User Tools

Site Tools


melange:papers:fall2019

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
melange:papers:fall2019 [2019/10/09 18:07]
jana
melange:papers:fall2019 [2019/11/05 00:19]
jana
Line 18: Line 18:
  
  
-@ARTICLE{2018arXiv180502566K+ 
-       ​author = {{Kwon}, Hyoukjun ​and {Chatarasi},​ Prasanth and {Pellauer}, Michael ​and + 
-         {Parashar}, Angshuman and {Sarkar}, Vivek and {Krishna}, Tushar}, +@article{DBLP:​journals/​corr/​abs-1805-02566
-        title = "{Understanding Reuse, Performance,​ and Hardware Cost of DNN Dataflows: A Data-Centric Approach}"+  author ​   = {Hyoukjun ​Kwon and 
-      journal = {arXiv e-prints}, +               ​Michael ​Pellauer and 
-     keywords ​= {Computer Science - Distributed,​ Parallel, and Cluster Computing, Computer Science - Machine Learning}, +               Tushar ​Krishna}, 
-         ​year = "2018"+  title     ​= {Understanding Reuse, Performance,​ and Hardware Cost of DNN Dataflows: A Data-Centric Approach},​ 
-        month = "​May",​ +  journal ​  ​= {CoRR}, 
-          eid = {arXiv:1805.02566}, +  ​volume ​   ​= {abs/​1805.02566}, 
-        pages = {arXiv:1805.02566},​ +  year      {2018}
-archivePrefix = {arXiv}, +  ​url ​      = {http://arxiv.org/abs/1805.02566},​ 
-       ​eprint = {1805.02566},​ +  archivePrefix = {arXiv}, 
- primaryClass ​= {cs.DC}, +  eprint ​   = {1805.02566},​ 
-       adsurl ​= {https://ui.adsabs.harvard.edu/abs/2018arXiv180502566K}, +  ​timestamp ​= {Mon, 13 Aug 2018 16:46:45 +0200}, 
-      ​adsnote ​= {Provided by the SAO/NASA Astrophysics Data System}+  ​biburl ​   ​= {https://dblp.org/rec/bib/journals/corr/​abs-1805-02566}, 
 +  ​bibsource ​= {dblp computer science bibliography,​ https://dblp.org}
 } }
 +
  
  
Line 53: Line 55:
  ​address = {New York, NY, USA},  ​address = {New York, NY, USA},
 } }
 +
 +@ARTICLE{7738524,​ author={Y. H. Chen and T. Krishna and J. S. Emer and V. Sze}, journal={IEEE Journal of Solid-State Circuits}, title={Eyeriss:​ An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks}, year={2017},​ volume={52},​ number={1}, pages={127-138},​ url = {http://​ieeexplore.ieee.org/​document/​7738524/​},​ doi={10.1109/​JSSC.2016.2616357},​ ISSN={0018-9200},​ month={Jan},​} ​
 +
 +@article{Vasilache:​2019:​NAL:​3366460.3355606,​
 + ​author = {Vasilache, Nicolas and Zinenko, Oleksandr and Theodoridis,​ Theodoros and Goyal, Priya and Devito, Zachary and Moses, William S. and Verdoolaege,​ Sven and Adams, Andrew and Cohen, Albert},
 + title = {The Next 700 Accelerated Layers: From Mathematical Expressions of Network Computation Graphs to Accelerated GPU Kernels, Automatically},​
 + ​journal = {ACM Trans. Archit. Code Optim.},
 + ​issue_date = {October 2019},
 + ​volume = {16},
 + ​number = {4},
 + month = oct,
 + year = {2019},
 + issn = {1544-3566},​
 + pages = {38:​1--38:​26},​
 + ​articleno = {38},
 + ​numpages = {26},
 + url = {http://​doi.acm.org/​10.1145/​3355606},​
 + doi = {10.1145/​3355606},​
 + acmid = {3355606},
 + ​publisher = {ACM},
 + ​address = {New York, NY, USA},
 + ​keywords = {Deep learning layers, GPU acceleration,​ polyhedral compilation},​
 +
melange/papers/fall2019.txt · Last modified: 2019/12/02 18:09 by jana