
Foundations I

Sanjay Rajopadhye

Contents

1 Introduction & Motivation 1
1.1 Why Equations? . 1
1.2 Equations as programs . 5

2 Recurrence Equations 9

1 Introduction & Motivation

These notes describe the mathematical foundations of some of the the important
concepts that we encounter in this class. In this �rst part we will motivate equa-
tional programming in the polyhedral model through a number of examples using
the Alphabets language. Then, we present the core of Alphabets as systems of re-
currence equations and give a taxonomy of such equations. We will use the AlphaZ
tool, inparticular the WriteC code generator to see how our equations serve as exe-
cutable, high level speci�cations of a very important class of computations (four of
the thirteen �Berkeley dwarfs�).

1.1 Why Equations?

A large class of algorithms, especially those of interest to this class, can be described
cleanly and concisely as mathematical equations. Here are a few examples.

Forward Substitution Given an n×n lower triangular matrix L (whose diagonal
elements are unity), and an m-vector, b, solve for the vector x in Lx = b.

Let us write down the de�nition of matrix-vector product:

1

bi =
n∑

j=1

Li,jxj

But since L is lower triangular, every row �ends� at the diagonal, so the summation
can be truncated at i, as follows:

bi =
i∑

j=1

Li,jxj

Now we take the �last term outside the summation� to get (after some obvious
simpli�cation):

bi =


i = 1 : xi

i > 1 : xi +
i−1∑
j=1

Li,jxj

Now we want to use this equation to �solve� for x. We do this simply by �taking
x to the left hand side (lhs),� yielding:

xi =


i = 1 : bi

i > 1 : bi −
i−1∑
j=1

Li,jxj
(1)

Is this a program to solve a lower triangular system of equations?

Back Substitution Given an n× n upper triangular matrix U and an m-vector,
b, solve for the vector x in x = b. We do the same sequence of reasoning:

bi =
n∑

j=1

Ui,jxj =
n∑

j=i

Ui,jxj =


i = n : Ui,ixi

i < n : Ui,ixi +
n∑

j=i+1

Ui,jxj

Hence,

xi =


i = n :

bi

Ui,i

i < n :
1

Ui,i

bi −
n∑

j=i+1

Ui,jxj

 (2)

Is this a program to solve an upper triangular system of equations? Only if U is
non-singular, i.e., its diagonal diagonal elements are non-zero.

2

LU Decomposition Given an n × n matrix, A, determine two matrices L and
U (L is lower triangular with unit diagonal, and U is upper triangular), such that
A = LU .

By de�nition,

Ai,j =
n∑

k=1

Li,kUk,j =
min(i,j)∑

k=1

Li,kUk,j =


i ≤ j :

i∑
k=1

Li,kUk,j

i > j :
j∑

k=1

Li,kUk,j

=



1 = i ≤ j : Ui,j

1 < i ≤ j : Ui,j +
i−1∑
k=1

Li,kUk,j

1 = j < i : Li,jUj,j

1 < j < i : Li,jUj,j +
j−1∑
k=1

Li,kUk,j

So taking L and U to the left hand side, we can �solve� for these unknowns.

Ui,j =


1 = i ≤ j : Ai,j

1 < i ≤ j : Ai,j −
i−1∑
k=1

Li,kUk,j
(3)

Li,j =


1 = j < i :

Ai,j

Uj,j

1 < j < i :
1

Uj,j

Ai,j −
j−1∑
k=1

Li,kUk,j

 (4)

Is this a program to factor a matrix into �L-U� factors? Are any additional
conditions necessary?

Unbounded Knapsack Dynamic Programming Given an n types of objects,
each one with a weight wi and pro�t pi, a knapsack of capacity c, and an unbounded
supply of each object type, choose an integer number xi of each type of object so as

to maximize the pro�t without exceeding the capacity, i.e., maximize
n∑

j=1

pixi subject

to the constraints
n∑

j=1

wixi ≤ c; xi ≥ 0.

