
Sassy: A Language and Optimizing Compiler for

Image Processing on Recon�gurable Computing

Systems

Je�rey P Hammes, Bruce A Draper, and A P Willem B�ohm

Colorado State University, Fort Collins CO 80523, USA,

(hammes|draper|bohm)@cs.colostate.edu

Abstract. This paper presents Sassy, a single-assignment variant of the

C programming language developed in concert with Khoral Inc. and de-

signed to exploit both coarse-grain and �ne-grain parallelism in image

processing applications. Sassy programs are written in the Khoros soft-

ware development environment, and can be manipulated inside Cantata

(the Khoros GUI). The Sassy language supports image processing with

true multidimensional arrays, sophisticated array access and windowing

mechanisms, and built-in reduction operators (e.g. histogram). At the

same time, Sassy restricts C so as to enable compiler optimizations for

parallel execution environments, with the goal of reducing data tra�c,

code size and execution time.

In particular, the Sassy language and its optimizing compiler target re-

con�gurable systems, which are �ne-grain parallel processors. Recon-

�gurable systems consist of �eld-programmable gate arrays (FPGAs),

memories and interconnection hardware, and can be used as inexpensive

co-processors with conventional workstations or PCs. The compiler opti-

mizations needed to generate highly optimal host, FPGA, and communi-

cation code, are discussed. The massive parallelism and high throughput

of recon�gurable systems makes them well-suited to image processing

tasks, but they have not previously been used in this context because

they are typically programmed in hardware description languages such

as VHDL. Sassy was developed as part of the Cameron project, with the

goal of elevating the programming level for recon�gurable systems from

hardware circuits to programming language.

1 Introduction

A common programming methodology in image processing and computer vision
uses a graphical programming environment where application programs are con-
structed by graphically interconnecting the outputs of one primitive operator
to the inputs of another. One of the most widely used graphical programming
environments for image processing and computer vision is Khoros(tm) [22], but
other environments exist or are being developed for this purpose as well, includ-
ing the Image Understanding Environment (IUE) [17] and CVIPtools [23]. These
programming environments are advantageous in that they separate application

programming, where domain knowledge may be required, from low-level image
processing and/or computer vision programming, and even lower level machine
dependent parallel programming. Also, they allow application programs to be
distributed across multiple processors, or to be assigned to special-purpose co-
processors.

This paper presents Sassy, a programming language based on C that has been
developed in concert with Khoral Research Inc. (KRI). This work is part of the
Cameron project, which seeks to create a high-level programming environment
for image processing and computer vision that is targeted for �ne-grain parallel
processors. The goal is for low-level image processing algorithms to be written
in Sassy inside the Khoros software development environment. Sassy programs
can then be manipulated as glyphs inside Cantata (the Khoros GUI) just like
any other program. Sassy programs can be executed on parallel architectures,
and in particular on recon�gurable (a.k.a. adaptive) computing systems using
�eld programmable gate arrays (FPGAs). Such recon�gurable systems are used
in conjunction with a host processor, as shown in �gure 1; the recon�gurable
hardware has one or more FPGA chips and local memories that hold FPGA
con�gurations and can be used as local memory.

FPGA

MEMORY

FPGA

MEMORY

FPGA

MEMORY

CPU

MEMORY

Reconfigurable HardwareHost

Fig. 1. General diagram of host and recon�gurable hardware.

Image processing (IP) applications feature large, regular image data struc-
tures and regular access patterns and hence can bene�t from parallel imple-
mentations. Past attempts to exploit this regular parallelism, for instance with
vector or pipelined co-processors, have su�ered from communication bottlenecks
between the host and co-processor, because of their �xed computation / com-
munication behavior. The programmable nature of FPGA based parallel sys-
tems allows greater
exibility, and still promises massive parallelism and high
throughput. Recon�gurable systems are therefore interesting candidates for spe-
cial purpose IP acceleration hardware. Currently, FPGAs are not used in this
context, because they are programmed using hardware description languages.
The goal of Sassy is to make FPGAs available to IP experts, as opposed to
circuit designers.

