+i][-i+j-1]
+OA[-2%t+i] [-i+G+1] + A[-2%t+i+1][-i+3] + A[-2*t+i-1][-i+3]);

A[-2*%t+i-1][-1i+3] = B[-2*t+i-1][-i+3];

}

Fig. 16. Jacobi-2d code snippet for partition with signature 6 (see Figure 15).

explicit functions of the input set in a tile dependence becomes essential. In addition,
since the dynamic wavefront requires a 2-dimensional access to the stream array,
which commonly results in a nonaffine expression (e.g., iterator x parameter), the
linearization process is performed in a pragmatization pass after polyhedral code
generation.

—Simplification: To avoid some corner and degenerate cases, such as having only one
tile instance on any dimension, we set the parameter context (e.g., problem sizes) as
having at least 4 tiles along a dimension. The partition shown in Figure 15, as well
as the code in Figure 16, have this simplification.

—Dealing with One-Time-Loops (OTLs): OTLs are loops that execute only once. Stream
indexation requires all tile coordinates in order to map tile instances to individual
streams in an array. Currently, PPCG (which uses CLooG-ISL) does an overopti-
mization and removes all OTLs. In this case, we resort to regenerating the explicit
tile coordinates. However, other code generators, such as the non-ISL based CLooG
[Bastoul 2004], allow the explicit generation of OTLs. This simplifies the stream
mapping process.

—Finally, a global taskwait is inserted after the SCoP so that the program does not
terminate early. It is particularly useful to use unscaled tile iterators during code
generation in order to facilitate the mapping between tile coordinates and stream
arrays. The generated code for one of the partitions is shown in Figure 16. More
examples of the generated code can be found in Kong et al. [2014].

4.7. Putting It All Together

Algorithm 4 brings together our approach for extracting both interband and intraband
tile-level parallelism, which allows description of concurrent tasks with explicit, point-
to-point dependences. Based on the number of tile bands produced, one of our two main
techniques is applied, that is, interband parallelism in the presence of more than one
band, and our partitioning scheme, which enables a dynamic wavefront of tiles.

4.8. Handling Complete Applications

The techniques described in this article can be applied to a variety of real-world ap-
plications. To do so, the input program needs to be affine or to have affine-friendly
portions. Also, a number of preprocessing transformations would normally be required
to make a program tilable and to further expose parallelism (e.g., array/scalar expan-
sion, renaming, privatization, and scalar expression inlining).

Partitioning scalability. Our partitioning technique could be easily extended to
handle more than the two outermost dimensions. In general, partitioning a domain

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

Compiler/Runtime Framework for Dynamic Dataflow Parallelization of Tiled Programs 61:19

ALGORITHM 4: High-level algorithm for data flow task-level parallelization

Input: Statement level PRDG and tile schedule
Output: Tile level task graph and PRDG with decorated nodes and edges
if (nbr.bands > 1) then
if (no dependences) then
| Bands fully parallel and independent;

end
else
Tile_.PRDG < build 1-dimensional tile-level PRDG;
T <« ConstructTaskGraph (Tile_ PRDG);
T <« SelectTaskIdiom (T);

end
nd
Ise

if (outer dimension is parallel) then

| Band is fully parallel;
end
else
if (all dependences are uniform) then
Tile_.PRDG < build 2-dimensional tile-level PRDG;
T < ConstructTaskGraph (Tile PRDG);
T <« SelectTaskIdiom (T);
end

end
return {Tile PRDG,T};
end

o0

according to dependence signatures yields O(22x"r-deps) parts. This, for a 2D domain,
represents up to 16 parts per program statement. In practice, a few signatures are
impossible to generate for a particular input and tile schedule. However, for higher-
dimensional domains this number grows fast. A 3D domain could potentially generate
up to 64 parts and a 4D domain 256. At this point, the polyhedral code generation could
become a bottleneck, especially for complete applications, which can have hundreds of
statements.

5. EXPERIMENTAL RESULTS

We now demonstrate the effectiveness of our approach both analytically and experi-
mentally. In Section 5.1, we present an analysis of certain program properties that al-
low analysis of performance. Section 5.2 describes our experimental setup. We conduct
three sets of experiments. In Section 5.3, we first show the performance achieved by our
framework and discuss its relation to the analytical features presented previously. In
Section 5.4, we conduct a workload distribution study for three benchmarks while com-
paring it to PLuTo’s tiled variants. In Section 5.5, we compare our dynamic-wavefront +
partitioning technique to diamond tiling in terms of performance scalability and code
features. Finally, Section 5.6 discusses the profitability of tiling and fusion, and pro-
vides guidelines for the class of programs that best suit our framework.

5.1. Benchmark Properties

We evaluate numerous benchmarks with different reuse and barrier patterns, com-
paring the performance obtained using our PPCG/OpenStream-based approach versus
a PLuTo/OpenMP-based one. It is well known that for certain benchmark types, typ-
ically dense linear algebra with O(n) reuse and O(1) barriers such as dgemm, that

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

61:20 M. Kong et al.

