2024/09/30 14:56 1/7 Getting started with Alpha and Alphaz

Getting started with Alpha and Alphaz

Alpha is a polyhedral equational language, and AlphaZ is its “IDE:” tools to read, write, edit, and
analyze Alpha Programs, and also to compile them to executable code.

Your first Alpha program (not hello world)

In this tutorial, which complements Section 1.1 from Foundations 1, we will walk through a simple
Alpha program that solves the equation Lx=b where L is a lower triangular matrix with unit diagonals,
b is a known vector and x is the unknown vector, using the forward substitution algorithm. With a
little bit of algebraic reasoning, we derived a mathematical identity with x on the left hand side LHS.
We now want to write it as an equational program in Alpha. You will see that it is surprisingly simple.

Step 1: Affine System and Parameters

Let's start from an empty alpha file “forward_sub*.ab, in which with “FS” is the name of the system,
and a positive integer N as its parameter. A system (Affine System) takes its name from system of
affine recurrence equations.

Parameters are runtime constants represented with some symbol in the code. In this example,
parameter N will be used to define the size of the matrices, which is not known until runtime.

affine FS {N|N>0}
. // the system ends with a period, and this is a comment

Step 2: Variable Declarations

Alpha variables must be declared with a name, a data type, and a shape/size, which is a polyhedral
domain. For this example, x and b are N vectors. And L is a lower triangular matrix with unit
diagonals so its domain is a triangle whose side length is N-1 (the diagonal elements are not
explicitly stored). Additionally, you will later use additional variables “’bp’’ (for “b-prime”) and
“Correct” to validate that the computation is correct. We must also specify whether variables are
input/output or local, using appropriate keywords. So the declarations are as follows:

affine FS {N|N>0}
input // "given" is also a legal keyword for input
float L {i,j]|l<=j<i<=N};
float b {j|1l<=j<=N};
output // or "returns"
float x {i|l<=i<=N};
// bool C {|}; // empty domain, i.e., a scalar variable
local
// float xp {j|1l<=j<=N}; will be needed later

AlphaZ - https://www.cs.colostate.edu/AlphaZ/wiki/

https://www.cs.colostate.edu/~cs560/Fall2015/Lectures/foundations1.pdf

Last update: 2024/09/26

07:56

let
// equation 1
// equation 2
//

tutorial_forward_substitution https://www.cs.colostate.edu/AlphaZ/wiki/doku.php?id=tutorial_forward_substitution

The let keyword delimits the section where the equations will be specified.

Domains

As we saw above, polyhedral domains are written as { “index names” | “affine constraints using
indices and parameters” }. Often we can use short-hand notation like “a<b<c” or “ (b, c)<0".
Constraints can be intersected with “&&”.

Unions of such domains can be expressed as “{ a,b | constraintsonaand b } || { ¢,d | constraints on
cand d }”. One important point about Alpha domains is that the names of indices only have scope
until the end of the declaration. Internally, all analysis/transformation/code generation tools only care
about the dimension to which the constraint applies. For example, a domain {i,j | O<=i<j<N}is
equivalentto {x,y | O<=x<y<N }.

Step 3: Equations

Now the only remaining step to complete the program is to write the equations, and this follows
directly from the mathematical identity in Foundations 1. Alpha has a more elaborate syntax for
writing more complex programs, but it is not needed here.

Equation for x

In this equation, x is on the left hand side (LHS) and implicitly declares i as the index name to be
used on the RHS. Its scope is the entire equation. The name does not have to be the same as in the
declaration of the variable. You could use p instead of i if you like.

x[i] = // some right hand side expression, RHSexpr;

Variable Expression

The simplest RHS is an expression as you would write in any standard language, using operators, and
(array) variables and arrays. The array access function must be a linear/affine function of the LHS
indices and the program parameters, e.g., A[1,]j], or x[N-1i], A variable by itself, without a square
bracket, is treated either as a scalar variable (asin, X[1,]j] = 0) or as an access with the identity
dependence function, (i.e., X[1] = A[i] would be the same as X[i] = Aoreven X = A).