In many respects, Sassy is similar to other parallel, C-based (or C++-based)
languages for image processing such as Cnn [6] or CT ++ [1], in that it paral-
lelizes loops that operate over large arrays (e.g. images). Sassy o�ers a powerful
set of language facilities for supporting image operations, including windowing
facilities (with or without padding at the image boundaries), the ability to select
array \sections" (rows, columns, windows, etc.), and reduction operators such
as histogram and accumulation primitives. Sassy also supports true multidimen-
sional arrays.

Unlike these other languages, however, Sassy supports �ne-grain instruction-
level parallelism. Sassy is a single assignment language, meaning that each vari-
able can be assigned only once. Sassy also forbids recursion and pointer manip-
ulation. These restrictions allow data dependencies in Sassy programs to be an-
alyzed, enabling compiler optimizations, such as partial evaluation, strip-mining
and loop reordering. The Sassy compiler can combine code from two or more
loops, scheduling as many operations as possible on a selected window of pixels
before moving on to the next window. This minimizes the number of times image
data must be transferred between the host and the parallel co-processor, easing
the primary bottleneck in many parallel image processing applications.

The Sassy program parts that are to be executed on the FPGA are converted
into data
ow graphs that map directly onto FPGA con�gurations (circuits) to
exploit the
exibility of recon�gurable hardware.

2 Recon�gurable Systems

The Sassy language is able to exploit coarse-grain, loop-level parallelism that
should be useful for a variety of parallel architectures. It is also able to use the
�ne-grain, instruction-level parallelism that can be exploited on recon�gurable
computing systems based on integrated circuits called �eld-programmable gate
arrays (FPGAs). These chips, made by manufacturers such as Xilinx and Altera,
are used along with optional on-board memory and/or co-processors in boards
such as Wild�re(tm) by Annapolis Microsystems.

Field programmable devices, including FPGAs, already enjoy an established

market and have been used extensively in digital devices of many kinds. They
o�er the manufacturer or user quick turnaround, low start-up costs and ease of
design changes. Their speed of programming has improved, and it now is feasible
to supplement a conventional CPU with one or more FPGAs and not only to
con�gure them with custom functionality for each program that is run, but even
to change the con�guration during a program's execution.

Figure 2 shows the structure of a typical FPGA [2]. It consists of a grid of
logic cells interspersed with wires to connect them. The perimeter has I/O cells
that interface with the external pins of the chip. One example of a currently
available FPGA is the Xilinx XC4085XL [29]. It is made up of 3,136 Con�g-
urable Logic Blocks (CLBs) and 448 I/O Blocks (IOBs). Each CLB has two
16-bit static random access memories (SRAMs), two D
ip-
ops, and a small
number of miscellaneous multiplexors and gates. A CLB can function as RAM

= Logic Block = I/O Block

Fig. 2. Structure of an FPGA

or as combinational logic. Each IOB controls one external pin of the chip, and
contains two D
ip-
ops and associated bu�er-driver circuits. The chip supports
system speeds up to 80 MHz. Recon�gurable systems are programmed through
con�guration codes, which specify the functions of the cells and their intercon-
nections within the FPGA.

Although the clock speeds of current FPGAs are lower than RISC processor
clocks, the potential massive parallelism in an FPGA makes them good candi-
dates for many real-time image processing tasks. Dehon calculates that, even
with their lower clock speeds, FPGAs may have an order of magnitude better
computational density (the number of bit operations a device can perform per
unit of area-time) as compared with RISC CPUs [5]. Petersen and Hutchings
speci�cally consider digital signal processing tasks, and also calculate a ten-
fold speed-up [21]. More importantly, Hartenstein et al. demonstrate a ten-fold
speed-up for jpeg image compression, a common image processing task [8]. Also,
new investments in recon�gurable systems seem destined to increase their clock
speeds and make inexpensive �ne-grain parallel processors available for a wider
range of applications.

Recon�gurable computing presents new challenges to language designers and
compiler writers. The task of programming and compiling applications will con-
sist of partitioning the algorithm between a host processor and recon�gurable
modules, and devising ways of producing e�cient FPGA con�gurations for each
piece of code. Presently, FPGAs are programmed in hardware description lan-
guages, such as VHDL [20]. While such languages are suitable for programming

chips that are used as \glue" logic in digital circuits, they are poorly suited for
the kind of algorithmic expression that takes place in applications programming.