3

Dynamic programming can be used to solve this problem as follows. Let us de�ne
a function F (j) that gives the maximum pro�t that can be obtained with capacity j.
Assume that some oracle tells us that the object type i contributes at least once to
this optimum. Now, let us leave aside this copy, and consider the way the remainder
of the knapsack has been �lled up. By the principle of optimality (subproblems of
the optimal solution must also be solved optimally), the pro�t achieved by this must
be F (j − wi). Hence, F (j) = pi + F (j − wi).

Unfortunately, we don't have such an oracle, so we don't know whether object
type i has contributed to F (j). Hence, we must consider all possible candidates.
This leads to the recurrence (we omit the �boundary conditions� for brevity).

F (j) =
n

max
i=1

[pi + F (j − wi)] (5)

Problem: Optimal String Parenthesization We are given a string/sequence
of characters, S0 . . . Sn, and we want to construct a binary tree with the Si's as leaves
(and hence n internal nodes). Each tree can be viewed as a parenthesization of the
string: the root splits the string into a pre�x S0 . . . Sk, and a su�x Sk+1 . . . Sn at a
point k, and each of the are recursively parenthesized. Consider a substring Si . . . Sj

parenthesized with the outermost parentheses at k. Let the cost of this outermost
set of parentheses be some function h(i, k, j) of the three integers i, j and k that
uniquely identify it. Thus the cost of a tree is the cost of these outer parentheses,
plus the sum of the costs of its subtrees. Develop an algorithm that determines the
the optimal, i.e., minimum cost parenthesization.

Line of Sight This is a (simpli�ed version of) a common problem that occurs
in geographical information systems (GIS). Say, you are given altitude data for a
rectangular region, i.e., Z[i, j] represents the altitude of point 〈i, j〉. Assume that
the scale of discretization is x. The sun is shining from the west, and subtends
an angle θ. We want to determine a Boolean value at each point that determines
whether or not it is in the sunlight, i.e., whether or not some point to its west (i.e.,
a point 〈i′, j〉 with the same j value, and i′ < i) occludes the sun. The following
equation speci�es the desired answer.

S[i, j] =


i = 1 : true

i > 1 :
i−1∧
i′=1

(
tan θ >

Z[i′, j]

(i− i′) ∗ x

)
(6)

4

1.2 Equations as programs

We have made the case that the mathematical reasoning needed to solve many prob-
lems leads to equations, and these equations are in some sense, a very high level
speci�cation of an algorithm. The next step would be to actually make these equa-
tions the program itself. It is therefore useful to �codify� these equations so that they
de�ne a programming language (or rather, a sublanguage, since not everything that
we want to program�such as �le I/O�can be written as equations). Before we do
this however, let us recap some of the advantages and issues that arise when viewing
equations as programs.

A primary advantage is that equations are amenable to formal resoning: we can
prove properties of equations, analyze the dependence properties, and as we shall see
later on, determine how to parallelize them, and how, starting from equations, to
generate code (which may be sequential or parallel) or even hardware descriptions
(VHDL) of parallel circuits that can be implemented on FPGA platforms. We now
illustrate some examples of such reasoning.

Program complexity Consider the example for foward substitution (Eqn. 1).
Notice that for an n×n matrix, L, there are n values of x that need to be determined
(for i = 1 . . . n, the subscripts on the lhs). Further, for any given i, the values that j
can take can be deduced from the bounds of the summation: j = 1 . . . (i− 1). Hence
the set of �index values� where we need to do an �elementary� computation (here a
multiply-accumulate) can be viewed as a triangle de�ned by {〈i, j〉 | 1 ≤ j < i ≤ n}.
There are about 1

2
n2 points in the triangle, so the complexity of our �equational

program� for forward substitution is Θ(n2).
Similarly, the complexity of the backward substitution (Eqn. 2) is also Θ(n2),

and that of LU decomposition (Eqns. 3-4) is Θ(n3) (more precisely, there are 1
3
n3

integer points in its �pyramid shaped domain.� Similarly, the complexity of Eqn. 6
is also Θ(n3) since there are 1

2
n3 integer points in its domain.