Table I. Benchmark Features

Configuration gemm syrk 2mm 3mm | gemver | Jacobi-2d | fdtd-2d
Data reuse O(n) O(n) O(n) O(n) o) o(t) o)
Tile footprint (KB) 24 24 24 24 8 4 6
DF Par. Method I 1 1 1 I P+DW P+DW
#Minfuse OMP Barriers 2 2 4 6 4 O(t+n) O(t+n)
#Smartfuse OMP Barriers 2 2 2 6 4 O(t+n) O(t+n)
#DF Barriers 0 0 0 1 3 0 0
blur- Seidel- | Seidel- | corre- cova- segmen-
Configuration Roberts 1d 2d lation | riance tation ExpCNS
Data reuse o) o) o) O(n) O(n) o) o)
Tile footprint (KB) 16 8 2 8-24 8-24 32 32
DF Par. Method P+I P+DW | P+DW 1 I I P+I
#Minfuse OMP Barriers 2 O(t+n) | O(t+n) 14 7 20 29
#Smartfuse OMP Barriers O(n) O(t+n) | O(t+n) 8 7 O(nl+n2) O(n)
#DF Barriers 0 0 0 10 4 6 0

(I:Inter-band, DW:Dynamic Wavefront, P:Partitioning; n,t: problem sizes)

Table 1. Experimental Testbed (left) and Benchmark Description (right)

AMD Intel Benchmarks Category Problem Size | Tile Size
Opteron Xeon 2mm, 3mm, gemm, syrk linear algebra 2000° 32
6274 | E5-2650 v2 gemver linear algebra 80002 32
Freq | 2.2GHz 2.6GHz correlation, covariance data mining 20002 32
Cores 16 8 Seidel-1d stencils 2000002 1024
L1 16KB 32KB blur-Roberts image processing 40002 32
L2 8 x 2MB 256KB | [fdtd-2d, Jacobi-2d, Seidel-2d stencils 20003 16
L3 6MB 20MB segmentation 3D MRI processing | 7602 x 130 | 4x4x32
RAM | 32GB 16GB ExpCNS DoE mini-app 323 4x4x32

the PLuTo/OpenMP approach is already very effective, implementing the available
reuse via tiling and exposing load balancing via a simple OpenMP parallelization. For
these benchmarks, our objective is to show that PPCG/OpenStream matches the per-
formance of PLuTo/OpenMP, that is, we do not suffer performance degradation through
our approach. On the other hand, for benchmarks with O(1) data reuse and/or O(n) bar-
riers generated using PLuTo/OpenMP, our technique for barrier removal and dynamic
fusion has the potential to significantly outperform the PLuTo/OpenMP approach, as
demonstrated later in this section.

Table I summarizes several of the properties of the benchmarks we evaluate. The DF
Par. method shows the type of dataflow parallelism implemented by our framework.
The #DF barriers shows the number of “dataflow barriers” that are generated by our
framework, and compares to the number of OMP barriers generated by two relevant
fusion heuristics implemented in PLuTo used in our experiments. Additional code
features can be found in Kong et el. [2014].

5.2. Experimental Methodology

The machines used for the experiments as well as the benchmarks are described in
Table II. We test our approach on a subset of Polybench-3.2 [Pouchet 2012] and two
applications. The compilers used were GCC 4.8.1, ICC 2013-update5, and PoCC-1.3.
Our framework was built over PPCG [Verdoolaege et al. 2013]; experiments were
performed with two OpenStream versions, the public version [Pop and Cohen 2013]
and one in development for trace capabilities. The FLOPS for each benchmark are
computed statically.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

Compiler/Runtime Framework for Dynamic Dataflow Parallelization of Tiled Programs 61:21
10 80.00

35 70.00
30 60.00

50.00
20 40.00
15 30.00
10 l L 2000 L
5 1000
o M A L - ol 000~ 1 - I
2mm 3mm syrk 2mm 3mm

gemver

GFLOPS/sec
GFLOPS/sec

gemm syrk gemver gemm

Benchmarks Benchmarks
Wref. gec Mreficc © pluto best gcc Wpluto besticc Mtask Task-opt Href. gcc Mreficc © pluto best gec Mpluto besticc Mtask * Task-opt

Fig. 17. Performance on AMD Opteron (left) and Intel Xeon (right) of linear algebra kernels.

We report the performance (GFLOPS/sec) on double-precision floating point for all
Polybench benchmarks and ExpCNS, and single-precision for segmentation. All avail-
able cores are used. For each benchmark, we report baseline performance on GCC
and ICC (-O3 -ffast-math for GCC and -O3 -parallel -xhost for ICC), PLuTo’s best
performance between tile with minfuse and tile with smartfuse compiled with both
ICC and GCC (generated using PoCC’s parallel, minfuse/smartfuse, prevector, prag-
matizer and vectorizer flags, compiled with -O3 -openmp -xhost), and the performance
of two OpenStream variants: one, Task, exclusively compiled with OpenStream’s mod-
ified GCC (v4.7.0) and the second one, Task opt exporting the task bodies into separate
compilation units that are (1) processed by PoCC using pragmatizer, vectorizer, and
past-hoist-1b flags to have similar intratile loop order as with; and (2) compiled with
Intel ICC -O8 -xhost for further optimization, and then linked with OpenStream’s GCC
modified compiler.

