
2024/03/28 23:01 1/3 SubSystem in Alpha

AlphaZ - https://www.cs.colostate.edu/AlphaZ/wiki/

SubSystem in Alpha

In this tutorial, we will present how to write structured alpha programs with subsystems, and we will
present the associated transformations.

Syntax of Use Equation (without extension domain)

Let us assume that we want to compute the mean of the values of a vector. It is feasible through the
following Alpha system:

affine mean {N | N>0}
input
 float A {k | 0<=k<N};
output
 float C {|};
local
 float temp {|};
let
 temp = reduce(+, [k], A[k]);
 C = temp / N;
.

However, let us assume that you already have another Alpha system which computes the sum of the
elements of a vector. It is possible to use this affine system (instead of rewriting its equation in the
main system), by calling it through a use equation:

affine sum {P| P>0} // Computes the sum of the elements of a vector of size
P
input
 float vect {i | 0<=i<P };
output
 float Res;
let
 Res = reduce(+, [k], vect[k]);
.

affine mean {N | N>0}
input
 float A {k | 0<=k<N};
output
 float C {|};
local
 float temp {|};
let
 use sum[N] (A) returns (temp); // Compute "temp" using the system

Last update: 2014/07/14
11:33 tutorial_subsystem https://www.cs.colostate.edu/AlphaZ/wiki/doku.php?id=tutorial_subsystem&rev=1405359226

https://www.cs.colostate.edu/AlphaZ/wiki/ Printed on 2024/03/28 23:01

"sum"
 C = temp / N;
.

The system “mean” is calling the system “sum” (which is called a subsystem). The subsystem is
called with the parameter “N” and the input “A”. After doing its computation, the result of “sum” will
be stored inside the local variable “temp”.

In general, the syntax of a use equation is the following:

use subsystem_name[list of parameters] (list of input expressions) returns
(list of output variables);

If your subsystem has several parameters/inputs/outputs, you have to provide them in the order in
which they are declared.

Extension domain

Let us assume that you have a system which computes a dot product of two vectors:

affine dotProduct {N | N>0}
input
 float v1 {k | 0<=k<N};
 float v2 {k | 0<=k<N};
output
 float Res {|};
let
 Res = reduce(+, [k], v1[k]*v2[k]);
.

If you want to compute a matrix vector multiplication using this affine system, you will need to
instanciate it once per rows of the matrix. Thus, you will need a parametrised number of call to the
“dotProduct” system.

It is possible to do it by using an extension domain:

affine dotProduct {N | N>0}
input
 float v1 {k | 0<=k<N};
 float v2 {k | 0<=k<N};
output
 float Res {|};
let
 Res = reduce(+, [k], v1[k]*v2[k]);
.

2024/03/28 23:01 3/3 SubSystem in Alpha

AlphaZ - https://www.cs.colostate.edu/AlphaZ/wiki/

affine matrixVectorProduct {R,S | (R,S)>0}
input
 float mat {i,j | 0<=i<R && 0<=j<S };
 float vect {j | 0<=j<S};
output
 float vectRes {i | 0<=i<R};
let
 use {k | 0<=k<R} dotProduct[R] ((k,j->k,j)@mat, (k,j->j)@vect) returns
(vectRes);
.

The set “{k | 0≤k<R}” before the subsystem name is called the extension domain. We are calling
the system “dotProduct” once, for each instance of “k” in the extension domain. We can use the
indexes of the extension domain to parametrize the parameters, inputs given to the subsystem and
the outputs computed by the subsystem:

the indexes can be used to specify the parameters (ex: “R+k”)1.
the first dimensions of the input expressions correspond to the dimensions of the extension2.
domain. For a given subsystem call kInst, the corresponding input sent is the one where the first
dimensions are set to “kInst” (ex: in the previous example, the third call to “dotProduct” will
obtain “(j→3,j)@mat” and “(j→j)@vect” as inputs).
the first dimensions of the output variables correspond to the dimensions of the extension3.
domain. All the results from every subsystem call are gathered inside common variables (ex:
“vectRes[3]” is the output of the third instance of “dotProduct”)

Apart from the compatibility of dimensions, the input expressions must be defined at least on the
points asked by the subsystem, and the output variable must be defined on a subset of the domain of
the subsystem output.

Transformations involving subsystems

InlineSubSystem: Inline the equations of a subsystem inside the affine system calling it. The use
equation of the main system is replaced by the equations of the subsystem (which are adapted), and
new local variables are added.

OutlineSubSystem: Given a list of equations of an affine systemm, outline them inside a new
system and replace these equation by a use equation. The current version (July 2014) do not allow to
specify an extension domain, however this is a work in progress.

From:
https://www.cs.colostate.edu/AlphaZ/wiki/ - AlphaZ

Permanent link:
https://www.cs.colostate.edu/AlphaZ/wiki/doku.php?id=tutorial_subsystem&rev=1405359226

Last update: 2014/07/14 11:33

https://www.cs.colostate.edu/AlphaZ/wiki/
https://www.cs.colostate.edu/AlphaZ/wiki/doku.php?id=tutorial_subsystem&rev=1405359226

	SubSystem in Alpha
	Syntax of Use Equation (without extension domain)
	Extension domain
	Transformations involving subsystems