Program Simpli�cation Because equations are mathematical objects, we can use
mathematical reasoning about them and either manipulate, and/or transform them.
An impressive instance of such reasoning is when we are able to obtain signi�cant
savings in the computations: not just by constant factors, but in terms of asymptotic
complexity. Consider the equation

Xi =
n∑

j=1

n∑
k=1

Ai,k ∗Bk,j

5

At �rst glance, it seeems to have Θ(n3) complexity, since we need to compute n
answers, each with a double summation. However, if we simply reverse the two
summation indices, then note that the �rst term Ai,k is independent of index, j,
we can �pull it out� of the inner sumation (because multiplication distributes over
addition), giving us:

Xi =
n∑

k=1

n∑
j=1

Ai,k ∗Bk,j =
n∑

k=1

Ai,k ∗

 n∑
j=1

Bk,j


Now, if we let Yk be the result of the inner summation, we get

Yk =
n∑

j=1

Bk,j (7)

Xi =
n∑

k=1

Ai,k ∗ Yk (8)

This is a new, equivalent system of equations, each of which can be computed with
Θ(n2) complexity. We have thus reduced `the complexity of our program through
�equational reasoning,� simply by using a widely known algebraic property, namely
distributivity.

Another program simpli�cation technique is through the detection of scans (also

called pre�x computations). Consider the equation Yi =
i∑

j=1

Xj which describes the

computation of n answers, each one requiring the sum of Θ(n) values, leading to an
apparent complexity of Θ(n2). However, if we observe closely, each answer, Yi is just
the sum of all the values of X �before� it, i.e., from 1 to i inclusive. Hence, this is a
�pre�x� computation, and the following equation which has only linear complexity1

is equivalent.

Yi =

{
i = 1 : Xi

i > 1 : Yi−1 + Xi

These two techniques for equation simpli�cation are extremely powerful: we have
just seen simple (you might say trivial) examples. Before reading any further, please
take some time to see if you can simplify the line-of-sight computation above (Eqn. 6)
to quadratic complexity (if you try to do it now before looking at the solution below,
it will help you on one of the homework problems).

1Although we will not discuss this further here, such computations can also be very e�ectively
parallelized to run in linear time in a scaled manner (this is despite the apparently inherent sequen-
tiality in the computation speci�ed by the new equation)

6

Here's an outline of the solution. Consider the constraint that all the points to
the west of 〈i, j〉 subtend an angle whose tangent is less than tan θ. We �rst rewrite
it as ix tan θ > Z[i′, j] + i′x tan θ where we have moved all the terms depending on
i′ to the right of the inequality, and those depending on i to the left. Now, saying
that this inequality is true at all i′ in a certain range is equavalent to stating that
the maximum value of the right hand side (rhs) of the inequality is still smaller than
ix tan θ. the points to the west of 〈i, j〉is less than tan θ, i.e.,

S[i, j] =

 i = 1 : true

i > 1 : ix tan θ >
i−1

max
i′=1

(Z[i′, j] + i′ tan θ)
(9)

Now, let us introduce a new variable, W [i, j] = Z[i, j] + i tan θ. Then we notice

that the term inside the max above is W ′[i, j] =
i−1

max
i′=1

W [i′, j], which is simply the

scan (using maxas the operator) of each row of W (and shifted to the right by one,
since the upper bound is i−1, rather than i). This can be computed in Θ(n)time for
each row, i.e., a total complexity of Θ(n2). Using this, S[i, j] can also be computed
in Θ(n2) time.

PDEs (Heat Equation) The heat equation is an important partial di�erential
equation which describes the variation of temperature in a given region over time.
The following special case when the region is one-dimensional is described by the
following law.

∂u

∂t
= k

∂2u

∂x2
(10)

We shall discretize the x as well as the t dimensions, and view the physical
quantity U as being de�ned over a two dimensional index space, {i, t|0 ≤ i ≤ N ; 0 ≤
t ≤ T} with a discretization of ∆t and ∆x. Let us write the discretized version of the
heat equation, by �rst de�ning the discretized approximations of the two derivatives,
and substituting them into Eqn.(10). We have some choices in this, and we will how
they induce some subtle di�erences.

