
Computer Science
Technical Report

Canonic Multi-Projection: Memory Allocation
for Distributed Memory Parallelization

Tomofumi Yuki and Sanjay Rajopadhye

September 20, 2011

Colorado State University Technical Report CS11-106

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu



1

Canonic Multi-Projection: Memory Allocation
for Distributed Memory Parallelization

Tomofumi Yuki and Sanjay Rajopadhye

Abstract—The Polyhedral model is now the accepted
technology for automatic parallelization of affine control
loop programs. It has been successful in automatically
generating tiled shared memory parallel programs for
shared memory platforms (plus vectorization). We address
the challenges arising when we move toward distributed
memory parallelization, based on wavefront execution of
parameterized tiles.

Contrary to the shared memory case, the memory
allocation of the sequential program must be reconsidered
for distributed memory parallelization. Most polyhedral
parallelizers for shared memory architecture bypass this
problem by retaining the memory allocation of the original
program. The memory problem is critical in distributed
memory parallelization, since each processor must be allo-
cated its own memory, and retaining the original memory
allocation is no longer an option.

For polyhedral programs with uniform dependences, we
present a memory allocation scheme that enables efficient
communication with minimal storage use and access over-
head. The key ideas in our memory allocation are (i)
using multiple storage for values produced by a statement,
and (ii) redundantly storing the “halo” regions of tiles to
homogenize the memory accesses.

I. INTRODUCTION

In the recent years, we have seen multi-core processors
becoming more and more main stream, leading to active
research in many areas related to parallel computing.
One of the successes in automatic parallelization us-
ing the polyhedral model is automatic generation of
shared memory parallel programs. PLuTo [1] is a now
well-known automatic parallelizer using polyhedral tech-
niques that parallelizes sequential C programs for shared
memory using OpenMP. PLuTo uses tiling [2] combined
with wave-front parallel execution of the tiles to achieve
efficient parallelization.

PLuTo requires the tile sizes to be fixed at code
generation time, but recent work by Hartano et al. [3],
[4], and by Kim and Rajopadhye [5] presented new
algorithms for generation of shared memory code with
parameterized tile sizes. We may say that shared memory
code generation for polyhedral programs is a largely
solved problem, although many issues about the choice
of good transformations for various target architectures
remain open.

However, a large number of scientists today still use
distributed memory parallelization of some form, MPI

being the most commonly used programming model.
It is unclear how far shared memory architecture can
scale, and on-chip manycore machines are evolving
towards a distributed memory architecture. Therefore,
developing methods for distributed memory architecture
is an important next step.

One of the main challenges in distributed memory
parallelization beyond shared memory is memory alloca-
tion. Since the memory is now split among multiple pro-
cessors, the original memory allocation in the sequential
program can no longer be used. Furthermore, additional
memory for buffered and aggregated communication
is essential for performance reasons. Finding memory
allocations that achieve efficient communication, storage,
and access of data is an important challenge.

This challenge has been partially addressed for poly-
hedral programs with fixed sized tiling [6] (or no
tiling [7]). However, these techniques do not carry over
to parameterized tiles, since programs after tiling with
parameterized tile sizes no longer fit the polyhedral
model. Tiling based parallelization is known to be ef-
ficient, and there are a number of important reasons for
generating parameterized tiled code [8]. In distributed
memory architectures, tile sizes have close relations to
load balancing and communication frequency, further
emphasizing its importance.

Previously developed memory allocation strategies are
not suitable for distributed memory due to correctness
and/or performance reasons. Memory allocations for
polyhedral representation of programs [9], [10], [11],
[12] are not applicable for parameterized tiles. Schedule
independent memory allocation by Strout et al. [13] can
provide legal memory allocations for tiled programs with
parametric tile sizes. However, when the memory allo-
cations are not along canonic axis of the iteration space,
memory accesses require modulo operations involving
the tile sizes.

For example, consider tiling Smith-Waterman, a se-
quence alignment algorithm as shown in Figure 1. We
repeatedly use Smith-Waterman as examples throughout
this paper, mainly due to its relatively simple dependen-
cies that nevertheless sufficient to illustrate the intuition
of our approach. Moreover, Smith-Waterman is both
an interesting and important target for parallelization
and is a topic of active research in high performance



2

for (i=0; i<=N; i++)
for (j=0; j<=M; j++)

H[i][j] = max(
H[i-1][j-1] + costA(i,j),
H[i][j-1] + costB(i,j),
H[i-1][j] + costC(i,j));

Fig. 1: Smith-Waterman is a dynamic programming
algorithm updating table H using its three neighbors,
and cost associated by taking different paths.

computing. For instance, huge sequences, such as the
entire human genome [14], can benefit from distributed
memory parallelization.

For the set of dependencies in Smith-Waterman, an
efficient memory allocation that do not preclude tiling
would be the diagonal projection shown in Figure 2.
Each processor only needs memory for a tile, which is
much smaller than the memory requirement for sequen-
tial execution of the same program. Thus the memory
allocated for each processor is proportional to the tile
sizes using this memory allocation.

However, when a processor reuses the memory allo-
cated across tiles, along with the values stored, modulos
by tile sizes are required when accessing memory. As
seen in Figure 2, projections from each tile do not
completely overlap with each other. The overlapping
region must be mapped to the same physical location to
preserve legality, while its position with respect to other
points in its tile are different (one is the left-most 4 and
the other is the right-most), and thus requiring modulo
operations.