5.3. Performance Results

We remark that the achievable performance for the same code could vary significantly
between GCC and ICC. This is why we report numbers not only for OpenStream’s
native compiler (GCC), but also for (task-opt), a hybrid compilation scheme relying
on ICC for task bodies and OpenStream’s GCC for task creation and scheduling.
GCC does not always implement as many optimizations as ICC for these numerical
codes, implementing less effective automatic vectorization and less optimizations in the
low-level generated code. In addition, the intratile (i.e., task) loop order with task-opt
is subsequently optimized to match PLuTo’s generated intratile loop order, leading to
additional performance improvements.

5.3.1. Linear Algebra Kernels. 2mm, 3mm, gemm, syrk, and gemver fall into this group.
Figure 17 shows that we achieve performance comparable to PLuTo for the variant
codes with O(n) reuse. These codes are already balanced in their OpenMP/PLuTo
variant, and tiling achieves the O(n) reuse independently of the parallelization method.
Concurrent start is possible with PLuTo’s barrier synchronization method as well as
our interband. PLuTo is expected to perform very well on these codes, and no significant
gain is expected with our task-based parallelization scheme.

Regarding gemver, the relative workload per barrier is much lower than for the
other codes, as illustrated by the O(1) reuse, exacerbating the cost of barriers. In both
PLuTo- and PPCG-generated codes, there is one inner loop with high-stride memory
access. Still, there is some reuse of data between phases of the computation; this reuse
is fully implemented through OpenStream’s default task’s firing policy. Through trace
analysis, it was determined that for this benchmark, task execution followed a zig-zag

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

61:22 M. Kong et al.

u %0
1 00
500

10.00

A HJJ " JIJIJJ

jacobi-2d fdtd-2d blur-roberts seidel-1d seidel-2d jacobi-2d fdtd-2d blur-roberts seidel-1d seidel-2d

GFLOPS/sec
GFLOPS/sec

e N
=

Benchmarks Benchmarks
Wref. gcc Mreficc © pluto best gcc Wpluto besticc Mtask = Task-opt Wref. gcc Mreficc pluto best gee M pluto best icc Mtask Task-opt

Fig. 18. Performance on AMD Opteron (left) and Intel Xeon (right) of stencil kernels.

pattern between tasks of adjacent bands, that is, the first band executes tasks mostly
in ascending order, the second band in descending order, the third, again in ascending
order, and so on. This also enables dynamic fusion by reusing the data of the last task.

We also note that kernel 3mm exhibits an unusually high baseline. Further in-
spection revealed that ICC was able to pattern-match matrix-multiply kernels in the
input code, replacing all three loop nests in 3mm by MKL calls, and one of the two
matrix-multiply of 2mm by an MKL call. ICC was, however, unable to recognize and
pattern-match the gemm kernel or its occurrence in 2mm, meaning that the only two
kernels for which ICC was able to use MKL instead of the original code were 2mm (in
part) and 3mm (in full). Regarding syrk, ICC was unable to vectorize PLuTo variants,
while partially vectorizing the reference code. syrk task-opt was vector-array scalarized,
but allowing ICC to decide whether it is vectorizable or not (i.e., no SIMD/vector prag-
mas were inserted). Finally, no significant differences were observed between PLuTo’s
fusion heuristics.

5.3.2. Stencil Kernels. Here we have Jacobi-2d, fdtd-2d, Seidel[1-2]d and blur-Roberts.
All five kernels update neighboring points on a dense grid. blur-Roberts performs a
single sweep on the image, whereas the other are iterative stencils that are repeated
T time steps, thereby showing a higher order of data reuse. These first four iterative
stencils can benefit from time tiling + wavefront parallelism and show O(¢) reuse, while
only standard tiling is meaningful for blur-Roberts. The iterative stencils have O(t +n)
barriers when parallelized with PLuTo (the exact value depends on the selected tile
sizes as well as the skewing factors). The number of barriers with PLuTo could be
reduced by selecting larger tile sizes, but there is a limit on the maximal tile size to
preserve L1 data locality and it would also decrease the parallelism. In contrast, our
framework leverages point-to-point dependences to address load imbalance, and tile
sizes can be selected in a more independent fashion. In particular, smaller tile sizes
benefit our framework by decreasing the task footprints and increasing the possibility
of further temporal reuse via dynamic fusion, whereas such options will simply add
overhead to static wavefronts.

Figure 18 shows that our partitioning technique combined with dynamic wavefront
can achieve speedups ranging from 1.1x to above 3x. Moreover, for these benchmarks
the performance gap between task and task-opt is negligible or favors GCC, that is, ICC
does not provide additional benefit and most performance gains are due to increased
parallelism and barrier removal. Finally, we note that PLuTo produces a 3-dimensional
wavefront for Jacobi-2d, fdtd-2d, and Seidel-2d, whereas our approach exposes a 2-
dimensional wavefront.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

Compiler/Runtime Framework for Dynamic Dataflow Parallelization of Tiled Programs 61:23

30.00
25,00
20.00

15.00

GFLOPS/sec
GFLOPS/sec

10.00

| | Sar Y ey

0.00
cortelation Covarnance segmentation expens corelation covariance segmentation expens

8
7
6
5
4
3
2
1
0

Benchmarks Benchmarks
Wref. gec Wrefice © pluto best gcc pluto bestice Mtask H Task-opt Wref. gec Wreficc © pluto best gec M pluto besticc Mtask # Task-opt

Fig. 19. Performance on AMD Opteron (left) and Intel Xeon (right) of applications group.