First, we could write
∂u

∂t

∣∣∣∣∣
(i,t)

≈ U [i, t]− U [i, t− 1]

∆t
using the �backward-looking�

approximation, or as
∂u

∂t

∣∣∣∣∣
(i,t)

≈ U [i, t + 1]− U [i, t]

∆t
. Similarly, the partial derivative

with respect to space could be written as either
∂u

∂x

∣∣∣∣∣
(i,t)

≈ U [i, t]− U [i− 1, t]

∆x
or as

7

∂u

∂x

∣∣∣∣∣
(i,t)

≈ U [i + 1, t]− U [i, t]

∆x
. The second spatial derivative is

∂2u

∂x2

∣∣∣∣∣
(i,t)

≈
∂u
∂x

∣∣∣
(i,t)

− ∂u
∂x

∣∣∣
(i−1,t)

∆x

(backward) or
∂2u

∂x2

∣∣∣∣∣
(i,t)

≈
∂u
∂x

∣∣∣
(i+1,t)

− ∂u
∂x

∣∣∣
(i,t)

∆x
(forward) with the caveat that the �rst

derivative used inside this formula should be the opposite of the choice of (forward
or backward) for the second derivative2. Thus we have two alternate formulas for
each of ∂2u

∂x2 (i, j) and
∂u
∂t

(i, j). With one choice, ∂2u
∂x2 (i, j) is as follows3:

∂2u

∂x2

∣∣∣∣∣
(i,t)

=
U [i+1,t]−U [i,t]

∆x
− U [i,t]−U [i−1,t]

∆x

∆x
=

1

∆x2
(U [i + 1, t]− 2U [i, t] + U [i− 1, t])

(11)
Plugging this and the forward looking approximation for ∂u

∂t

∣∣∣
(i,j)

into Eqn. 10 we

obtain, after a bit of rearrangement, and using ρ = k∆t
∆x2

U [i, t + 1] = ρU [i + 1, t]− (2ρ− 1)U [i, t] + ρU [i− 1, t] (12)

We �nd it convenient to replace the t + 1 and the t indices by, respectively, t and
t− 1, yielding

U [i, t] = ρU [i + 1, t− 1]− (2ρ− 1)U [i, t− 1] + ρU [i− 1, t− 1] (13)

In practice, the heat equation and many other partial di�erential equations are
the basis of numerical simulations: the initial conditions (i.e., the values of U [i, t] for
t = 0) and boundary conditions (values of U [i, t] at i = 0 and at i = N) are given,
and we desire to compute the �nal conditions (values of U [i, T] for i = 1 . . . N), and
possibly, the values of U [i, t] at some, or all, intermediate time steps.

Note that since the time index on the lhs of Eqn. 13 is t and on the rhs it is t−1,
we can directly use this equation to specify a program: the expression on the rhs is
viewed as the rule to determine the value on the lhs. E�ectively, we treat the rhs
as �known� values, and the lhs as the unknowns. In fact, this equation speci�es the
well known �explicit method� for solving PDEs.

On the other hand, let us see what happens if we combine our formula for the sec-
ond spatial partial derivative, with the backward looking approximation for the tem-

2This may seem counter-intuitive at �rst glance, but it ensures that the resolution of the dis-
cretization is maintained. Exercise: Show that if both the derivatives are backward looking, then
∂2u
∂x2

∣∣∣
(i,j)

will depend on u[i− 2, t] and if both are forward looking, it will depend on u[i + 2, t].
3The other choice is left as an exercise.

8

poral partial derivative, i.e., combining Eqn. 11 with
∂u

∂t

∣∣∣∣∣
(i,t)

≈ U [i, t]− U [i, t− 1]

∆t
.

We obtain, after the usual simpli�cation,

ρU [i + 1, t]− (2ρ + 1)U [i, t] + ρU [i− 1, t] = −U [i, t− 1] (14)

where we have again attempted to take the terms involving t on the lhs and those
involving t − 1 to the rhs.Since the lhs is not a single term but an expression, this
equation cannot be directly used as a program. But maybe, if we simply rewrote the
equation leaving only one term on the lhs, say as

U [i + 1, t] =
2ρ + 1

ρ
U [i, t]− U [i− 1, t]− 1

ρ
U [i, t− 1] (15)

could we now treat this as an equation. Do you see any problems? Hold on to these
and other questions. We will come back to them later on.

2 Recurrence Equations

In what follows, Z denotes the set of integers, and N the set of natural numbers.