https://www.cs.colostate.edu/AlphaZ/wiki/ Printed on 2024/09/30 14:56

https://www.cs.colostate.edu/~cs560/Fall2015/Lectures/foundations1.pdf

2024/09/30 14:56 3/7 Getting started with Alpha and Alphaz

Reduce Expressions

The definition of x involves a summation. Mathematically, a reduction is an operation that applies an
associative operator to a set of values, such as summation (sum over a set of numbers). In Alpha,
reduction operators must also be commutative and use the following syntax:

reduce(op, [index-list], expr);

Here op is the reduction operator (currently +, *, max, min, and, or are the ones supported);
index-list names the new indices used in the reduction. Their scope is just within the reduction
expression

and expression is any Alpha expression and may use indices from outside the reduction, the new
ones, and program parameters.

The mathematical expression \sum_j L {i,j} x_j in our equation would be written as

reduce(+, [j1, L[i,jI*x[j]);

Restrict Expressions

Notice that the bounds on the summation in Equation 1, from Foundations 1 run from 1 to i-1.
Restrict expressions can be used to, literally, “restrict” the evaluation of a particular expression to a
particular domain. The syntax of a restrict expression is:

restrict domain : expr

The summation expression in Equation 2 therefore can be expressed as the following:

{] 1<=j<i } @ LI[1,j]1*x[]]
Note that there is nothing to the left of the | because indices are already declared.

Case Expressions

Notice that in our equation, there is a condition on the i to be considered. This is expressed with
CaseExpression in Alpha. It starts with the keyword “case”, ends with keyword “esac”, enclosing a
list of “;”-delimited expressions, called “clauses”. Often (but not always), each clause is a
RestrictExpression. Thus the entire RHS of our equation is:

xp[i] = case
{|i==1} : exprl;
{|1i>1} : expr2;
esac;

AlphaZ - https://www.cs.colostate.edu/AlphaZ/wiki/

https://www.cs.colostate.edu/~cs560/Fall2015/Lectures/foundations1.pdf

(Isa;;gpdate: 2024/09/26 tutorial_forward_substitution https://www.cs.colostate.edu/AlphaZ/wiki/doku.php?id=tutorial_forward_substitution

Putting all this together, the final equation for x is:

x[i] = case

{I1==i} : b[i];

{|1<i} : b[i] - reduce(+, [j], {| 1<=j<i} : LI[i,j1*x[jl);
esac,

See how close it is to the original equation.

Now, save your completed program as the file forward sub.ab

Generating and Testing Alpha

Analyses, transformations, and code generation of Alpha programs are performed using the AlphazZ
system. The normal interface for using AlphaZ is the scripting interface called compiler scripts. Given
below is an example script for that does several things using the forward_sub program we wrote
above.

read program and store the internal representation in variable prog
prog = ReadAlphabets("./forward sub.ab"); //AlphaZ uses an extended language
called Alphabets

store string (corresponding to system name) to variable system
system = "FS";

store output directory name to variable outDir
outDir = "./test-out/"+system;

print out the program using the array notation/syntax
AShow(prog);

print out the program using the standard/show notation
Show(prog) ;

prints out the AST of the program (commented out)
#PrintAST(prog);

generate codes

generateWriteC(prog, system, outDir);

generateVerificationCode(prog, system, outDir);
generateWrapper(prog, system, outDir);
generateMakefile(prog, system, outDir);

Save this script with .cs extension, place the alpha file in the same directory as the script, and then
right click on the editor and select “Run As - Compiler Script” to run the script.

If you get some error message, try looking at the first line of the error messages to find out what it is

https://www.cs.colostate.edu/AlphaZ/wiki/ Printed on 2024/09/30 14:56

2024/09/30 14:56 5/7 Getting started with Alpha and Alphaz

about. Common problems are:

e not having the file in the right place (you will see FileNotFoundException in this case)
e system name does not match the any of the system in the program (error message should say
system xxx does not exist)

Code Generators

In this tutorial, we use the basic code generator. Two code files are generated with the two
commands WriteC and Wrapper.

Wrapper code is a wrapper around other generated codes that allocates/frees memory for input and
output variables, and it also has different options for testing.

generateMakefile produces a Makefile that should compile the generated codes. You can make with
different options.