The Cameron project provides Khoros with a programming language for
expressing IP applications, an optimizing and parallelizing Sassy compiler, and
a run-time system for FPGA based, recon�gurable systems. This will enable
IP programmers to exploit this desirable new hardware, by using a well known
programming interface, and writing high level language code. This paper presents
the �rst component of this trio, the Sassy programming language. A prototype
Sassy implementation, generating C code, is available; work on the optimizing
compiler for FPGAs continues.

3 Related Work

3.1 State of the Art: DataCube and Transputers

Most current real-time image processing applications run on either DataCube
pipeline processors or Transputers. DataCube [4] produces a number of special-
purpose image acquisition and processing boards that communicate with a host
processor over a VME or PCI bus. Each DataCube board contains intercon-
nected special-purpose processors designed for speci�c image processing opera-
tions, such as image capture, image arithmetic (addition/subtraction), or taking
a histogram. DataCube programmers use a graphical interface to route data
through sequences of these special-purpose processors, essentially drawing a
small data-
ow graph. Unfortunately, programmers are limited to the set of
image operations (and interconnections) provided, and must learn a new (al-
beit graphical) programming language in order to use them. DataCube boards
are also clocked at lower speeds than current general-purpose processors (for
example, the MaxVideo 250 is clocked at 40MHz).

Transputers, on the other hand, represent an approach to parallelism that is
more �ne-grain than DataCube boards, but less �ne-grain than recon�gurable
systems. Each Transputer is a small general-purpose processor on a chip, with
four high-speed input/output channels. Transputers can be connected together
easily, and while the clock speeds of individual Transputers are typically low
(50MHz or less), the speed-up comes via parallelism. Researchers in Munich,
for example, have built a real-time image processing system out of three fast
(Power-PC-based) Transputers and six slower (T4 or T8) Transputers for high-
speed mobile robotics [13]. Unfortunately, it is di�cult to program large networks
of Transputers in MIMD style, so most Transputer systems for image processing
use fewer than a dozen processors.

3.2 Parallel Languages for Image Processing

Compared to DataCubes or Transputers, recon�gurable systems o�er two orders
of magnitude more parallelism: thousands of functional units vs. tens. High-level
parallel languages will be needed, however, if this advantage is to be exploited.

Most parallel languages for image processing are based on C or C++, and most
are designed to parallelize loops over images or large arrays. Cnn [6], for example,
is a parallel language for image processing based on C++ and targeted for the
GFLOPS multiprocessor [9]. Variables are declared to be either scalar or parallel;
scalar variables are kept on the host, while parallel variables are distributed
across processors. A forall loop is introduced that allows distributed variables
to be processed in parallel. Synchronization commands (barrier , wait , and sync)
are also available to allow a programmer to control program threads explicitly.

Other parallel languages for image processing are designed for SIMD, rather
than MIMD, programming environments. CT ++, for example, de�nes an ar-
ray class that allows operations in parallel over the elements of the array [1].
The Image Understanding Architecture (IUA) programming environment used
a similar mechanism for programming the IUA [27].

Two other parallel C-related languages, not targeted speci�cally to image
processing, are SAC (Single Assignment C) [24] and Handel-C [19]. SAC empha-
sizes powerful array operations, for use in scienti�c numerical codes. Handel-C is
designed to target synchronous, mostly FPGA-based hardware, and the language
includes bit-precision speci�cations in its data types.

3.3 Functional Languages

Functional languages date back to the early 1960s when John McCarthy designed
the Lisp language [15]. A variety of functional languages have been created since
then, all built around a central idea: a computation is speci�ed in terms of pure,
i.e. non-side e�ecting, expressions [7]. The result of a function's evaluation is
based only on its arguments, and the evaluation cannot change the state of the
computation outside of the function. This guarantees that a function call's return
value on a given set of arguments must be the same regardless of when the call
takes place. This leads to inherent concurrency. For example, in the expression
f1(a; b)+f2(a; c), the calls of f1 and f2 can be evaluated in parallel since neither
can alter a global state or cause side e�ects to its arguments. Examples of pure
functional languages are Sisal [16] and Haskell [12]. Some languages are built
around a functional core, but include side e�ecting extensions that make the
language impure. An example of such a language is ML [14].