De�nition 1 A Recurrence Equation de�ning a function (variable) X at all
points, z, in a domain, D, is an equation of the form

X[z] = DX : g(. . . X[f(z)] . . .) (16)

where

• z is an n-dimensional index variable.

• X is an �n-dimensional� data variable. There a couple of equivalent alter-
native ways to view X. It can be thought of as an n-dimensional array whose
values at all z ∈ DX are implicitly de�ned by the equation; it may also be seen
as a function of n integer arguments.

• f(z) is a dependency function (also called an index or access function),
f : Zn → Zn;

• the �. . . � indicate that g may have other arguments, each with the same syntax;

9

• g is a strict, single-valued function; it is often written implicitly as an ex-
pression involving operands of the form X[f(z)] combined with basic operators
and parentheses. Note that for analysis purposes, g is considered atomic (i.e.,
executing in a single step) unless it has a reduction (as de�ned later). If it
has a reduction it may or may not be considered atomic, depending on the
assumptions of the machine model used for the analysis.

• DX is a set of points in Zn and is called the domain of the equation. Domains
are often polyhedral index spaces, parameterized with one or more, say s size
parameters. The parameters are viewed as an s-dimensional vector p.

A variable may be de�ned by more than one equation. In this case, we use the syntax
shown below:

X[z] =


...

Di : gi(. . . X[f(z)] . . .)
...

(17)

Each line is called a case, and the domain of X is the union of the (disjoint) domains
of all the cases, DX =

⋃
i Di.

De�nition 2 A recurrence equation (16) as de�ned above, is called an A�ne Re-

currence Equation (are) if every dependence function is of the form, f(z) =
Az +Bp+a, where A (respectively B) is a constant n×n (respectively, n× l) matrix
and a is a constant n-vector. It is said to be a Uniform Recurrence Equation

(ure) if it is of the form, f(z) = z + a, where a is a constant n-dimensional vector,
called the dependence vector. ures are a proper subset of ares, where A is the
identity matrix and B = 0.

De�nition 3 A system of recurrence equations (sre) is a set of m such equations,
de�ning the data variables X1 . . . Xm. Each variable, Xi is of dimension ni, and
since the equations may now be mutually recursive, the dependence functions f must
now have the appropriate type.

Problem Think of the above de�nitions of recurrence equations as an informal
syntax of an equational �programming� language. Before reading any further, please
try to describe some of the examples of Section 1 as sres. Explain what di�culties
you encounter.

10

Reductions

The key di�culty you must have encountered is that we have no syntax for the reduc-
tion operations: associative and commutative operators like addition, multiplication,
max, etc., applied to a collection of values.

We will now introduce a simple, yet powerful syntax for this. We simply allow
the function g to have the form, reduce(op, f ′, expr). Here,

• op is an associative and commutative operator;

• expr is an expression (it is most convenient to assume that the expression is
just a new variable, Y , and to assume that there is an equation Y = expr

de�ned over an appropriate domain DY);

• f ′ is a many-to-one mapping from indices to indices, usually it maps Zn to
Zn−k (where the expr is n-dimensional).

Consider a reduction equation as follows.

X(z) = reduce(op, f ′, Y)

Its semantics can be explained as follows. X is de�ned over a domain DX which
is the image of DY by the function f ′ (this implies DY is n−k-dimensional). Because
f ′ is many-to-one, each z ∈ DX is the image of many points z′ ∈ DY . The reduce
expression states that the value of X at any point z is obtained by applying op to
the values of Y at all the z′ that are mapped by f ′ to z (this is a mouthful; please
read each word carefully to make sure you understand what this says).

With this explanation, we can now write an sre for the forward substitution
example:

x[i] =

{
i = 1 : b[i]
i > 1 : b[i]− reduce(+, (i, j → i), T [i, j])

(18)

T [i, j] = {i, j | 1 ≤ j < i ≤ n} : Li,jxj (19)

Taxonomy of Recurrence Equations

As we have seen above, recurrence equations may be classi�ed along many aspects:

• single or system;

11

• class of dependence functions: arbitrary, a�ne or uniform;

• parameterized domains or single domain;

• class of domains over which they are de�ned.

12