Because modulo operations are very expensive, and
cannot be optimized when the divisor is not known at
compile time, this memory allocation suffers from high
performance penalty. For Smith-Waterman in the exam-
ple, we observed that that using schedule independent
memory allocation incurred a performance hit, by factor
of about 8, in sequential execution. Moreover, at lower-
left corner of the tiles, a tile requires values from 3 other
tiles, further complicating communication of data across
processors. Thus, there is a strong need for memory
allocations that avoid these challenges.

In this paper, we make a first step towards distributed
memory code generation in the polyhedral model with
parameterized tile sizes. We address the challenge of
memory allocation when dependencies on computed val-
ues (those that are not inputs to the polyhedral section)
to be uniform. A number of dense linear algebra kernels
and stencil computations fit this restriction, and many
affine dependencies can be transformed as a sequence
of uniform dependencies.

The key ideas presented in this paper are:
• Multiple allocations for a single statement

• Canonic allocations along the axes
• Redundant allocation for tile boundaries (“halo”

regions)
These ideas combined achieves simplified communi-
cation across processors and homogenized accesses to
memory.

The rest of the paper is organized as follows. We dis-
cuss related work in Section II, and introduce necessary
background an notations in Section III. We illustrate our
memory allocation strategy in Section IV, and describe
an implementation of the technique in Section V. We
further extend the proposed memory allocation for effi-
cient distributed memory parallelization in Section VI.
We evaluate the overhead of our memory allocation in
comparison with other memory allocation schemes in
Section VII, and conclude by discussing a number of
future directions we seek to pursue in Section VIII.

II. RELATED WORK

Amarasinghe and Lam [7] presented one of the earliest
approaches for generating MPI style code from polyhe-
dral representations without tiling. Claßen and Griebl [6]
later presented their approach for fix sized tiles.

The important distinction between these work and ours
is that we target distributed memory code with param-
eterized tiling. Parameterized tiling cannot be expressed
affine transformations, complicating analyses and code
generation.

In this paper, our focus is in memory allocation, where
most previous approaches in the polyhedral model are
no longer applicable due to the non-affine nature of the
parameterization of tile sizes [9], [10], [11], [12].

III. BACKGROUND

In this section we introduce polyhedral background
used in the paper. The polyhedral model builds on a
dependence analysis technique called the exact array
data-flow analysis [15]. For a restricted class of pro-
grams, known as Static Control Parts (SCoPs), precise
dependence analysis can be performed. SCoPs are loop
nests with loop bounds and array accesses expressed
as affine functions of the surrounding loop indices and
program parameters.

Array data-flow analysis answers the question, which
instance of which statement produced the value used
by a given instance of a statement. After this analysis,
programs can be viewed in polyhedral representation,
where each statement is associated with its domain;
the set of points where the statement is executed; and
dependencies1 between statements expressed as affine
functions.

1In our notation a dependence is from consumer to the producer of
values.



3

Dependencies
[ 0,-1],[-1,-1],[-1, 0]

P1

P1

P2

P2

(a) Values used by other tiles are high-
lighted.

P1

P1

P2

P2

Possible
Allocation

(b) Possible memory allocation that
retains all necessary values after se-
quential execution of each tile.

P1

P1

P2

P2

j

i

(c) Highlighted regions are values pro-
duced and used across the tiles allo-
cated to the same processor.

Fig. 2: Memory allocation for tiled Smith-Waterman. Circles show a possible processor allocation. Top row and
rightmost column are the values used by other tiles. Schedule independent memory allocation [13] would give a
memory allocation as shown in (b) for this program. The memory allocated for the oblique projection should be
shared across tiles for a same processor to reduce memory usage. However, as illustrated in (c), the view of the
same memory is different (shifted) across tiles. Use of moudulo operations by tile width and height to avoid this
issue results in high overhead with parametric tile sizes.

a) Domains and Functions: Polyhedral domain is
a finite union of integer polyhedra, where an integer
polyhedron is the set of points that satisfy a finite number
of linear or affine inequality constraints. The linear/affine
constraints involve the surrounding loop indices and
program parameters.

Affine functions are mapping of set of points to
another set of points, where the destination is expressed
as affine expressions of the source. Given a list of indices
z, the source points, an affine function is denoted as
(z → Az + b) where A is a constant matrix and b is a
constant vector.

Uniform function is a special case when A is the
identity matrix. When a function is uniform, we refer to
the vector b as the dependence vector, which is sufficient
to describe uniform dependencies.

b) Dependence Level: For uniform dependencies,
we refer to the first (outermost) dimension where the
corresponding element of the dependence vector is non-
zero, as the level of the dependence.

c) Lexicographic Order: In this paper, we assume
such scheduling has been performed as a pre-processing,
and use lexicographic order as the scanning order of
polyhedra. Thus the lexicographical ordering between
the set of points in the domain directly corresponds
to the execution order. Symbols ≺ and � are used to
denote lexicographical precedence, strict and non-strict,
respectively, for two sets of points.

d) Lifetime of Values: Lifetime of a computed
value is defined as the distance between the time (i.e.,
iteration) instant when a value is produced and that of
its last use. Since the lexicographic ordering involves
multiple dimensions, the distance is also expressed as a

multi-dimensional vector.
Similarly, we refer to the distance between the pro-

ducer and the consumer of a dependence as lifetime
with respect to a dependence. The lifetime imposed by a
uniform dependence with dependence vector b, is simply
−b.

e) Canonic Projection: Canonic projections, are
projections along one of the canonical axes in the
domain. We denote canonic projections along the d-th
dimension as pd.

f) Pseudoprojective Mapping: Pseudoprojection is
an extension to affine mapping that adds modulo factors
to each dimension. Modulo operations are performed by
the given modulo factors to each dimension of the result
of the image by an affine mapping. For an affine function
from Zn to Zm, the modulo factors are expressed as a
vector of length m. Our convention is that no modulo
operations are performed for dimensions with modulo
factor 0.