Early functional languages tended to omit loop constructs, relying instead
on recursion to express iterative execution, and they emphasized recursive data
structures such as lists and trees instead of arrays. However, some modern func-
tional languages include loops and arrays for reasons of e�ciency. A loop in a
pure functional language is an expression, meaning that it returns one or more
values. Arrays in pure functional languages are typically monolithic, meaning
that the entire array is de�ned at once. The storage space for the array is dy-
namically allocated from the heap when the array is created, and the array is
automatically garbage collected when it is no longer needed. An array carries its
extents (or bounds) with it. Since a pure language is free of side e�ects, it is not
possible to overwrite an array element with a new value. Semantically, updat-
ing an array requires copying the current array and replacing the desired value

with a new one. However, compilers often can optimize this with update-in-place

analysis, giving performance on a par with imperative languages [3].
The clean semantics, automatic garbage collection and inherent parallelism of

functional languages make them appealing vehicles for high performance paral-
lel computing. Their side e�ect-free nature makes compiler analysis much easier
than that which is required for imperative languages. In spite of this, perfor-
mance of functional languages often has been disappointing [10, 11]. Features of
some very high level general purpose functional languages, such as higher order
functions and lazy evaluation, have created new challenges for compiler writers
and have prevented these languages from attaining the performance that some
imperative languages achieve.

Sassy is designed to exploit the useful and e�ciently implementable aspects
of functional languages, while avoiding those aspects that have caused perfor-
mance problems. This is done by integrating it in C, and restricting the func-
tional aspects of the language to those features that are appropriate for image
processing.

4 Sassy

Sassy (short for single-assignment C) attempts to take the best features of exist-
ing imperative and functional languages and combine them into a language that
is amenable to compiler analysis and optimization, and that is well suited for
image processing. The language is intended to exploit both coarse-grain (loop-
level) and �ne-grain (instruction-level) parallelism, as appropriate to the target
architecture. The language should be suitable for conventional Symmetric Mul-
tiprocessors (SMPs), networks of workstations (NOWs), and vector computers,
but the target of interest to the Cameron group is recon�gurable (a.k.a. adap-
tive) computing systems using �eld programmable gate arrays (FPGAs). Sassy
is based on C in order to be as intuitive as possible to image processing experts,
most of whom program in C or C++, but it di�ers from C in some important
ways:

{ It is an expression-oriented , pure functional language, not imperative.
{ Its scalar types include signed and unsigned integers with speci�ed bit widths.
For example, the type uint12 represents a twelve-bit unsigned integer.

{ It has no explicit pointers.
{ It is non-recursive.
{ It has true multi-dimensional arrays, including array sections similar to those
in Fortran 90. For instance, \int10 V[:,:]" declares a two dimensional array
of ten-bit integers.

{ It has powerful loop generators and return operators similar to those in the
Sisal language.

{ It has multiple-value returns and assignments.

The elimination of pointers and recursion, and the single-assignment restric-
tion, enable important compiler code optimizations. In compensation for these

restrictions, Sassy programmers are given powerful high-level constructs to cre-
ate and access arrays in concise ways. As an example, �gure 3 shows Sassy code
that smoothes an image with a median �lter and then convolves it with an edge
detection mask. In the discussion that follows, Sassy code examples will be shown
with their C or Fortran 90 equivalents.

P1[:,:] = for window W[7,7] in Image f
uint12 m = array median (W);

g return (array (m));

P2[:,:] = for window W[24,24] in P1 f
uint12 ip = array sum (W, M);

g return (array (ip));

Fig. 3. Sassy code showing image smoothing with a median �lter, followed by convo-

lution with an edge detection mask.