Regarding blur-Roberts, partitioning allows pipelining tasks between two bands.
The reuse order is O(1) and the reuse distance 1 (one stream is induced by a flow de-
pendence). OpenStream’s firing policy favors immediate triggering of tasks, enabling
dynamic fusion. PLuTo variants trade-off locality and parallelism: minfuse has 2 bar-
rier synchronizations and achieves the steady state in O(1) time, but has poor interband
locality, whereas smartfuse enhances locality but strongly diminishes parallelism by
inducing a wavefront-like parallelism (O(n) barrier synchronizations). Furthermore,
smartfuse also affects negatively the vectorizability of the code.

5.3.3. Applications. Figure 19 show our results for correlation, covariance, segmenta-
tion, and expcns.

Correlation and covariance. Both applications show, as for gemver, a low ratio of
workload per barrier for the most part of the application, increasing the gain in remov-
ing barriers. The O(n) reuse happens in the next to last band on both applications. This
avoids a potential early data flush that could hinder performance. We also note that
even when not removing all barriers (see Table I), our barriers are dataflow point-to-
point barriers, for example, tasks only wait on their specific input streams and a single
task can wait on more than one dataflow barrier.

Segmentation. Segmentation is one of the five stages (the most time-consuming one)
of the Computer-Aided Diagnostic pipeline for lung cancer screening on 3D MRI im-
ages developed by the Center for Domain-Specific Computing. It performs 3D image
segmentation, using an iterative solver that typically converges in two time iterations.
Only the spatial loops have a static control flow, thus we limit to optimizing a single
iteration of the algorithm. We evaluated multiple versions of PLuTO and different tile
sizes. Tiled and untiled minfuse variants outperform their smartfuse counterparts.
PLuTo minfuse outperforms interband by approximately 20%. This is due to the large
program footprint, the DAG’s shape and the dependence distance. Essentially, this pro-
gram can be divided into 2 stages: the first has a high number of parallel bands with a
dependence distance of 1 (immediate intertask reuse); the second is a more “ordered”
stage, in which most bands require the result of one or more of the previous bands.
The tile sizes selected in the space allow for a fair number of task footprints to fit in
L1. However, the ordered stage induces a complete flushing of data, killing locality. It
is expected that a better performance could be achieved with our framework if we had
some control over the task scheduling with OpenStream.

Exp_CNS_NoSpec. Exp_CNS-NoSpec is a mini-application to integrate the Com-
pressible Navier Stokes (CNS) equations, from the DoE Exact center (Center for Ex-
ascale Simulation of Combustion in Turbulence). It is written primarily in Fortran.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

61:24 M. Kong et al.

Various C-functions are provided to replace the native hypterm and diffterm routines,
which amount to 90% of the execution time. Three SCoPs are extracted from the array-
based variant. ifort (ICC v13) and gfortran (GCC 4.8.1) compiler settings were used.
The default dataset was used, performing 100 time iterations on a 322 grid. Full dy-
namic fusion through interband parallelism is not achieved due to long dependence
chains, but it is still able to exploit a better balance between parallelism and locality
than PLuTo variants. PLuTo minfuse experiences a lack of locality, whereas smartfuse
loses in terms of parallelism (complex loop structure and parallel loops at depth 1 with
regard to the SCoP’s root). PLuTo untiled variants were also evaluated, yielding an
average 50% slowdown. An extended study of segmentation and expcns can be found in
Kong et al. [2014].

5.4. Workload Distribution

We now analyze the degree of parallelism and load balance achieved by our method
enhanced with further ICC optimization (task-opt) and contrast it to PLuTo’s heuris-
tics, minfuse and smartfuse, which are parallelized with OpenMP’s for work-sharing
construct with default scheduling policy. We focus the analysis on the AMD Opteron
platform, and select 3mm, Seidel-2d, covariance and gemver as case studies. For each
benchmark, we decompose its execution time into 3 parts: the sequential time, the par-
allel balanced time, and the parallel unbalanced time. The breakdown of the execution
time has been obtained through the following methodology:

—We use a version of OpenStream capable of generating traces. In particular, we
consider the time spent in task creation (serial), task initialization, task execution
and task-seeking states, of which the last three are total time across all cores. The
breakdown shown was converted from cycles to seconds, considering the number of
executing cores and their frequency. We consider the task execution time as parallel
balanced, and the initialization and seeking times as unbalanced.

—PLuTo’s variants are compiled with ICC v11, using the same flags as in the previous
section, with the exception of -openmp, which is replaced by -openmp-profile. The
output obtained includes sequential time and per-core minimum, average and max-
imum parallel time, both balanced and unbalanced. Here we define time*0®anced g

. . . 1lel .
max(timelnbalanced) and timeb@anced ag max(timelo o) — timewnbalanced

Although we use different compiler versions for this set of experiments than in the
previous section, we note that no significant difference was observed in the perfor-
2
mance.

