This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision Next revision Both sides next revision | ||
melange:papers:fall2019 [2019/10/09 12:07] jana |
melange:papers:fall2019 [2019/10/30 13:51] jana |
||
---|---|---|---|
Line 18: | Line 18: | ||
- | @ARTICLE{2018arXiv180502566K, | + | |
- | author = {{Kwon}, Hyoukjun and {Chatarasi}, Prasanth and {Pellauer}, Michael and | + | |
- | {Parashar}, Angshuman and {Sarkar}, Vivek and {Krishna}, Tushar}, | + | @article{DBLP:journals/corr/abs-1805-02566, |
- | title = "{Understanding Reuse, Performance, and Hardware Cost of DNN Dataflows: A Data-Centric Approach}", | + | author = {Hyoukjun Kwon and |
- | journal = {arXiv e-prints}, | + | Michael Pellauer and |
- | keywords = {Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Machine Learning}, | + | Tushar Krishna}, |
- | year = "2018", | + | title = {Understanding Reuse, Performance, and Hardware Cost of DNN Dataflows: A Data-Centric Approach}, |
- | month = "May", | + | journal = {CoRR}, |
- | eid = {arXiv:1805.02566}, | + | volume = {abs/1805.02566}, |
- | pages = {arXiv:1805.02566}, | + | year = {2018}, |
- | archivePrefix = {arXiv}, | + | url = {http://arxiv.org/abs/1805.02566}, |
- | eprint = {1805.02566}, | + | archivePrefix = {arXiv}, |
- | primaryClass = {cs.DC}, | + | eprint = {1805.02566}, |
- | adsurl = {https://ui.adsabs.harvard.edu/abs/2018arXiv180502566K}, | + | timestamp = {Mon, 13 Aug 2018 16:46:45 +0200}, |
- | adsnote = {Provided by the SAO/NASA Astrophysics Data System} | + | biburl = {https://dblp.org/rec/bib/journals/corr/abs-1805-02566}, |
+ | bibsource = {dblp computer science bibliography, https://dblp.org} | ||
} | } | ||
+ | |||
Line 53: | Line 55: | ||
address = {New York, NY, USA}, | address = {New York, NY, USA}, | ||
} | } | ||
+ | |||
+ | @ARTICLE{7738524, author={Y. H. Chen and T. Krishna and J. S. Emer and V. Sze}, journal={IEEE Journal of Solid-State Circuits}, title={Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks}, year={2017}, volume={52}, number={1}, pages={127-138}, url = {http://ieeexplore.ieee.org/document/7738524/}, doi={10.1109/JSSC.2016.2616357}, ISSN={0018-9200}, month={Jan},} |