Loops and arrays are at the heart of the language, and the two are closely
interrelated. Loops have special forms designed to work with arrays, and arrays
are easily created as return values of loops. The Sassy parallel for loop is the
source of coarse-grain parallelism, and has three parts: one or more generators ,
a loop body , and one or more return values. The structure is:

for generator(s) f body g return returns.

generator(s) { body } return return(s)for

4.1 Loop Generators

There are three kinds of loop generators: scalar , array-component and window .
The scalar generator produces a linear sequence of scalar values, similar to For-

tran's do loop. The array-component and window generators extract components
of arrays in various ways.

Two simple examples illustrate array component extraction:

for val in M

: : :

for V(�,:) in M

: : :

for (i=0; i<n; i++)

for (j=0; j<m; j++)

val = M[i][j];

: : :

do i = 1, n

V = M(i,:)

: : :

The �rst extracts scalar values from M ; the second extracts row vectors. Note
that these loops automatically access the extents of M , making it unnecessary
for the programmer to reference them explicitly. The `�' indicates a dimension
over which iterations are indexed, whereas the `:' indicates an array section. The
second example shows a Fortran 90 equivalent, since array section capability
does not exist in C.

Window generators allow a rectangular window to traverse the source array,
as in:

for window W[3,3] in M f
: : :

do i = 1, n-2

do j = 1, m-2

W = M(i:i+2,j:j+2)

: : :

Each iteration produces a 3x3 sub-array from the source matrix M . In general,
windows always extract arrays with a rank equal to the rank of the source, but
with smaller extents. The language includes a built-in function that pads values
around an array's perimeter. This is useful with window generators so that the
number of generated windows will be the same as the number of elements in the
source array.

When a loop needs to extract values from more than one array, the Sassy
programmer can use dot and cross products to combine generators. The dot

product runs the generators in lock step, whereas cross products produce all
combinations of components from the generators, producing the e�ect of nested
loops. The following two examples demonstrate these two operators:

for a in A dot b in B f
uint8 p = a * b;

: : :

for a in A cross b in B f
uint8 p = a * b;

: : :

for (i=0; i<n; i++) f
p = A[i] * B[i]

: : :

for (i=0; i<n; i++)

for (j=0; j<m; j++) f
p = A[i] * B[j]

: : :

Loop generators are important for two reasons. First, they give the program-
mer a simple and concise way of processing arrays in regular patterns, often
making it unnecessary to create loop nests to handle multi-dimensional arrays
or to refer explicitly to the array's extents or the loop's index variables. Sec-
ond, they make compiler analysis of array access patterns signi�cantly easier. In
C or Fortran, the compiler must look at index variables generated by the loop
nest and relate these indices to their uses in array references. In Sassy the index
generators and the array references have been uni�ed; the compiler can reliably
infer the patterns of array access.

4.2 Loop Returns

Since Sassy is a functional language, every loop returns one or more values. In
addition to returning scalar values, a Sassy loop can return arrays and reductions
built from values that are produced in the loop iterations. In its simplest form,
an array returned from a loop is built out of scalar values that are created in the
loop generator or loop body. For example, the following loop creates an array A
that has the same shape as matrix M , but with each value doubled:

uint8 A[:,:] = for val in M

return (array (2 * val));

for (i=0; i<n; i++)

for (j=0; j<m; j++)

A[i][j) = 2 * M[i][j];

This example illustrates that the shape of the return array is determined by the
shape of the generator. A generator that extracts scalars from a source array
has the same shape as that array, so the returned array A has the same shape
as M . Also, a Sassy loop body may be empty; this example shows a loop that
has only a generator and a return. Arrays may also be built out of other array
components, as well as by concatenating array components.

A variety of built-in operators are available to reduce scalar values that oc-
cur in loops. Many of these operators reduce to a scalar value, including sum,
product, min, and max. For example, a loop to compute the dot product of two
vectors can expressed as:

for a in A dot b in B

return (sum (a * b));

Other interesting reductions exist: min_indices and max_indices return
an array of index locations of the min/max values, while histogram returns a
histogram of the reduced values as a one-dimensional array. Any of the reduction
operators can be used in an accum operation where a label value is used to
partition the scalars into regions. For example,

for a in A dot lab in L

return (accum (min (a), lab, 4),

accum (max (a), lab, 4))

will �nd the min and max value in each region of A, where the regions are de�ned
by array L, as shown in Figure 4.