In prior work on memory allocations for polyhedral
model, an extension to affine functions, pseudoprojec-
tions were used to express memory allocations [10],
[12]. Accesses to alternating locations are expressed as
modulo operations and as long as the modulo factor is
a small compile-time constant, the overhead is small.

g) Other Notations: We use the following two
vectors to simplify our presentation in the paper. ud is a
vector where every component is 0 except for the d-th
element that has the value of 1. vd is a vector where
every component is 0 from 0 to d− 1-th element, and 1
from d to the last element. For n = 3, u1 = [0, 1, 0] and
v1 = [0, 1, 1].



4

IV. CANONIC MULTI-PROJECTION

In this section, we illustrate one of our key contribu-
tions, that allows us to avoid the use of modulos with
runtime parameters in access functions, in the context
of sequential parameterized tiled code with uniform
dependencies. We start by introducing components that
together form our memory allocation scheme.

We assume that the program is after affine transforma-
tions to make tiling legal. One of such transformations
and scheduling strategies are used in PLuTo [1]. After
such transformation, all dependence vectors in the pro-
gram are in the non-positive orthant (0 or negative in all
dimensions).

Our memory allocation targets a tile of tiled programs,
where tiles are executed with wave-front parallelization,
and the execution order within a tile is sequential.

A. Canonic Projection

We have two main motivations for using canonic
projections as memory mapping. One is that the image of
a rectilinear tile by a canonic projection of tiles is one of
its facets, and for uniform dependencies, values produced
at tile facets are the values used by neighboring tiles, and
thus are what need to be transfered across processors.

The other is to avoid modulos by runtime parameters
in the access functions. Since tiling hyperplanes are
also along the canonic axes, neighboring tiles along an
axis can share the same array without using modulo
operations, avoiding the problem of oblique projections
illustrated in Figure 2.

Any canonic projection pd preserves a value written
into a location for exactly one iteration of the d-th dimen-
sion. Thus, a canonic projection can preserve the values
produced to satisfy dependencies with unit dependence
vectors along the projected dimension. Extending its
lifetime to more than one iteration of the d-th dimension
can be trivially achieved by using pseudoprojections and
adding a modulo factor for the d-th dimension. With
pseudoprojections, dependencies with any multiple of
unit dependence vectors along the projected dimension
can be satisfied.

B. Multi-Projection

Multi-projection is when the values produced by a
statement is stored in multiple arrays with different
projections. Because any single canonic projection is
not sufficient to preserve the values produced for all
dependencies, we use multiple projections. For example,
if a point (i, j) in two dimensional space depends on
(i− 1, j) and (i, j − 1), these two dependencies cannot
be satisfied by memory allocation projecting along the i
axis or the j axis.

We could satisfy the dependencies by using modulo
factors, two for the above example, but we still need
the horizontal tile face to be stored separately leading to
increased memory usage. Thus, we use multiple canonic
projections to satisfy all the dependencies and preserve
the tile facets.

C. Which Projection Satisfies Which Dependence

With multi-projections, we must answer the question,
which projection satisfies which dependence. In other
words, different dependencies to the same statement need
to access different arrays in the generated code, and
which array to access must be statically determined for
each dependence.

We answer this question by a simple mapping using
the dependence level; a dependence with dependence
level d is satisfied by pd. The set of dependencies where
the first (outermost) non-zero entry is the d-th dimension
is satisfied by the canonic projection along the d-th
dimension.

D. Delayed Write

However, canonic projections by itself is only suffi-
cient for dependencies along the axes. We propose delay-
ing the writes to satisfy other uniform dependencies. The
delay is also multi-dimensional in our context, expressed
as a vector of length n, the number of dimensions. We
leave the discussion of how a delay is implemented out
of this section, and present an efficient way to implement
delays in Section V.

For example, a dependence (i, j → i − 1, j − 1)
cannot be satisfied because the projection pi is respon-
sible for this dependence, which has a mapping of the
form (i, j → j), and the value computed at (i, j − 1)
overwrites the value computed at (i − 1, j − 1) before
the value at (i, j) is computed. One way to preserve the
value is to use modulo by two for pi, but it doubles the
memory usage. This problem can be avoided without
increasing memory usage by delaying the write by one
time step of the j dimension.

The required delay δd for a projection along d-th
dimension is computed by analyzing the lifetime of
dependencies to be satisfied by pd. Given the lifetime
with respect to a dependence satisfied by pd, λ, the
required delay for this dependence is λ − λd (i.e., d-th
element is set to 0). We take the max of such required
delays for all dependencies to be satisfied by pd to find
δd.

We use modulo factors to preserve the value, instead
of delaying, for the d-th dimension, and thus the d-th
element of the lifetime is ignored, but the required delay
is identical to the lifetime otherwise. We use modulo
factors for the d-th dimension, because delaying the write



5

for some iteration of the d-th dimension may violate
legality.

E. Canonic Multi-Projection

We have introduced our motivations and approach in
an incremental fashion. All of the above combined forms
our proposed memory allocation scheme, named canonic
multi-projection, summarized below.

