
2024/04/26 03:41 1/3 fall2021

AlphaZ - https://www.cs.colostate.edu/AlphaZ/wiki/

@Article{Leiserson_2020,

author = {Charles E. Leiserson and Neil C. Thompson and Joel S. Emer and
Bradley C. Kuszmaul and Butler W. Lampson and Daniel Sanchez and Tao B.
Schardl},
journal = {Science},
loc = {Science},
title = {There's plenty of room at the Top: What will drive computer
performance after Moore's law?},
year = {2020},
month = {jun},
number = {6495},
pages = {eaam9744},
volume = {368},
doi = {10.1126/science.aam9744},
publisher = {American Association for the Advancement of Science ({AAAS})},
url =
{https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-
al-Theres-plenty-of-room-at-the-top.pdf}

}

@inbook{10.1145/3453483.3454079,

author = {Morihata, Akimasa and Sato, Shigeyuki},
title = {Reverse Engineering for Reduction Parallelization via Semiring
Polynomials},
year = {2021},
isbn = {9781450383912},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3453483.3454079},
abstract = {Parallel reduction, which summarizes a given dataset, e.g., the
total, average, and

maximum, plays a crucial role in parallel programming. This paper presents a new approach, reverse
engineering, to automatically discovering nontrivial parallel reductions in sequential programs. The
body of the sequential reduction loop is regarded as a black box, and its input-output behaviors are
sampled. If the behaviors correspond to a set of linear polynomials over a semiring, a divide-and-
conquer parallel reduction is generated. Auxiliary reverse-engineering methods enable a long and
nested loop body to be decomposed, which makes our parallelization scheme applicable to various
types of reduction loops. This approach is not only simple and efficient but also agnostic to the details
of the input program. Its potential is demonstrated through several use case scenarios. A proof-of-
concept implementation successfully inferred linear polynomials for nearly all of the 74 benchmarks
exhaustively collected from the literature. These characteristics and experimental results
demonstrate the promise of the proposed approach, despite its inherent unsoundness.},

booktitle = {Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation},
pages = {820–834},

Last update:
2021/09/13
20:09

melange:papers:fall2021 https://www.cs.colostate.edu/AlphaZ/wiki/doku.php?id=melange:papers:fall2021&rev=1631585390

https://www.cs.colostate.edu/AlphaZ/wiki/ Printed on 2024/04/26 03:41

numpages = {15}

}

@inproceedings{10.1145/3243176.3243204,

author = {Jiang, Peng and Chen, Linchuan and Agrawal, Gagan},
title = {Revealing Parallel Scans and Reductions in Recurrences through
Function Reconstruction},
year = {2018},
isbn = {9781450359863},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3243176.3243204},
doi = {10.1145/3243176.3243204},
abstract = {Many sequential loops are actually recurrences and can be
parallelized across iterations

as scans or reductions. Many efforts over the past 2+ decades have focused on parallelizing such
loops by extracting and exploiting the hidden scan/reduction patterns. These approaches have largely
been based on a heuristic search for closed-form composition of computations across loop
iterations.While the search-based approaches are successful in parallelizing many recurrences, they
have a large search overhead and need extensive program analysis. In this work, we propose a novel
approach called sampling-and-reconstruction, which avoids the search for closed-form composition
and has the potential to cover more recurrence loops. It is based on an observation that many
recurrences can have a point-value representation. The loop iterations are divided across processors,
and where the initial value(s) of the recurrence variable(s) are unknown, we execute with several
chosen (sampling) initial values. Then, correct final result can be obtained by reconstructing the
function from the outputs produced on the chosen initial values. Our approach is effective in
parallelizing linear, rectified-linear, finite-state and multivariate recurrences, which cover all of the
test cases in previous works. Our evaluation shows that our approach can parallelize a diverse set of
sequential loops, including cases that cannot be parallelized by a state-of-the-art static parallelization
tool, and achieves linear scalability across multiple cores.},

booktitle = {Proceedings of the 27th International Conference on Parallel
Architectures and Compilation Techniques},
articleno = {10},
numpages = {13},
keywords = {loop parallelization, recurrence, reduction},
location = {Limassol, Cyprus},
series = {PACT '18}

}

2024/04/26 03:41 3/3 fall2021

AlphaZ - https://www.cs.colostate.edu/AlphaZ/wiki/

From:
https://www.cs.colostate.edu/AlphaZ/wiki/ - AlphaZ

Permanent link:
https://www.cs.colostate.edu/AlphaZ/wiki/doku.php?id=melange:papers:fall2021&rev=1631585390

Last update: 2021/09/13 20:09

https://www.cs.colostate.edu/AlphaZ/wiki/
https://www.cs.colostate.edu/AlphaZ/wiki/doku.php?id=melange:papers:fall2021&rev=1631585390