4.3 Sequential Loops

Sassy has sequential (non-parallel) for and while loops for use when loop-carried
dependencies exist. A loop-carried dependency occurs when the value given to
a variable in one iteration of a loop uses (directly or indirectly) that variable's
value from the previous iteration. The assignment of a new value to a previously

[10,11,12,15], [12,14,15,18]

12

121212

12 12 12

1212

12

11

11

11

11

10

10

1010 11 14 14

1414

14

1414

13

13

13

13

13

13

12

12 12

12

11

1111

13

13

13

13

13

13

13

12

12

12

12

12 14

14

14

14

1516

16

16

16

16

16

17

17

17

17

1518 18

18

0
0
0 0000

0 0 0
000

0 0 0 0
00

1
1 1 1

1 1
11 1

111

1 1 1 1
111

1

2 2
22

2 2
22

2 2 2
2 2

2 2
2
2

3
33

3
3
33

3
33

3
3
3

3

Labels:Image:

forall p in Image dot lab in Labels
return (accum (min (p), lab, 4),

accum (max (p), lab, 4))

Fig. 4. Example of accum operator, �nding the min and max values in each region.

de�ned variable is counter to the idea of single-assignment, so Sassy treats these
cases in a special way, as have other functional languages such as Sisal [16] and
Id [18]. The keyword next allows a current loop variable be to computed based
on its previous value. Conway's Life demonstrates an array variable A with a
loop-carried dependence. It also shows how a window generator, combined with
a mask, can implement general stencil-type operations.

uint1[:,:] main (uint1 A[:,:], uint16 n) f
bool M[:,:] = array def (bool, [3,3], f

ftrue, true, trueg,
ftrue, false, trueg,
ftrue, true, truegg);

uint1 res[:,:] =

for in [n] f
next A =

for window W[3,3] in array conperim (A, 1, 0) f
uint3 c = array sum (W, M);

uint1 v = (c==3 jj c==2 && W[1,1]==1) ? 1 : 0;

g return (array (v));

print (true, A);

g return (�nal (A));

g return (res);

Another example of a sequential loop is the following square root function,
designed to use only addition and bit-manipulation operators. It uses four vari-
ables with loop carried dependencies:

uint6 sq root (uint12 vsqn) f
bits12 vsq, bits12 asq, bits6 a, bits12 tvsq = vsqn, 0, 0, 0;

uint6 v = for uint4 i in [6] f
bits12 nasq = ((bits12)((uint12)asq+(uint6)a)<<2) j 0b1;
bits6 sa = a<<1;

next tvsq = (tvsq<<2) j ((vsq>>10) & 0b11);

next vsq = vsq<<2;

next a, next asq =

if (nasq <= tvsq) return (saj0b1, nasq)
else return (sa, asq<<2);

g return (�nal (a));

g return (v);

5 Parallelism and Performance

Currently, high performance and throughput in FPGAs are achieved by manually
optimizing circuit descriptions, using hardware design tools. To avoid this, Sassy
is designed so that it can be automatically parallelized and optimized. Sassy
exposes both coarse- and �ne-grain parallelism. Its parallel for loop is a source
of coarse-grain parallelism that should be useful across a wide variety of parallel
architectures, while single assignment exposes expression parallelism. This allows
Sassy procedures to be compiled into data
ow graphs and mapped directly into
circuit diagram speci�cations.

The Sassy compiler will use an intermediate form called \Data Dependence
and Control Flow" (DDCF) graphs, similar to the Sisal compiler's IF1 form [25].
This exposes data dependencies and opens up a wide range of loop-related op-
timization opportunities. The for loop generators are attractive because their
\outputs" can be viewed as streams, making the transition from a memory-
reading execution model to a data-driven stream model that is much closer to
the execution that will take place on FPGAs. Similarly, the array loop-return
operator produces array elements in storage order, making it easy to stream the
results back into memory in a straightforward way.

Important DDCF-graph optimizations include

{ Loop unrolling, which replicates a loop body one or more times, resulting in
pipeline parallelism.

