tutorial_lud

Differences

This shows you the differences between two versions of the page.

 tutorial_lud [2017/04/19 13:26]waruna [Generating and Testing Alphabets] tutorial_lud [2019/04/05 09:02] (current)sanjay Both sides previous revision Previous revision 2019/04/05 09:02 sanjay 2018/06/19 15:45 sanjay 2018/06/19 15:45 sanjay 2018/06/19 15:41 sanjay 2018/06/19 15:40 sanjay 2017/04/19 14:09 external edit2017/04/19 13:26 waruna [Generating and Testing Alphabets] 2016/12/12 10:12 waruna Changed the latex notation to support new dokuwiki2015/10/06 16:12 sanjay [Step 3 : Equations] 2015/10/06 16:10 sanjay 2015/10/06 16:09 sanjay 2015/03/06 09:34 guillaume 2015/03/06 09:33 guillaume old revision restored (2015/03/02 12:09)2015/03/06 09:32 guillaume input/output/local keywords used2015/03/02 12:09 guillaume Modifying the latex code delete it => old version restored + temp note added2015/03/02 12:05 guillaume old revision restored (2014/05/30 11:49)2015/02/27 08:36 guillaume Corrected condition of second domain of L in equation + alpha program2014/05/30 11:49 external edit Next revision Previous revision 2019/04/05 09:02 sanjay 2018/06/19 15:45 sanjay 2018/06/19 15:45 sanjay 2018/06/19 15:41 sanjay 2018/06/19 15:40 sanjay 2017/04/19 14:09 external edit2017/04/19 13:26 waruna [Generating and Testing Alphabets] 2016/12/12 10:12 waruna Changed the latex notation to support new dokuwiki2015/10/06 16:12 sanjay [Step 3 : Equations] 2015/10/06 16:10 sanjay 2015/10/06 16:09 sanjay 2015/03/06 09:34 guillaume 2015/03/06 09:33 guillaume old revision restored (2015/03/02 12:09)2015/03/06 09:32 guillaume input/output/local keywords used2015/03/02 12:09 guillaume Modifying the latex code delete it => old version restored + temp note added2015/03/02 12:05 guillaume old revision restored (2014/05/30 11:49)2015/02/27 08:36 guillaume Corrected condition of second domain of L in equation + alpha program2014/05/30 11:49 external edit Line 1: Line 1: - In this tutorial, we write an Alphabets program, starting from a mathematical equation for LU decomposition.  Then we will generate code to execute the alphabets program, and test the generated code for correctness. + In this tutorial, we write an Alphabets (or Alpha, for now the two are synonymous) program, starting from a mathematical equation for LU decomposition.  Then we will generate code to execute the alpha program, and test the generated code for correctness. The equation for LU Decomposition, derived from first principles using simple algebra in {{:foundations.pdf|Foundations}} (pg.3), is as follows: The equation for LU Decomposition, derived from first principles using simple algebra in {{:foundations.pdf|Foundations}} (pg.3), is as follows: Line 18: Line 18: - [Temp note due to : in the last case of L, the condition is "1 < j <= i"] + =====Writing Alpha===== - + - =====Writing Alphabets===== + ====Step 1 : Affine System and Parameters ==== ====Step 1 : Affine System and Parameters ==== - Let's start from an empty alphabets file, with LUD as the name of the system, and a positive integer N as its parameter. + Let's start from an empty alpha file, with LUD as the name of the system, and a positive integer N as its parameter. - A system (Affine System) takes its name from system of affine recurrence equations, and represents a block of computation. An Alphabets program may contain multiple systems. + A system (Affine System) takes its name from system of affine recurrence equations, and represents a block of computation. An Alpha program may contain multiple systems. **Caveat:**  Remember the phrase, "It's not a bug, it's a feature"?  Well, in a tutorial, a feature is called a "learning opportunity." **Caveat:**  Remember the phrase, "It's not a bug, it's a feature"?  Well, in a tutorial, a feature is called a "learning opportunity." Parameters are runtime constants represented with some symbol in the code. In this example, parameter N will be used to define the size of the matrices, which is not known until runtime. Parameters are runtime constants represented with some symbol in the code. In this example, parameter N will be used to define the size of the matrices, which is not known until runtime. - + affine LUD {N|N>0} affine LUD {N|N>0} . . Line 34: Line 32: ====Step 2 : Variable Declarations==== ====Step 2 : Variable Declarations==== - In most cases, a computation uses some inputs and produces outputs. Such variables must be declared with a name, a data type, and a shape/size.  In Alphabets, the shape/size is represented with polyhedral domains. + In most cases, a computation uses some inputs and produces outputs. Such variables must be declared with a name, a data type, and a shape/size.  In Alpha, the shape/size is represented with polyhedral domains. For this example, the ''A'' matrix is given, and we are computing two triangular matrices ''L'' and ''U''. ''A'' is an NxN square matrix.  The declaration for ''A'' looks as follows: For this example, the ''A'' matrix is given, and we are computing two triangular matrices ''L'' and ''U''. ''A'' is an NxN square matrix.  The declaration for ''A'' looks as follows: - + float A {i,j|1<=(i,j)<=N}; //starting from 1 to be consistent with the equation in the notes float A {i,j|1<=(i,j)<=N}; //starting from 1 to be consistent with the equation in the notes Similarly, ''L'' is a lower triangular matrix of size N (with unit diagonals, implicit) and ''U'' is an upper triangular matrix of size N. The declarations should look like the following: Similarly, ''L'' is a lower triangular matrix of size N (with unit diagonals, implicit) and ''U'' is an upper triangular matrix of size N. The declarations should look like the following: - + //  The convention is that i is the vertical axis going down, and j is the horizontal axis //  The convention is that i is the vertical axis going down, and j is the horizontal axis float L {i,j|1 + affine LUD {N|N>0} affine LUD {N|N>0} input   float A {i,j|1<=(i,j)<=N}; input   float A {i,j|1<=(i,j)<=N}; Line 152: Line 150: ====Final Alphabets Program==== ====Final Alphabets Program==== Combine all of the above, and you will get the Alphabets program for LU decomposition. Don't forget the keyword ''let''/''through'' before equations the period at the end (since our example has no local variables).  Notice how we can mix and match Show and AShow syntax within the program, but each equation must obviously, be consistent. Combine all of the above, and you will get the Alphabets program for LU decomposition. Don't forget the keyword ''let''/''through'' before equations the period at the end (since our example has no local variables).  Notice how we can mix and match Show and AShow syntax within the program, but each equation must obviously, be consistent. - + affine LUD {N|N>0} affine LUD {N|N>0} input input Line 229: Line 227: ====OOPS WHAT HAPPENED==== ====OOPS WHAT HAPPENED==== You will see that when you execute the  code, **//it will produce an error//**.  You may be able to easily fix the error in your Alpha program and regenerate correctly executing C code, or you may want a bit of help.  In either case, we would like to know. Please email with the error message that is produced. You will see that when you execute the  code, **//it will produce an error//**.  You may be able to easily fix the error in your Alpha program and regenerate correctly executing C code, or you may want a bit of help.  In either case, we would like to know. Please email with the error message that is produced. +