3mm. A dense linear algebra kernel such as this is not expected to benefit much
from the dataflow parallel model; minfuse and smartfuse produce 6 tiled loop nests,
but with different loop structure. In both cases, these are mapped to 6 parallel regions.
In contrast, the inherent task parallelism is limited to the initializations of each of
the 3 product matrices, followed by the computation of the left and right side matrices
required for the final product. Figure 20 shows that ref icc and PLuTo’s variants satu-
rate at 8 cores. This is due to the 8 x 2MB distributed structure of Opteron’s L2 cache,
which forces many threads to access data from a distant core. Variant task, being fully
compiled with GCC, is compute bound, but after further optimizing the task bodies
with ICC (see the task opt graph) this is no longer the case, achieving linear scaling
with the number of cores. Regarding the impact of barrier removal, we show 3mm’s
time breakdown in Figure 21. The performance achieved is slightly superior to both of

2The OpenMP profiling option has disappeared from recent versions of ICC, thus the use of v11 in this
specific experiment.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

Compiler/Runtime Framework for Dynamic Dataflow Parallelization of Tiled Programs 61:25

GFLOPS/sec

30 Time (sec)
25 — *
7
20 6
15 °
4
10 — 3
5 / i
0 —% N - I - N ==
1 8 16 task-opt-8 minfuse-1 minfuse-16 smartfuse-8
task-opt-1 task-opt-16 minfuse-8 smartfuse-1 smartfuse-16
#Cores
Configuration
- ref. gcc —o—reficc pluto best gcc
—&—pluto best icc =»—task task-opt W Sequential ™ Par. Balanced ' Par. Unbalanced
Fig. 20. Performance scalability for kernel 3mm. Fig. 21. Time breakdown of 3mm kernel.

PLuTO’s. task opt suffers from load imbalance due to initialization and task creation
overhead, as these steps run on a single core. This phenomenon is visible in most of
our experiments. The fraction of the unbalanced execution time for OpenStream rep-
resents approximately 8% on 8 cores and 17% on 16 cores, whereas for PLuTo it varies
between 15% and 50%.

Seidel-2d. This kernel becomes highly unbalanced when applying PLuTo’s tiling
heuristics combined with the static wavefront technique. It consists of a single state-
ment, and both tiling heuristics produce the same fusion structure. Figure 22 shows
the lack of scalability of this benchmark when compiled with GCC and ICC. PLuTo
minfuse, on the other hand, scales well with GCC, but saturates at 8 cores with ICC.
Further inspection revealed that task variant incurred in 50% less L1 accesses when
scaling from 8 to 16 cores, whereas minfuse-ICC experienced a 15% reduction and
minfuse-GCC only a 10% reduction. L1 misses were also reduced by 50% for task
variant, 23% for minfuse-ICC, and minfuse-GCC remained the same. Regarding the
L2 cache behavior, task variant showed 25% less accesses than minfuse for ICC and
GCC for 8 cores. For 16 cores, the L2 accesses difference between task variant and
minfuse variant varied between 4% and 6%. L2 misses were also reduced by 54% for
task variant from 8 to 16 cores, but only 13% for minfuse-ICC, and 30% for minfuse-
GCC. When using all 16 cores, the 3 variants exhibit the same number of L.2 misses.
Figure 23 shows that the unbalanced fraction of time for minfuse-ICC is approximately
50% on 8 and 16 cores. Task variant (compiled only with GCC) spends 5% of its time
in an unbalanced state for 8 cores and increases to 10% on 16, while the balanced time
is reduced to half as there are twice as many cores for computing.

Covariance. PLuTo’s heuristics and parallelization method limit the potential per-
formance of this kernel. Both smartfuse and minfuse heuristics yield 7 parallel re-
gions. While PLuTo variants saturate at 8 cores (Figure 24) and reach a maximum
of 4x speedup, task-opt continues scaling, although at a lower rate, achieving a final
speedup of 7x with regard to single-threaded execution time. Figure 25 shows that
approximately 96% of the total time is spent in unbalanced parallel execution with
PLuTo-generated variants, while this is reduced by a factor of 4 with task-parallel
execution.

5.5. Dynamic Wavefront vs. Diamond Tiling

We now compare our dynamic wavefront technique to diamond tiling [Bandishti et al.
2012], which aims at allowing concurrent start and improving the load imbalance in
stencil computations that are parallelized with doall/barriers. It allows concurrent

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

61:26 M. Kong et al.

GFLOPS/sec

Time (sec)
250

200
150
100
50
0 [— H - m .

#Cores task-8 task-opt-1 task-opt-16 minfuse-8
task-1 task-16 task-opt-8 minfuse-1 minfuse-16

== ref. gcc ref icc == pluto best gcc Configuration

== pluto best icc task == task-opt
W Sequential ® Par. Balanced ' Par. Unbalanced
Fig. 22. Performance scalability for kernel
Seidel-2d. Fig. 23. Time breakdown of Seidel-2d kernel.

GFLOPS/sec

Time (sec)

1 8 16 .
0 [} | |

#Cores task-opt-8 minfuse-1 minfuse-16 smartfuse-8
task-opt-1 task-opt-16 minfuse-8 smartfuse-1 smartfuse-16

== ref. gcc ref icc == pluto best gcc Configuration
== pluto best icc task == task-opt
W Sequential ™ Par. Balanced Par. Unbalanced
Fig. 24. Performance scalability for covariance
kernel. Fig. 25. Time breakdown of covariance kernel.

start along (at least) one of the faces of the iteration domain. It assumes that all tile
dependences (in the transformed space) are unit vectors, thus similar to our usage of
uniformizing dependences prior to the domain partitioning stage. A sufficient condition
for diamond tiling is that the tile schedule must have the same direction as a face of
the iteration domain.

