# AlphaZ

### Site Tools

schedule_code_generator_for_code_with_subsystem

This is an old revision of the document!

# Schedule Code Generator for SubSystem

Given an affine system with subsystems/useEquations, this page shows how to specify the targetmapping for the system and generate the code.

### Matrix Multiplication with subsystem

The following code is the alpha program for matrix matrix multiplication with dot-product subsystem.

affine matrix_product_SubSyst {N,K,M | N>0 && K>0 && M > 0}	// Product between a N*K matrix and a K*M matrix
input
float A {i,k | 0<=i<N && 0<=k<K};
float B {k,j | 0<=k<K && 0<=j<M};
output
float C {i,j | 0<=i<N && 0<=j<M};
let
use {iP,jP|0<=iP<N && 0<=jP<M} dot_product[K] ((pi,pj,k->pi,k)@A,(pi,pj,k->k,pj)@B) returns (C);
.

affine dot_product {N| N>0}	// Product between 2 vector of size N
input
float vect1 {i | 0<=i<N };
float vect2 {i | 0<=i<N };
output
float Res;
local
float temp {i | 0<=i<N};
let
temp[i] = case
{i|i==0}   : vect1[0] * vect2[0];
{i |0<i<N} : temp[i-1] + vect1[i]*vect2[i];
esac;
Res[] = temp[N-1];
.



The program contains two systems. The dot_product system takes two vectors as inputs and computes the doc product of these two vectors. The matrix_product_SubSyst computes matrix C=A*B, the (ip,jp)th element for the answer matrix C is computed by calling the dot product subsystem, and the (ip)th row of A, and (jp)th column of B is passed as input to the subsystem call.

### TargetMapping for the Matrix Multiplication Example

The schedule code generator treats every subsystem call (an instance of the subsystem) as an function call in C. In order to ensure the correctness of the code, each instance of the subsystem call is attached with three special statement by default. The three statements are memory allocation statement, value copy statement and memory free statement. The memory allocation statement allocates a temporary variable for the corresponding input, and the value copy statement copies the corresponding values into the temporary variable before it is passed into the function call, and the memory free statement frees the memory when the temproary is not useful.

In order for schedule code generator to generate the code, other than specify the schedule for the useEquation, a schedule has to be specified for each special statement of each input/ouput of the useEquation.

The following command set the SpaceTimeMap for the (n)th input/output of a useEuqation identified with lable: <sxh alphabets; gutter:false> setSpaceTimeMapForUseEquationOptimization(program, system, label, isInput, n, SpaceTimeMapForMalloc, SpaceTimeMapForValueCopy, SpaceTimeMapForMemoryFree); <\sxh> The parameter isInput sepcifies whether the SpaceTimeMap is specified for input or not, and the last three prarameter specifies the space time map for the three special statement attached to the current input/output. Those specification can also be specified separately with the following command: <sxh alphabets; gutter:false> setSpaceTimeMapForMemoryAllocation(program, system, label, isInput, n, SpaceTimeMap); setSpaceTimeMapForValueCopy(program, system, label, isInput, n, SpaceTimeMap); setSpaceTimeMapForMemoryFree(program, system, label, isInput, n, SpaceTimeMap); <\sxh>