• Given a statement with the set of dependencies that
depends on it, Y , we first construct the sets Yd

for each dimension in the domain of the statement.
Yd consists of dependencies in Y with dependence
level d.

• For each dimension d, we allocate memory using
pd, the canonic projection along the d-th dimension.
We first find the required modulo factor md by
taking the max of the d-th element of the require
lifetimes for each dependence. Then the memory
mapping function is of the form I mod (mdu

d),
where I is the identity function.

• Then for each mapping, we find the delay factor δd,
computed as the max of the lifetimes with respect
to the dependencies in Yd, and the d-th element set
to 0.

When the modulo factor md is 1, the d-th dimension
may be dropped from the right hand side of the mapping
function, since modulo by 1 always returns 0.

1) Example: Given a statement
with the set of dependencies, Y =
{[1, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1], [0, 0, 1], [0, 0, 2]}
we first create three sets of dependencies:

Y0 = {[1, 0, 0], [1, 0, 1], [1, 1, 1]}
Y1 = {[0, 1, 1]}
Y2 = {[0, 0, 1], [0, 0, 2]}

For each projection pd, we find the mod factors md:

m0 = 1,m1 = 1,m2 = 2

The resulting mapping functions are:

p0 = (i, j, k → j, k)
p1 = (i, j, k → i, k)
p2 = (i, j, k → i, j) mod [0, 0, 2]

Finally, the delay lengths required for each mapping
are:

δ0 = [0, 1, 1]; δ1 = [0, 0, 1]; δ2 = [0, 0, 0]

Fig. 3: Canonic Multi-Projection for Smith-Waterman
dependencies. Computed values are stored in to ver-
tically projected array as well as the other projected
horizontally.

F. Example : Smith-Waterman

We illustrate the memory allocation for our running
example, Smith-Waterman, in Figure 3. The horizontal
and diagonal dependencies are satisfied using the hori-
zontal projection, and the vertical dependence is satisfied
using the vertical projection. The write into the vertical
array, corresponding to pi, is delayed by one iteration of
the j dimension.

G. Correctness of the Allocation

Let us first assume that the dependence vector of all
dependencies consists of either 0 or −1. We later show
how arbitrary uniform dependence vectors are handled.

The set of all possible dependencies that must be
satisfied by pd, denoted as Sd, consists of vectors with
no non-zero entry in its dependence vectors before the
d-th dimension, due to how dependencies are mapped
to projections described above. In practice, the set of
dependencies to a statement may be a subset of Sd.

Given an iteration point, z = (z1, z2, ..., zn), in n
dimensional space, Zn, its value stored with pd is live
from z to z′ = z + ud; until another point along d is
visited. When the writes into a projection is delayed by
δ, the duration that the values are preserved is shifted
to start from z + δ and end at z′ + δ. There are two
conditions that a δ must satisfy :
• z+ δ ≺ z1; z1 is the first use of value produced by
z

• z∗ � z′ + δ; z∗ is the last use of value produced
by z

The first condition is to guarantee that the values is
“ready” before its first use, and the second condition is to
guarantee is that the value is not over-written before its
last use. It is not strict precedence in this case assuming
all reads happen before any write. We show that there



6

always exists a δ such that the above conditions are
satisfied.

Given the set Sd, the first use z1 is z plus the
lexical minimum of the lifetimes with respect to each
dependence in Sd, and likewise, z∗ is z plus the lexical
maximum of the lifetimes. Lifetimes with respect to
the dependencies in Sd all have the following form:

ud +
n−1∑

k=d+1

akuk where values ak may be either 0 or

1. Then the lexical minimum is when a is all 0, which
is ud, and maximum is when a is all 1, which is vd.
Thus, z1 = z + ud and z∗ = z + vd.

There is a trivial solution for δ to satisfy the second
condition: δ = z∗ − z′ = z + vd − (z + ud) = vd+1

When δ = vd+1, it can be shown that the first
condition is also met by re-writing the first condition;
z + δ ≺ z + ud ⇒ δ ≺ ud. vd+1 ≺ ud by the
lexicographical ordering.

1) Correctness for Arbitrary Uniform Dependence:
In the above proof, we restricted the components of the
dependence vectors to be either 0 or −1. The strategy
can be extended to any uniform dependencies by adding
a modulo factors along the projected axes. The set of
dependencies Sd is extended to contain all possible

dependencies of the form: mdud+
n−1∑

k=d+1

akmkuk where

m is the mod factor.

H. Access Function

The access functions to the allocated arrays require
two slight modifications in the generated code. For a
projection pd, the final access function is composition of
three functions: pd ◦ (z → z + o) ◦ (z → z − ti), where
o is a vector that aligns the domain of the statement to
the origin, and ti is the tile origins; the lexicographically
minimum point of a tile. Compositions with these two
functions ensure that the tile origins are mapped to the
origin, so that (i) no point in a tile is mapped to negative
indices, and (ii) no memory is wasted since C arrays are
indexed starting from 0.

V. IMPLEMENTING DELAYED WRITES

In the previous section, we introduced a new memory
allocation scheme that only uses canonic projections. It
required writes to the memory to be delayed by some
number of iterations. One way of achieving such delayed
writes would be using extra memory to operate as shift
registers, but it would increase memory usage. In this
section, we show how the delaying of writes can be
achieved without any extra memory.

A. Propagating Values from Inner Projections

The key intuition is in reusing the values stored by
other projections. We claim that the value to be written
to pd at z+δ is already written to, and still live at another
projection along d+ 1-th dimension. Thus, the value to
be written to pd after some delay δ becomes a copy from
pd+1.