We compare the scalability properties as well as the code characteristics of both
approaches using the Jacobi-2d kernel, a 5-point stencil that meets diamond tiling’s
requirements. Diamond tiling variants were generated with PLuTo v.0.10, using flags
—partlbtile (1-dimensional load balance tiling) and —parallel for OpenMP pragmatiza-
tion, considering the default fusion heuristic (smartfuse). Experiments were conducted
on the AMD Opteron and Intel Xeon (see Table II). The diamond tile variants were
compiled with GCC 4.8 using flags -O3 -fopenmp and -ffast-math. We use the same tile
sizes as the experiments reported by Bandishti et al. [2012].

On the performance aspect, our dynamic wavefront outperforms diamond tiling on
the two machines (Figure 26). Both techniques scale very well on the Intel processor.
However, as in the previous experiments, diamond tiling does not scale beyond 8 cores
on the Opteron, whereas the dynamic wavefront achieves a speedup of 11 x with regard
to its sequential performance. As the Opteron has an L1 data cache of 16KB, a tile of
32 x 32 on double precision and two arrays occupies most of it. Increasing the tile
size to 64 does not improve performance for the task variant, but represents a 3GF/s
increase for diamond tiling. On Intel Xeon, we see a similar behavior, but without the

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

Compiler/Runtime Framework for Dynamic Dataflow Parallelization of Tiled Programs 61:27

GFLOPS/sec GFLOPS/sec
12 16
10 14

8
6
4
2
0

1 2 4 6 8 10 12 14 16 1
#Cores

2 4 6 8
#Cores

~— Task-32 =& Task-64 Diamond-32 ==& Diamond-64 =il Task-32 === Task-64 Diamond-32 === Diamond-64

Fig. 26. Dynamic wavefront versus diamond tiling, tile sizes 32 and 64 on AMD Opteron (left) and Intel
Xeon (right).

Opteron’s plateauing, and both techniques scale almost linearly. In general, our task
variants will benefit more from having tasks with tiles that are slightly smaller than
the L1 cache.

Regarding the code structure, diamond tiling’s code still suffers from a large number
of barriers due to having a doall loop nested within a sequential loop. Furthermore,
Bandishti et al. [2012] also state that, in practice, partial concurrent execution (only the
outermost dimension) yields better performance than exploiting parallelism across all
faces of the iteration domain due to code complexity, manifested as code explosion and
numerous modulo conditions along the code (about 8,000 lines and 400 modulo condi-
tions for full-dimensional concurrent start, but about 900 lines and 7 modulo conditions
when using the 1-dimensional option). Two more features hinder the performance of
this technique: conditions nested within the innermost loops and the tile shape. Both
inhibit vectorization in many cases. On the contrary, partitioning for generating dy-
namic wavefronts produces a more compact code, about 160 lines for the same kernel
and the modulo conditions appear mostly on the outermost dimensions.

Finally, we note that diamond tiling is not applicable to kernels such as Seidel-2d,
because of the nature of their dependences on the tiled (transformed) program. On the
other hand, our framework seamlessly handles these kernels, as long as the processed
tile dependences used for partitioning are uniform.

5.6. The Role of Tiling and Loop Fusion

While not all affine programs are tilable, a strength of the polyhedral compilation
framework is to dramatically increase the applicability of tiling by automatically
computing a program transformation to make the code tilable [Bondhugula et al.
2008]. In our framework, we choose tiling as a mechanism to expose atomic tasks
with a variable granularity (tile size), allowing amortization of the runtime overhead
and better control of data locality opportunities by enforcing a partial order on the
operations. We note that while tiling is not needed for programs without significant
data reuse potential, it is not a detrimental transformation either, as long as the
changes needed to create a tiled implementation do not prevent optimizations that
were possible on the original code, such as prefetching or SIMD vectorization.

Loop fusion is often considered in conjunction with tiling, to increase data local-
ity and create tile bodies containing more statements. Excessive fusion, however, can
be detrimental to performance as it may saturate prefetch streams or prevent SIMD
vectorization by reducing the dependence distance. Complementary transformations
after tiling to restore SIMD vectorization capabilities, for example, Kong et al. [2013],
were not considered in this work, nor the exploration of different coarse-grain fu-
sion/distribution structures to form tiles [Pouchet et al. 2010]. In future work, we will
consider evaluating the impact of these task creation methods.

In this article, we restrict our analysis to tiled variants only; the complete study can
be found in Kong et al. [2014]. To conclude, the metrics displayed in Table I help in

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

61:28 M. Kong et al.

understanding the suitability of a program for our framework, mostly to distinguish
between already-efficient OpenMP implementations (large data reuse available, load
balance achieved, limited number of barriers and large workload per barrier); and
unbalanced/oversynchronized programs with or without data locality potential. We
remark that our work precisely exposes data locality opportunities between tiles, an
information that could be used to compute an affinity for the tasks. Unfortunately, the
current OpenStream implementation we used does not allow provision of scheduling
guidelines and therefore locality opportunities were often lost due to the task firing
policy of OpenStream. It is expected that the performance of codes generated with our
framework would improve further when using such affinity information.