{ Loop strip-mining, which splits a parallel loop into a pair of nested loops.
The outer loop produces chunks of work; the inner loop performs the work
in each chunk.

{ Loop fusion, which takes two adjacent loops and fuses them into one loop.
This can produce better coupling of array producers and consumers, some-
times completely eliminating intermediate arrays.

{ Partial evaluation, which involves statically evaluating parts of an expression
where some array references are constant. For example, the inner loop of the

12

1

2

2 2

1

10
UADD LSHIFT LSHIFT LSHIFT

LSHIFT LSHIFT

CHOOSECHOOSE

BIT-OR

BIT-OR

BIT-OR

RSHIFT

U-LESS-THAN

asq a tvsq vsq

vsqtvsqaasq

3

BIT-AND

Fig. 5. Data
ow graph of square root loop body.

example in �gure 3 uses a mask which may be known at compile time. If so,
the loop can be fully unrolled and the constant mask values can be substi-
tuted in place, with subsequent expression simpli�cation through constant
folding.

{ Flow control reordering, which is designed to tightly couple producers and
consumers, promote data reuse and minimize host-FPGA data movement.
In �gure 3, array P1 can be eliminated; image data can be streamed to the
FPGAs in appropriate-size chunks and the median values pipelined directly
into the convolution loop.

These optimizations, as well as others, will be applied with the overall goal of
streaming arrays into and out of FPGAs and reducing data movement between
host and FPGAs. Evaluation order is crucial here, since the FPGA boards typi-
cally have limited ability to store temporary data close by; data will be streamed
in chunks that are sized such that all necessary data can �t in the FPGA cache
memories.

Sassy's single-assignment, functional semantics makes �ne-grain, instruction-
level parallelism easy to exploit on architectures such as FPGA-based recon�g-
urable systems. Since each Sassy variable is assigned exactly once, it is possible to
create a static data
ow graph of a loop body in which each variable corresponds

to an edge in the data
ow graph. For example, the data
ow graph corresponding
to the loop body of the square root function, seen earlier, is shown in �gure 5.
Recon�gurable computing systems, based on FPGAs, are ideally suited to this
approach since a static data
ow graph can be mapped onto FPGA circuits in a
straightforward way.

6 Conclusion and Future Work

The paper has presented Sassy, a single-assignment variant of C for exploiting
both coarse-grain and �ne-grain parallelism. Sassy targets image processing ap-
plications with true multi-dimensional arrays, powerful generators for accessing
elements and sections of arrays, built-in reduction operators (including histogram
and accumulate), and bit-precision variables. Although many types of parallel
processors can take advantage of Sassy, the single-assignment semantics of Sassy
is intended to allow massive parallelism on recon�gurable computing systems.

Sassy is fully de�ned, and a Sassy to C compiler is implemented. In addi-
tion, a Sassy subset to data
ow graph compiler is also implemented. As part
of the Cameron project, a data
ow graph to VHDL compiler is currently being
implemented. (Since VHDL compilers are available for most brands of recon�g-
urable systems, this will allow the compilation of Sassy code for FPGAs.) Also
as part of the Cameron project, the VSIP image processing library [26] is being
programmed in Sassy.

References

1. F. Bodin, H. Essa� and M. Pic. A Speci�c Compilation Scheme for Image Pro-

cessing Architecture. Computer Architectures for Machine Perception, Cambridge,

MA, 1997, pp. 56-60.

2. S. Brown and J. Rose. Architecture of FPGAs and CPLDs: A Tutorial. IEEE

Design and Test of Computers, Vol 12, number 2, pages 42-57, Summer 1996.

3. D. C. Cann. Retire Fortran? A Debate Rekindled . Communications of the ACM,

Vol 35(8), 1992.

4. DataCube: http://www.datacube/com (or

http://robocop.anu.edu.au/docs/MaxVideo250)

5. A. DeHon. Dynamically Programmable Gate Arrays: A Step Toward In-

creased Computational Density. Proc of Fourth Canadian Workshop of Field-

Programmable Devices, Toronto, Canada, May 1996.

6. A. Fatni, D. Houzet and J. Basille. The Cnn Data Parallel Language on a Shared

Memory Multiprocessor. Computer Architectures for Machine Perception, Cam-

bridge, MA, 1997, pp. 51-55.

