Warning: Declaration of action_plugin_syntaxhighlighter3_action::register(Doku_Event_Handler &$controller) should be compatible with DokuWiki_Action_Plugin::register(Doku_Event_Handler $controller) in /s/chopin/e/proj/AlphaZ/public_html/wiki/lib/plugins/syntaxhighlighter3/action/action.php on line 112
normalize [AlphaZ]

User Tools

Site Tools


normalize

Warning: Declaration of syntax_plugin_syntaxhighlighter3_syntax::handle($match, $state, $pos, &$handler) should be compatible with DokuWiki_Syntax_Plugin::handle($match, $state, $pos, Doku_Handler $handler) in /s/chopin/e/proj/AlphaZ/public_html/wiki/lib/plugins/syntaxhighlighter3/syntax/syntax.php on line 26

Warning: Declaration of syntax_plugin_syntaxhighlighter3_syntax::render($mode, &$renderer, $data) should be compatible with DokuWiki_Syntax_Plugin::render($format, Doku_Renderer $renderer, $data) in /s/chopin/e/proj/AlphaZ/public_html/wiki/lib/plugins/syntaxhighlighter3/syntax/syntax.php on line 26

Normalize

Sometimes, the expressions in an alphabets program is not written in the normal form as it is defined, which makes the program hard to read and understand. Nomalize is used to normalize the expressions in a program to the defined normal form. This page shows how to use Normalize to normalize a program.

Usage

The usage for the command Normalize is

Normalize(Program program); 
The parameter program is the program you want to solve.

Normalization Rules

Normalize takes a program and applies a set of normalization rules on it. Some of the basic rules are shown below:

  1. $e.f \Rightarrow e, $ if $f(z)=z$
  2. $(e_{1} \oplus e_{2}).f \Rightarrow (e_{1}.f) \oplus (e_{2}.f)$
  3. $(D:e_{1})\oplus e_{2} \Rightarrow D:(e_{1} \oplus e_{2})$
  4. $e_{1}\oplus (D: e_{2}) \Rightarrow D:(e_{1} \oplus e_{2})$
  5. $(e. f_{1}). f_{2} \Rightarrow e . f$, where $f = f_{1} o f_{2}$
  6. $D_{1}:(D_{2}:e) \Rightarrow D:e$, where $D=D_{1} \cap D_{2}$
  7. $(D:e). f \Rightarrow D':e$, where $D' = f^{-1}(D)$

Example

Here we present an example and explain how the normalization rules work.

affine RestrictExpr {N | N > 1}
given
	int A {i | 0 <= i < 3N};
returns
	int C {i | 0 <= i < N};
	int D {i, j| 0 <= i < N && 0 <= j < N};
through
	C[i] = {i| 0 <= i < N}: ({i|0 <= i < 2N}:A[i]);
	D[i,j] = (i, j -> j, i)@({i,j|0 <= i < N}:A[i]);
.
In the above example, C simply copies the first N values of A, and D[i,j] = A[i]. Based on analysis, the normalization can be applied with the following code:
prog = ReadAlphabets("IdentityFunc.ab");
Normalize(prog);
The above code reads the program “IdentityFunc.ab” using command ReadAlphabets and applies normalization on the program. The following normalization rules can be applied to the program:

  • In the computation for C, expression A[i] is equivalent to A.(i -> i), f is an identity function, rule number one is satisfied. So A.(i -> i) => A.
  • In the computation for C, expression {i| 0 <= i < N}: ({i|0 <= i < 2N}:A[i]) matches rule number 6, where D1 = {i| 0 <= i < N}, D2={i|0 <= i < 2N}. D=D1 ∩ D1 ={i|0 <= i < N}, the expression is changed to {i|0 <= i < N}:A.
  • In the computation for D, expression (i, j -> j, i)@({|0 <= i < N}:A[i]) matches rule number 7, where D = {i,j |0 <= i < N }, f=(i, j -> j, i). D'=f^(-1)(D)={i,j|0 <= j < N}, the expression is changed to {i,j|0 <= j < N}:A[i,j];

The result for the above program after normalization is:

affine RestrictExpr {N | N > 1}
given
	int A {i | 0 <= i < 3N};
returns
	int C {i | 0 <= i < N};
	int D {i, j| 0 <= i < N && 0 <= j < N};
through
C = {i| 0 <= i < N}:A;
D = {i,j| 0 <= j < N} : A[i,j];

More Example

Here we give an example about Fibonacci:

affine Fib {N | N > 1}
given
returns
	int f;
using
	int fib {i | i >= 0 && -i >= -N};
through
	fib =case
	     {i |i <= 1}: 1;
	     {i |i >= 2}: (i -> i-1)@(case
					{i |i <= 1}: 1;
					{i |i >= 2}: (i -> i-1)@fib + (i -> i-2)@fib;
				     esac)
		          + (i -> i-2)@(case
					{i |i <= 1}: 1;
					{i |i >= 2}: (i -> i-1)@fib + (i -> i-2)@fib;
			               esac);
	     esac;
	f = (->N)@fib;
.
In this example, the variable fib in the definition is substituted by its definition, which makes the program looks complicated. We do normalization on the above program with the following commands:
prog = ReadAlphabets("Fib.ab");
Normalize(prog);
The result program after normalization is
affine Fib {N | N > 1}
given
returns
	int f;
using
	int fib {i | i >= 0 && -i >= -N};
through
fib = case
      {i|-i+1>= 0} : (i->)@1;
      {i|i-2== 0} : ((i->)@1 + (i->)@1);
      {i|i-3== 0} : (((i->i-2)@fib + (i->i-3)@fib) + (i->)@1);
      {i|i-4>= 0} : (((i->i-2)@fib + (i->i-3)@fib) + ((i->i-3)@fib + (i->i-4)@fib));
      esac;
f = (->N)@fib;
.
It is clear that the normalized program is much easier to read and understand.

normalize.txt · Last modified: 2017/11/14 07:50 by waruna