6. RELATED WORK

A number of runtimes have been proposed for dynamic task parallelism with intertask
dependences. In particular, the DAGuE runtime [Bosilca et al. 2012], the University
of Delaware codelet model [Suettlerlein et al. 2013] and the related SWARM environ-
ment [ETI International 2014], and the T* runtime of OpenStream [Pop and Cohen
2013] are all “feed-forward” or “argument fetch” data-driven models. In such runtimes,
tasks notify their successors upon completion. While this increases the programming
or compilation burden—continuations may have to be exposed and passed explicitly,
the dependence resolution algorithm can be fully distributed and its complexity is gen-
erally independent of the number of blocked tasks [Bosilca et al. 2012; Pop and Cohen
2013]. This contrasts with a family of runtime systems in which a dynamic dependence
resolver identifies the ready tasks, such as the current runtimes supporting the StarSs
[Planas et al. 2009] and CnC [Budimlic et al. 2010] languages.

DAGuE is unique in that it uses a symbolic representation of the acyclic dependence
graph to avoid building it in extension. This approach is reminiscent of context-based
dataflow execution and architectures, in which the iteration space structure is directly
embedded into the data-driven execution mechanics [Watson and Gurd 1982; Kyriacou
et al. 2006]. While such symbolic approaches are more local memory-efficient than ex-
plicit graph representations, as in Star-PU, the exact benefits remain largely unknown
compared to the fully dynamic dependence graphs of SWARM or T* (OpenStream).
Nevertheless, the evaluation is orthogonal to our work, which can make use from both
approaches.

Our technique relies heavily on the partitioning of the iteration domain of a loop
nest. Griebl et al. proposed the technique known as Index Set Splitting (ISS) [Griebl
et al. 2000] and Pugh and Rosser proposed Iteration Set Slicing (also ISS) [Pugh
and Rosser 1997]. Both techniques partition iteration domains based on dependence
patterns (e.g., when a dependence changes direction, or based on transitive closure
computations). Their technique is applied as a preprocessing step that allows extrac-
tion of more parallelism, or application of more aggressive affine transformations.
We devised a form of ISS that operates—on tile dependences—performed once the
schedule has been computed.

Baskaran et al. [2009] develop a framework to extract tile-level task-parallelism
but with full dynamic dependence resolution. Diamond tiling [Bandishti et al. 2012]
and split tiling [Henretty et al. 2013] aim at reducing the load imbalance derived
from static wavefronts, that is, the ramp up/ramp down. However, the wavefront
itself is only the first part of the problem. The second part is the oversynchronization
induced by barriers, and in that sense, both techniques still suffer from this issue.
Furthermore, split tiling’s two-phase execution (per dimension) increases the number
of synchronizations exponentially in the number of dimensions, which are more expen-
sive in nonuniform architectures. To conclude, our interband approach could also be
combined with split-tiling to remove unnecessary synchronizations in between phases.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

Compiler/Runtime Framework for Dynamic Dataflow Parallelization of Tiled Programs 61:29

7. CONCLUSIONS AND FUTURE WORK

We presented a systematic approach to compile tilable affine loop nests into concurrent,
dependent tasks. We formulated a partitioning algorithm based on the tile-to-tile
dependences represented as affine polyhedra. This algorithm takes out much of the
burden of runtime dependence enforcement, while preserving its load balancing and
lightweight synchronization benefits. We implemented the algorithm in the PPCG
research compiler, targeting the OpenStream dataflow language. Our results confirm
the advantage of task-parallel execution over barrier-based, data-parallel patterns.

These results push for the generalization of the partitioning algorithm to more
complex, irregular control flow, and for further efforts to reduce code size, implement-
ing a hybrid approach in which some of the partitioning occurs offline, while less
performance-sensitive dependence patterns are deferred to conditional dataflow and
implicit dependence resolution at runtime.

REFERENCES

Randy Allen and Ken Kennedy. 2002. Optimizing Compilers for Modern Architectures. Morgan Kaufmann,
San Francisco, CA.

Vinayaka Bandishti, Irshad Pananilath, and Uday Bondhugula. 2012. Tiling stencil computations to max-
imize parallelism. In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. IEEE Computer Society, 40.

Muthu Manikandan Baskaran, Nagavijayalakshmi Vydyanathan, Uday Kumar Reddy Bondhugula, J.
Ramanujam, Atanas Rountev, and P. Sadayappan. 2009. Compiler-assisted dynamic scheduling for
effective parallelization of loop nests on multicore processors. ACM Sigplan Notices 44, 4, 219-228.

Cedric Bastoul. 2004. Code generation in the polyhedral model is easier than you think. In Proceedings of the
13th International Conference on Parallel Architectures and Compilation Techniques. IEEE Computer
Society, 7-16.

Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and Ponnuswamy Sadayappan. 2008. A prac-
tical automatic polyhedral parallelizer and locality optimizer. ACM SIGPLAN Notices 43, 6, 101-113.

George Bosilca, Aurelien Bouteiller, Anthony Danalis, Thomas Hérault, Pierre Lemarinier, and Jack Don-
garra. 2012. DAGuE: A generic distributed DAG engine for high performance computing. Parallel Com-
put. 38, 1-2, 37-51.