7. A. J. Field and P. G. Harrison. Functional Programming . Addison-Wesley, 1988.

8. R. Hartenstein, J. Becker, R. Kress, H. Reinig and K. Schmidt. A Recon�gurable

Machine for Applications in Image and Video Compression. Conf. on Compression

Technologies and Standard for Image and Video Compression, Amsterdam, 1995.

9. D. Houzet and A. Fatni. A 1-D Linearly Expandable Interconnection Network

Performance Analysis. IEEE Int. Conf. On Application Speci�c Array Processors,

Venice, 1993, pp. 572-582.

10. J. Hammes, O. Lubeck, and A. P. W. B�ohm. Comparing Id and Haskell in a Monte

Carlo photon transport code. Journal of Functional Programming, Vol. 5, Part 3,

pp 283-316, July 1995.

11. J. Hammes, S. Sur, and A. P. W. B�ohm. On the e�ectiveness of functional language

features: NAS benchmark FT. Journal of Functional Programming, Vol. 7, Part 1,

pp 103-123, January 1997.

12. P. Hudak, S. Peyton Jones and P. Wadler eds. Report on the Programming Lan-

guage Haskell, A Non-strict Purely Functional Language (Version 1.2). ACM SIG-

PLAN Notices, vol 27, number 5, 1992.

13. M. Maurer, R. Behringer, S. F�urst, F. Thomanek, E.D. Dickmanns. A Compact

Vision System for Road Vehicle Guidance, International Conference on Pattern

Recognition, Vienna, 1996. Vol. C, pp. 313{317.

14. D. MacQueen, R. Harper, R. Milner, et al. Functional Programming in ML. Lfcs

education, University of Edinburgh, 1987.

15. J. McCarthy, et al. LISP 1.5 programmers manual . MIT Press, 1962.

16. J. McGraw et.al., SISAL: Streams and Iteration in a Single Assignment Language:

Reference Manual Version 1.2, Lawrence Livermore National Laboratory, Memo

M-146, Rev. 1, 1985.

17. J. Mundy. The Image Understanding Environment Progam. IEEE Expert, 10(6):64-

73, 1995.

18. R. S. Nikhil. Id Version 90.0 Reference Manual. Computational Structures Group

Memo 284-1, Massachusetts Institute of Technology, 1990.

19. Oxford Hardware Compilation Group. The Handel Language. Technical report,

Oxford University, 1997.

20. D. Perry. VHDL. McGraw-Hill, 1993.

21. R. Petersen and B. Hutchings. An Assessment of the Suitability of FPGA-

Based Systems for use in Digital Signal Processing. 5th Int. Workshop on Field-

Programmable Logic and Applications, Oxford, 1995.

22. J. Rasure and S. Kubica. The KHOROS Application Development Environment.

In H. I. Christenses and J. L. Crowley, editors, Experimental Environments for

Computer Vision and Image Processing . World Scienti�c, New Jersey, 1994.

23. S. Umbaugh. Computer Vision and Image Processing: A Practical Approach using

CVIPtools. Prentice Hall, New Jersey, 1998.

24. S. B. Scholz. Single Assignment C { Functional Programming Using Imperative

Style. In Proc. of the 6th International Workshop on th Implementation of Func-

tional Languages. University of East Anglia, 1994.

25. S. K. Skedzielewski, J. R. W. Glauert. IF1, an Intermediate Form for Applicative

Languages. Refernce Manual, M-170, Lawrence Livermore National Laboratory,

July 1985.

26. http://www.vsip.org/

27. C. Weems and J. Burrill. \The Image Understanding Architecture and its Soft-

ware Development Tools," Applied Imagery and Pattern Recognition Workshop,

McLean, VA, 1991.

28. M. Wolfe. High Performance Compilers for Parallel Computing . Addison-Wesley

Publishing Company, 1996.

29. Xilinx. The Programmable Logic Data Book . Xilinx, Inc., San Jose, California,

1998.

30. H. Zima. Supercompilers for Parallel and Vector Computers. Addison-Wesley Pub-

lishing Company, 1990.