B. Composition of Delays

When both pd and pd+1 are delayed, the delay for
pd+1 is also reflected to pd through the sequence of copy-
ing. Thus, at each dimension d, the write is delayed only
for the d+1-th dimension of the required delay lengths.
Delaying of the remaining dimensions are reflected by
delaying the write to corresponding inner projections.

This can potentially lead to delaying pd for longer than
necessary in the d + 1-th dimension. However, because
of lexicographical ordering, additional delays in inner
dimensions do not violate the legality of the allocation.
Similarly, modulo factor for pd must be greater than or
equal to the d-th element of the delay lengths of pd−1.

We present the refined algorithm to find the delay
lengths and modulo factors for each dimension, specific
to this implementation in Algorithm 1. Algorithms pre-
viously described in Section IV is legal if the delay is
implemented by other means that do not depend on pd.

The algorithm takes the delay lengths of d− 1-th di-
mension as input, and thus executed from the outermost
to innermost in sequence. In addition to the delay lengths
required by the dependencies to be satisfied by pd, it also
takes into account the delay lengths for compositional
delays.

Input:
Id : set of dependencies to be satisfied by pd

Λd : set of lifetimes with respect to each dependencies in Id
δd−1 : delay of the previous dimension (0 vector when d = 0)
Output:
δd : delay length for pd

md : modulo factor for pd

begin
δd = δd−1

md = δd−1
d

foreach λ ∈ Λd do
δd = max(λ, δd)
md = max(md, λd)

end
// No delay in the d-th dimension
δd
d = 0

end
Algorithm 1: Find delay lengths and modulo factor for
pd

C. Copy Statements

For a statement with n dimensional domain, total
of n + 1 statements are generated. The first statement



7

f o r ( i = LBi ; i <= UBi ; i ++)
f o r ( j = LBj ; j <= UBj ; j ++)

f o r ( k = LBk ; k <= UBk ; k ++)
tmp = S1 ( i , j , k ) ; / / e v a l
Pi [ j −1][ k ] = P j [ i ] [ k ] ; / / w r i t e i
Pj [ i ] [ k−1] = Pk [ i ] [ j ] ; / / w r i t e j
Pk [ i ] [ j ] = tmp ; / / w r i t e k

Fig. 4: Implementation of delayed writes. LBx and UBx
denote the lower and upper bound of the respective
loops. Px is the array corresponding to px, with no
modulo factor.

evaluates the original statement and assigns the result
to a temporarily variable, say tmp. The subsequent
statements stores the appropriate value to projections
along each dimension.

When the delay lengths δd for a projection along d
is the zero vector, the value stored in tmp is directly
stored. Otherwise the value in memory corresponding to
the iteration point z − δd

d+1u
d+1 is copied from pd+1

to pd. Only the d+ 1-th element of the delay lengths
δd is respected due to composition of delays. These
statements are ordered from writes to the projections
along outermost dimensions to the inenr ones, so that
reads happen before writes.

D. Example

Figure 4 shows an example of how statements are
generated to achieve delays without extra memory. The
statement use all three projections without any modulo
factors, and the writes to pi are delayed by [0, 1, 1], and
the writes to pj are delayed by [0, 0, 1].

Since pk is not delayed, tmp is written to the array
Pk. pi is delayed by [0, 1, 1], but since only the d+1-
th dimension is delayed, the iteration z writes to z −
[0, 1, 0], projected by (i, j, k → j, k). The mapping can
be expressed as composition of two functions (i, j, k →
j, k)◦(i, j, k → i, j−1, k), (i, j, k → j−1, k). Similarly,
the read from pj is (i, j, k → i, k)◦(i, j, k → i, j−1, k),
(i, j, k → i, k).

Applying the same procedure as above to pj , delayed
by [0, 0, 1], gives (i, j, k → i, k − 1) as the write to pj

and (i, j, k → i, j) as the read from pk.
Figures 5a and 5b pictorially illustrates another ex-

ample with two dimensional iteration space with Smith-
Waterman.

E. Correctness of the Propagation

It can be guaranteed that the value to be written to pd

with some delay δ is still live in the projection for a inner
dimension, pd+1. Let us again restrict all the component
of the dependence vectors to be either 0 or −1 for

simplicity. The same generalization as in Section IV-G
is applicable.

Recall from Section IV-G that the values stored in pd

is preserved from z+ δd to z+ud +δd. For a projection
pd, with delay δd, the value produced at z must be
available at z + δd in pd+1. Thus, we must show that
the following conditions are satisfied for selected δs.
• z+δd+1 ≺ z+δd: The write to pd is after the value

produced at z is written to pd+1.
• z + δd � z + ud+1 + δd+1: The write to pd is

before the value produced at z stored in pd+1 is
over-written.

Given the restriction on the dependence vectors, δd

is bounded as follows: ud+1 � δd � vd+1. Take the
first condition: z + δd+1 ≺ z + δd and replace δd+1

with its upper bound and δd with its lower bound, and
remove z from both hands to yield: vd+2 ≺ ud+1 By
the definition of lexicographical ordering, we verify that
the first condition is satisfied for any possible δ.