Zoran Budimlic, Michael Burke, Vincent Cavé, Kathleen Knobe, Geoff Lowney, Ryan Newton, Jens Palsberg,
David Peixotto, Vivek Sarkar, Frank Schlimbach, and Sagnak Tasirlar. 2010. Concurrent collections.
Sci. Program. 18, 3—4, 203-217. http://portal.acm.org/citation.cfm?id=1938482.1938486

Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. 2011. Habanero-Java: The new adventures of
old X10. In Proceedings of the 9th International Conference on Principles and Practice of Programming
in Java. ACM, New York, NY, 51-61.

Alain Darte and Frédéric Vivien. 1997. Optimal fine and medium grain parallelism detection in polyhedral
reduced dependence graphs. International Journal of Parallel Programming 25, 6, 447-496.

Paul Feautrier. 1992. Some efficient solutions to the affine scheduling problem, part II: Multidimensional
time. Intl. J. of Parallel Programming 21, 6, 389-420.

Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David Parello, Marc Sigler, and Olivier
Temam. 2006. Semi-automatic composition of loop transformations. International Journal of Parallel
Programming 34, 3, 261-317.

Martin Griebl, Paul Feautrier, and Christian Lengauer. 2000. Index set splitting. International Journal of
Parallel Programming 28, 6 (2000).

Tom Henretty, Richard Veras, Franz Franchetti, Louis-Noél Pouchet, J. Ramanujam, and P. Sadayappan.
2013. A stencil compiler for short-vector SIMD architectures. In Proceedings of the 27th International
ACM Conference on International Conference on Supercomputing. ACM Press, New York, NY, 13—24.

ETI International. 2014. SWARM (SWift Adaptive Runtime Machine). Retrieved November 17, 2014 from
http://www.etinternational.com/index.php/products/swarmbeta.

Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. 2004. Advances in dataflow programming
languages. Comput. Surveys 36, 1, 1-34. DOI : http://dx.doi.org/10.1145/1013208.1013209

Gilles Kahn. 1974. The semantics of a simple language for parallel programming. In IFIP’94, North Holland
(Ed.). 471-475.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

http://portal.acm.org/citation.cfm?id$=$1938482.1938486
http://www.etinternational.com/index.php/products/swarmbeta
http://dx.doi.org/10.1145/1013208.1013209

61:30 M. Kong et al.

Martin Kong, Antoniu Pop, R. Govindarajan, Louis-Noél Pouchet, Albert Cohen, and P. Sadayappan. 2014.
Compiler/Run-Time Framework for Dynamic Data-Flow Parallelization of Tiled Programs. Technical
Report OSU-CISRC-7/14-TR14. Department of Computer Science and Engineering, The Ohio State
University.

Martin Kong, Richard Veras, Kevin Stock, Franz Franchetti, Louis-Noél Pouchet, and P. Sadayappan. 2013.
When polyhedral transformations meet SIMD code generation. ACM SIGPLAN Notices 48, 6, 127-138.

Costas Kyriacou, Paraskevas Evripidou, and Pedro Trancoso. 2006. Data-driven multithreading using con-
ventional microprocessors. IEEE Trans. on Parallel Distributed Systems 17, 10, 1176-1188.

Samuel P. Midkiff and David A. Padua. 1986. Compiler generated synchronization for do loops. In ICPP.
544-551.

Samuel P. Midkiff and David A. Padua. 1987. Compiler algorithms for synchronization. IEEE Transactions
on Computers 36, 12. 1485-1495.

Judit Planas, Rosa M. Badia, Eduard Ayguadé, and Jesus Labarta. 2009. Hierarchical task-based program-
ming with StarSs. International Journal on High Performance Computing Architecture 23, 3, 284—299.

Antoniu Pop and Albert Cohen. 2012. Control-Driven Data Flow. Technical Report RR-8015. INRIA.

Antoniu Pop and Albert Cohen. 2013. OpenStream: Expressiveness and data-flow compilation of OpenMP
streaming programs. ACM Transactions on Architecture and Code Optimization (TACO),

Louis-Noel Pouchet. 2012. PolyBench: The Polyhedral Benchmark suite. http:/web.cse.ohio-state.edu/~
pouchet/software/polybench.

Louis-Noél Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J. Ramanujam, and P. Sadayappan.
2010. Combined iterative and model-driven optimization in an automatic parallelization framework. In
Conference on Supercomputing (SC’10). IEEE Computer Society Press, New Orleans, LA.

William Pugh and Evan Rosser. 1997. Iteration space slicing and its application to communication opti-
mization. In Proceedings of the 11th International Conference on Supercomputing. ACM, New York,
221-228.

Joshua Suettlerlein, Stéphane Zuckerman, and Guang R. Gao. 2013. An implementation of the codelet model.
In Euro-Par. 633-644.

Sven Verdoolaege. 2010. ISL: An integer set library for the polyhedral model. In Mathematical Software—
ICMS 2010. Springer, New York, NY, 299-302.

Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gémez, Christian Tenllado, and Francky
Catthoor. 2013. Polyhedral parallel code generation for CUDA. ACM Transactions on Architecture and
Code Optimization (TACO) 9, 4, 54.

Tan Watson and John R. Gurd. 1982. A practical data flow computer. IEEE Computer 15, 2, 51-57.

Received June 2014; revised November 2014; accepted November 2014

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 61, Publication date: December 2014.