Compiling and Executing the Generated Code

Congratulations!! You are nearly at the end. Now, you will actually make and execute the code (in a
separate terminal window).

make

compiles the code and produces an executable xxx (where xxx is the system name) that executes
the program with default input that is 1 everywhere. Compiling with this option does not test very
much, but it will test if it compiles and runs and produces no errors.

make check

Compiles the code and produces an executable xxx. check (xxx is the system name) that prompts
the user for all values of input variables. After executing, it prints out all values of the output
variables. This option should be used for testing small sized input data, “by hand” [Hint: you could
start with some small well chosen L, pick a “solution” x, multiply them on paper, and give that as b to
the program, expecting it to deliver your chosen x].

How to check more thoroughly

AlphaZ has a few commands that let you do this, but they require some gold standard, so the two
options below are not really useful for your first program.

make verify

This only becomes useful if you have a known, correct implementation of the function. For this first

AlphaZ - https://www.cs.colostate.edu/AlphaZ/wiki/

Last update: 2024/09/26

07:56 tutorial_forward_substitution https://www.cs.colostate.edu/AlphaZ/wiki/doku.php?id=tutorial_forward_substitution

tutorial, it does not make sense (it ends up comparing the outputs of two identical functions). Later,
when you produce different versions using scheduling directives, it becomes useful to validate the
correctness against the original equations, Compiles the code with another code named
xxX_verify.c that defines another function with the same signature, xxx_verify (xxx is the
system name). Users can provide different programs as xxx_verify to compare outputs.

make verify-rand

Like the above case, it only becomes useful if you have a known, correct implementation. For this first
tutorial, it does not make sense. Same as verify, except the inputs are generated randomly.

How to really thoroughly check the very first equational program

It has to be done equationally!.

It idea is to write additional (simpler) equational programs that are easier to verify and trust and use
them to build up the verification. For example, you could first write an Alpha program to multiply a
(triangular or otherwise) matrix with a vector, and verify it. Let's assume that you have done this.

Then you can extend the FS system itself, to write an additional equation to compute the matrix-
vector product of L and x, subtract b from it,=, v=giving a vector or error values. Now all we need to
do is to check that some given threshold is greater than the absolute values of each all elements of
the error (Alpha does not have an operator abs, so you can use a trick; abs (x) equals max(x, -x)
of all x). We can return this in the Boolean variable C defined as follows.

error [i] =
case
{|i==1}: b[i] - x[1i];
{1i>1} : b[i] - x[i] - reduce(+, [j1, LIi,jI1*x[jl);
esac;
C[] = reduce(and, [i], max(error[i], - error[i])<0.000000001);
//you may also do a max reduction and/or use a different threshold

Note how we account for the (unit) diagonal elements of L (which are not explicitly part of the array L.

float abs (float);

But how to provide sufficiently large number of (random) inputs to the code if we don't use the verify
option? The answer is to create a sufficiently large file of random inputs, and then use file redirection
in linux to feed this file to xxx_check (make sure that the boolean output is either first or last, or
even the only one).

https://www.cs.colostate.edu/AlphaZ/wiki/ Printed on 2024/09/30 14:56

2024/09/30 14:56 777 Getting started with Alpha and Alphaz

From:
https://www.cs.colostate.edu/Alphaz/wiki/ - AlphaZ

Permanent link:

Last update: 2024/09/26 07:56

AlphaZ - https://www.cs.colostate.edu/AlphaZ/wiki/

https://www.cs.colostate.edu/AlphaZ/wiki/
https://www.cs.colostate.edu/AlphaZ/wiki/doku.php?id=tutorial_forward_substitution

	[Getting started with Alpha and AlphaZ]
	Getting started with Alpha and AlphaZ
	Your first Alpha program (not hello world)
	Step 1: Affine System and Parameters
	Step 2: Variable Declarations
	Domains

	Step 3: Equations
	Equation for x
	Variable Expression
	Reduce Expressions
	Restrict Expressions
	Case Expressions

	Generating and Testing Alpha
	Code Generators
	Compiling and Executing the Generated Code
	make
	make check

	How to check more thoroughly
	make verify
	make verify-rand

	How to really thoroughly check the very first equational program