Take the second condition: z+ δd � z+ud+1 + δd+1

subtract z+ud+1 from both hands to obtain: δd−ud+1 �
δd+1 Because δd always has 1 in the d+1-th component
and δd+1 always has 0 in the d + 1-th component, the
condition is satisfied iff: δd

x ≤ δd+1
x is met for all x

such that d+ 2 ≤ x < n. The above is satisfied when δ
is computed using Algorithm 1. When computing δd+1,
δd+1
d+1 is set to 0, and for inner dimensions x, δd+1

x is
at least δd

x, because it is initialized to δd
x and the only

operation performed is max.
1) Flushing of Delays: In order to maintain the atom-

icity of tiles, the delayed writes should complete within
the tile. For space reasons, we omit the detail of the
flushing, but it can be implemented as a simple post
processing of the loops in a tile.

VI. HALO REGIONS

In the previous sections, we described our memory
allocation for preserving tile faces and avoid modulo by
run-time parameters. Now we present additional tech-
niques to apply canonic multi-projection for distributed
memory parallelization. We show how canonic multi-
projection combined with the use of “halo regions”; the
set of points outside of, but used by, a tile; can simplify
communication in distributed memory. The key idea is
to include the halo regions when allocating memory for
canonic multi-projection.

A. Need for Homogenized Access

In Figure 6a, we illustrate the halo region of a tile in
Smith-Waterman. These shaded regions are values from
other tiles, and if these accesses were to be handled in
communication buffers, the diagonal dependence must
be special cased in three different ways at the boundaries.



8

j

i

(a) Compute and store the value into
pj . The write into pi does not take
place yet.

j

i

(b) At the next iteration point, copy
the value stored in the pj over to the
pi.

j

i

(c) Delayed writes take place in the
highlighted iteration points.

Fig. 5: Illustration of how delayed write is implemented with out extra memory.

This complicates the code generation, and also leads to
inefficient code because of conditionals in the innermost
loops. With polyhedral analysis, finding the domain to
special case can be done, but such approach cannot be
applied to parameterized tiled codes. We would like all
dependencies to access arrays in a homogenized manner
to avoid these issues.

B. Memory Allocation for Halo Regions

We homogenize the access by allocating extra memory
for storing the values corresponding to the data read
from halos. This is equivalent to allocating memory for
slightly larger tiles, by expanding each dimension of the
tiles.

How the tiles are expanded is different for each
canonic projection. For projection pd with δd, the tile is
expanded by δd. The expansion is in negative direction,
since all dependencies in a tilable program is non-
positive and therefore, halo regions are in the negative
direction. In addition, the memory access function is
shifted to the positive direction by the expansion factor
so that it is still aligned to the origin.

The expansion factor corresponds to the maximum
length of the dependence, including those for compo-
sitional delays2. This ensures that all accesses from
a tile have corresponding memory locations, allowing
homogenized access.

C. Values at the Halo Regions

However, we must ensure that the extra memory
allocated for the halo regions to have the “correct”
values, such that canonic multi-projection is still legal.
This is achieved by applying delayed writes, presented
in Sections IV and V, to values computed in previously
executed tiles. Because the extra memory is redundantly
allocated, the delayed writes must be performed for each
redundant copy.

2Recall that the δd is computed based on the maximum lifetime
based on dependencies to be satisfied by pd, and δd−1

Let us first assume that the values from previously
executed tiles are correctly transfered to the memory
allocated for a tile, when execution of a tile starts.
Although all required values are given to the current tile,
it is still not sufficient for the memory allocation to be
legal.

Consider the case for Smith-Waterman illustrated in
Figure 6. At the beginning of a tile, some of the values
to be read by the diagonal dependence are stored in
pj . Because the diagonal dependence is satisfied by pi,
values in pj must be copied for homogenized access to
be legal.

The correctness comes from the same proof in the
previous sections, with a slight modification to the length
of the values preserved. The values from other tiles are
preserved until the first write; lexical minimum among
the set of points mapped to the same location.

D. Simplified Communication
Maintaining the values of halo regions as well as other

points in a homogeneous fashion also contributes to sim-
plified communication. In the Smith-Waterman example,
the diagonal dependence causes a tile to depend on
two tiles from its neighboring column of tiles. Without
redundant storage, this requires communicating with two
tiles.

When a tile maintains values including the halo re-
gions, the value for diagonal dependence is available
in both tiles. Thus, only a single transfer is required
for communicating required values. Moreover, because
each canonic projection correspond to faces of tiles, the
program can always send all content in a projection
without requiring further analysis.

In Figure 6, notice that the delayed write at the lower-
right corner of a tile would copy the value computed
at the tile below into pi, which is eventually sent to
its horizontal neighbor and used to satisfy the diagonal
dependence.

a) Memory Usage: The memory allocation pre-
sented in this paper has similar memory usage to sched-
ule independent memory allocation by Strout et. al [13].



9

(a) Halo regions of Smith-Waterman

j

i

(b) At the first iteration of a tile,
the value in pj is copied to pi.

j

i

(c) In the beginning of the next
column, the diagonal dependence
use the copied value.

j

i

(d) Where copies corresponding
to delays are executed.

Fig. 6: Delayed write of the halo regions. The value of the halos are communicated to a tile from another tiles.
Treating those values exactly like computed values, and performing delayed writes gives correct values for the halo
regions.

It could use significantly more memory when compared
to other allocations optimizing for memory and pos-
sibly losing parallelism. For tiled programs (assuming
dependencies cross all tile boundaries), all facets3 of
th tiles must be preserved for execution of subsequent
tiles. Thus, the lower bound on required memory for
a tile is the sum of all facets. For rectilinear domain,
its facets can be obtained by projections along canonic
axes, exactly matching the memory allocated by canonic
multi-projection. There is a trivial optimization we use
to avoid excessive storage (e.g., storing all three faces of
matrix multiply), by making sure the allocated projection
is used.

VII. EVALUATION

The proposed memory allocation scheme introduces
a large number of copies in the code. We evaluate
the overhead through experiments using four polyhedral
kernels with different memory allocations implemented
in C with OpenMP.

A. Experimental Setup

We used two machines, a 8 core machine with two
Intel Xeon E5450 processors sharing 16GB of memory,
and a 8 core AMD Opetron in Cray XT6m with 32GB
of memory for our experiments. We used ICC 12.0.3 on
the Xeon, and CrayCC 7.3.3 on the Cray XT6m.

b) Kernels: In addition to Smith-Waterman, we
used three kernels from PolyBench 2.0 [16], matrix mul-
tiply (gemm), 1D Jacobi Stencil (jacobi-1d-imper),
and 2D Jacobi Stencil (jacobi-2d-imper) for exper-
imentation.

3We count the two facets that are parallel to each other as one, so
that a cube has three faces, to simplify our presentation.

c) PGAS-Style OpenMP: For canonic multi-
projection, we generated codes that mimics code for
distributed memory structure by allocating memory sepa-
rately for each processor. All local variables are accessed
with the first dimension of the access function being
the thread ID. This is similar to the Partitioned Global
Address Space, used in a number of recent parallel
programming languages.

We omit the detail of our code generator due to
space limitations. The main motivation for such code
is to ensure that the proposed allocation works in such
environment. Thus, the code only writes to memory
locations assigned to other threads only at the end of
each tile in a separate block of code for communication.

d) Comparison Targets: In addition to the canonic
multi-projection, we generate code with Universal Oc-
cupancy Vector (UOV) [13] based allocation, and other
commonly used allocation for the benchmark where ap-
plicable. For matrix multiply, commonly used allocation
matched UOV-based allocation. For other benchmarks, a
typical memory allocation is to use two copies of 1D, or
2D array depending on the benchmark, and use them
in turn. This is implemented using pseudo projective
allocation with modulo factor of 2.

For these allocations, we generate code that are tiled
and paralellized for shared memory using existing tech-
niques [4], [5]. Note that these memory allocations
are not suitable for distributed memory parallelization
(except for matrix multiply), unlike canonic multi-
projection.

e) PLuTo: The above two code generators are im-
plemented in a same framework developed in our group,
and thus it is more appropriate for comparing effect of
different memory allocations. We also provide data from
PLuTo [1] as an external point of reference. However,
pre-vectorization in PLuTo was disabled since our code
generator do not perform this optimization. Our goal is to
compare differences due to memory, and thus we would



10

Matrix Multiply Smith−Waterman Jacobi 1D Jacobi 2D

Normalized Execution Time with ICC
N

or
m

al
iz

ed
 E

xe
cu

tio
n 

T
im

e

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Canonic
Canonic−Imper
UOV
modulo
PLuTo

Matrix Multiply Smith−Waterman Jacobi 1D Jacobi 2D

Normalized Execution Time with Cray

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

0
1

2
3

4
5

6

Canonic
Canonic−Imper
UOV
modulo
PLuTo

Fig. 7: Sequential performance of benchmarks with different memory allocations. The execution times are
normalized to the best for each benchmark.

like to keep the generated codes to have similar level of
other optimizations.

f) Imperfect Nesting in Jacobi: For Jacobi stencils,
the versions in PolyBench are implemented with explicit
copies to avoid pointer swaps for modulo accesses. This
is due to the initial choice of memory allocation, and
the corresponding polyhedral representation is also in-
fluenced. Therefore, for our target of comparison (UOV-
based and modulo allocation), we use “cleaner” poly-
hedral representation coming from single assignment
versions of the program. For canonic multi-projection,
we experimented with both versions.

B. Experimental Results

Figure 7 shows sequential performance with different
memory allocations. We achieve reasonable performance
with matrix multiply and Smith-Waterman, but the per-
formance of Jacobi stencils are poor in some cases. In the
following, we discuss several observations of our result.

1) Performance Degradation in Jacobi Stencils:
Canonic multi-projection applied on polyhedral repre-
sentations extracted from the imperfectly nested versions
achieve similar level of performance as PLuTo. However,
we observed significant overhead compared to UOV-
based allocation. With profiling, we found that there
were significant difference in the number of instructions
being executed.

Our hypothesis is that the additional copy instructions
for canonic multi-projection are being significant. We
experimented with variations of the 2D Jacobi of Poly-
Bench, by adding additional floating point operations
to the kernel. Figure 8 illustrates the effect of adding
additional operations. The original kernel have 5 opera-
tions (4 adds, 1 multiply), and we show results up to 15
operations per iteration point.

For ICC, additional 10 operations are sufficient for
canonic multi-projection to reach comparable perfor-
mance with UOV-based allocation. With Cray, 10 opera-
tions were still not enough, but the relative performance

0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

Increasing Computation in 2D Jacobi

Number of additonal operators

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

ICC−canonic
ICC−UOV
Cray−canonic
Cray−UOV

Fig. 8: Effect of increasing the amount of computation
in 2D Stencil. The execution times are normalized to
the original program with UOV-based allocation on each
machine.

is improving as more operations are introduced. We did
confirm that making the kernel much more compute
intensive eventually makes the performance comparable
on Cray as well.

This result suggests that if the application is compute
intensive, the overhead of our memory allocation may be
small enough. We continue to seek for optimizing our
approach to increase the range of applicable kernels.

2) Scaling: Figure 9 summarizes the parallel scaling
of each implementation by reporting the parallel effi-
ciency with 8 cores. Overall, our approach have similar
parallel efficiency.

3) Performance Variation Across Compilers: In dif-
ferent occasions, we have observed significant perfor-
mance difference across compilers. For instance, the
results for matrix multiply varied significantly even
though the code generated by our code generator and by
PLuTo were quite similar. We speculate that dynamically
allocating memory with runtime parameters makes it
more difficult for back-end compilers to perform low-
level optimizations. However, we do not have definitive



11

Matrix Multiply Smith−Waterman Jacobi 1D Jacobi 2D

Scaling with ICC
P

ar
al

le
l E

ffi
ci

en
cy

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Canonic Canonic (Imper) UOV mod 2 PLuTo

Matrix Multiply Smith−Waterman Jacobi 1D Jacobi 2D

Scaling with CrayCC

P
ar

al
le

l E
ffi

ci
en

cy

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Canonic Canonic (Imper) UOV mod 2 PLuTo

Fig. 9: Parallel efficiency with 8 cores with respect to the running time with 1 core. The parallel efficiency is
comparable to other implementations in all benchmarks.

answers to the observed variations.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a memory alloca-
tion scheme for distributed memory parallelization, and
evaluated its overhead in a shared memory environment
with PGAS-Style code. The evaluation suggests that our
approach would have acceptable overhead for compute
intensive programs.

Although currently limited to uniform dependencies,
we believe that our memory allocation significantly
simplifies code generation for programming models that
require explicit data transfer. We have started implement-
ing a code generator with C and MPI, and are also work-
ing on extensions to handle non-uniform dependencies.

There are a number of interesting directions to extend
beyond uniform dependencies. For instance, with a one-
dimensional processor allocation, there are n − 1 di-
mensions where communications are local to a physical
processor. Thus, it may be sufficient to restrict the
dependencies such that there is at least one dimension
where the only dependencies that cross are uniform.
Since tilable programs are also fully permutable, this
dimension can be made the inter-processor communi-
cation dimension, avoiding communications with affine
dependence.

REFERENCES

[1] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan,
“Pluto: A practical and fully automatic polyhedral program
optimization system,” in Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and Implementa-
tion (PLDI 08), Tucson, AZ (June 2008).

[2] M. Wolfe, “More iteration space tiling,” in Proceedings of the
1989 ACM/IEEE conference on Supercomputing, pp. 655–664,
ACM, 1989.

[3] M. Baskaran, A. Hartono, S. Tavarageri, T. Henretty, J. Ramanu-
jam, and P. Sadayappan, “Parameterized tiling revisited,” in Pro-
ceedings of the 8th annual IEEE/ACM international symposium
on Code generation and optimization, pp. 200–209, ACM, 2010.

[4] A. Hartono, M. Baskaran, J. Ramanujam, and P. Sadayappan,
“Dyntile: Parametric tiled loop generation for parallel execution
on multicore processors,” in Parallel & Distributed Processing
(IPDPS), 2010 IEEE International Symposium on, pp. 1–12,
IEEE, 2010.

[5] D. Kim, Parameterized and multi-level tiled loop generation.
PhD thesis, COLORADO STATE UNIVERSITY, 2011.

[6] M. Claßen and M. Griebl, “Automatic code generation for
distributed memory architectures in the polytope model,” in
Proceedings 20th IEEE International Parallel & Distributed
Processing Symposium, p. 243, IEEE, 2006.

[7] S. Amarasinghe and M. Lam, “Communication optimization
and code generation for distributed memory machines,” in ACM
SIGPLAN Notices, vol. 28, pp. 126–138, ACM, 1993.

[8] L. Renganarayanan, D. Kim, S. Rajopadhye, and M. Strout,
“Parameterized tiled loops for free,” in Proceedings of the 2007
ACM SIGPLAN conference on Programming language design
and implementation, pp. 405–414, ACM, 2007.

[9] V. Lefebvre and P. Feautrier, “Automatic storage management for
parallel programs,” Parallel Computing, vol. 24, no. 3-4, pp. 649–
671, 1998.

[10] F. Quilleré and S. Rajopadhye, “Optimizing memory usage in the
polyhedral model,” ACM Trans. Program. Lang. Syst., vol. 22,
no. 5, pp. 773–815, 2000.

[11] W. Thies, F. Vivien, S. Amarasinghe, and U. L. Pasteur, “A uni-
fied framework for schedule and storage optimization,” pp. 232–
242, 2001.

[12] A. Darte, R. Schreiber, and G. Villard, “Lattice-based memory
allocation,” IEEE Transactions on Computers, pp. 1242–1257,
2005.

[13] M. Strout, L. Carter, J. Ferrante, and B. Simon, “Schedule-
independent storage mapping for loops,” ACM SIGOPS Oper-
ating Systems Review, vol. 32, no. 5, pp. 24–33, 1998.

[14] A. C. M. A. d. M. Edans Flavius de Oliveira Sandes, “Smith-
waterman alignment of huge sequences with gpu in linear space,”
in Parallel & Distributed Processing (IPDPS), 2010 IEEE Inter-
national Symposium on, IEEE, 2011.

[15] P. Feautrier, “Dataflow analysis of array and scalar references,”
International Journal of Parallel Programming, vol. 20, no. 1,
pp. 23–53, 1991.

[16] L.-N. Pouchet, “Polybench.” http://www.cse.ohio-
state.edu/ pouchet/software/polybench/.


