Message from the Department Chair

I have only been Chair of Computer Science at CSU for a few months, but I have become keenly aware that the job mainly involves taking advantage of the many opportunities available to the department.

If you graduated from CSU more than 10 years ago, the department has changed dramatically. Both graduate and undergraduate enrollment has grown, and we now annually produce approximately 100 B.S. degrees, 35 M.S. degrees, and 3 doctorates. New research awards in 2002 totaled 2.5 million dollars — 10 times the funding level in 1990. And yet, with the economic slowdown, our base budget from the state and university has decreased 10 percent, so the department must do more with less.

We plan to add three new tenure track faculty over the next three years. These new positions will help us to reduce undergraduate class size and offer a wider range of classes. New faculty will also help us to achieve greater critical mass in our research efforts. We are also expanding our collaboration with industrial partners.

Computer Science will be moving to the Oval in four to five years. This will also be an opportunity for us to think about our new space and our resource needs and create a new home for CS of which we can be proud.

We have established two new fellowships: one in general Computer Science, and the other in Artificial Intelligence and Evolutionary Computation. These fellowships will be competitively awarded and will provide both summer support for graduate students and aid our graduate recruiting efforts.

Finally, I want to thank the faculty and staff for their support and encouragement. The faculty in Computer Science are an amazingly collegial group of people, as well as impressive, productive teachers and researchers. As far as I am concerned, that makes CSU one of the best places to work.

Darrell Whitley

Dr. Darrell Whitley

Dr. Whitley received his Ph.D. in Anthropology in 1985 and Masters in Computer Science in 1986, both from Southern Illinois University. He joined the Computer Science Department at CSU in 1986 and began working in the area of Genetic Algorithms and Evolutionary Computation. In the late 1980’s, he and his students pioneered the application of genetic algorithms to real-world scheduling problems. He developed the first systems to combine genetic and neural networks, particularly for control applications. In the 1990’s, he played a key role in developing theoretical models of genetic algorithms and analyzing representations used by evolutionary algorithms.

In 1997, Business Week ranked CSU one of the top research programs in the world in biologically inspired computation. In 2003, Dr. Whitley was inducted as a senior fellow of the International Society for Genetic and Evolutionary Computation. Dr. Whitley has served as Chair of the Governing Board of the International Society for Genetic Algorithms and as Editor-in-Chief of the MIT Press journal Evolutionary Computation.
Drs. Indrajit and Indrakshi Ray

Computer and Information Systems Security

Tired of battling viruses, worms, and Trojan Horses in your software? Imagine the disastrous results if a malicious virus hijacks the flight control system of a commercial plane approaching a major airport.

That’s one of the concerns of Drs. Indrajit and Indrakshi Ray, who came to CSU in 2001 from the University of Michigan-Dearborn. Together, they spearhead the Computer Science Department’s research in computer and information systems security. Their focuses include: trust models, designing secure software, designing secure and survivable networks, security policy specification and validation, and secure and survivable transaction processing.

All security related decisions rely in some way on fundamental assumptions about trust. The major goal of researching trust models is to formalize the notion of trust as relevant to computer security. Unfortunately, we do not have a precise definition of what trust is, how it can be quantified, or how it can be composed. Is trust a binary variable? Does trust have only yes/no or 0/1 values? Many would like to think so, but it leads to inconsistencies. For example, assume a piece of information relevant to national security is obtained from a “trusted” source and is considered to be fully trusted (value 1). Another relevant piece is obtained from an “untrusted” source and is considered non-trusted (value 0). If both these pieces of information are combined and the result used for national security, how much should that information be trusted -- completely, not at all, or somewhere in between? The Rays are looking for answers to those questions.

Designing secure software involves addressing a major problem all computer users regularly face: the havoc created by viruses, worms, and Trojan Horses in software. What would happen if that software controlled critical infrastructure? According to Indrakshi Ray, “We feel it is crucial to security for software designers and programmers to ensure their software does exactly what it is supposed to do and that there are no hidden bugs, viruses, or worms.” To that end, they are developing tools to help designers generate more secure software. They are also looking at a very special type of software paradigm called transactions. Many applications, such as financial applications, are modeled as transactions so that they retain certain desirable properties. However, this software model has added security concerns. Consider a transaction that is controlling the life support system of a critically ill person: the transaction needs to get information about the latest blood test results of the patient from a remote host, but unknown to the transaction, the remote host has been compromised by a cyber terrorist. This research explores how to protect the transaction from the hostile host and how it can provide its functions in the face of hostile environments.

Indrajit Ray’s research on computer network security has three goals: prevent, detect, and survive. A major threat to computer networks is denial of service attacks, for example, if a 911 network is flooded with spurious mal-intent messages. A cyber terrorist could effectively prevent a critical infrastructure network from providing services. The first goal is to prevent the attack, but a determined, sophisticated cyber terrorist with enough resources could still break our cyber defenses. For those cases, Dr. Ray is creating tools that will converge on the attacker, isolate and confine the attack, and prevent it from spreading. At the same time, the tools will ensure the survival of the affected network and the continuation of critical services.

Indrakshi Ray’s project on security policies involves developing a mechanism to ensure the exact security policies are in place to protect systems. By far, security policy plays the most important role in cyber defense. Policies specify what resources must be protected and from whom, and incorrect ones can cause security breaches. Currently, most policies are specified in an ad-hoc manner. This research investigates how to specify correct policies, validate them, analyze their interactions, and enforce them for real-world applications.

The Rays’ timely, cutting-edge research is supported by several new grants (see page 3 of the newsletter) and funding from the National Science Foundation, the U.S. Air Force, and the Federal Aviation Administration.
CS Faculty Win Research Awards

Dr. Chuck Anderson and Dr. Michael Kirby (Math), REU “Research Experiences for Undergraduates.” National Science Foundation (NSF).

Dr. Chuck Anderson, Dr. Douglas Hittle (Mechanical Engineering), and Dr. Peter Young (Electrical Engineering). Robust Learning Controls for Buildings Energy Systems. National Science Foundation (NSF).

Dr. Sanjay Rajopadhye and Dr. Wim Bohn. High Level Programming of High Performance Embedded Computing Systems (HiPHiPECS). National Science Foundation (NSF).

Dr. Indrajit Ray. Toward a Proactive Approach to Defense Against and Recovery from Cyber Attacks. State University of New York (SUNY).

Dr. Indrajit Ray and Dr. Indrakshi Ray. A Framework for Secure and Survivable Transaction Processing. National Science Foundation (NSF).

Dr. Indrajit Ray and Dr. Indrakshi Ray. A Model of Trust for Developing Trustworthy Systems from Untrustworthy Actors. Air Force Research Laboratory (AFRL).

Recent Ph.D. Graduates

Dr. Emanuel S. Grant, Fall 2002. Defining Domain-Specific Object-Oriented Modeling Languages as UML Profiles. Dr. Grant is an Assistant Professor in the Department of Computer Science at the University of North Dakota.

Dr. Stewart Crawford-Hines, Summer 2003. Machine Learned Boundary Definitions for an Expert’s Tracing Assistant in Image Processing. Dr. Crawford-Hines is developing new avenues in biomedical visualizations at Visible Productions, the company where he worked to commercialize his research ideas.

Dr. Jean-Paul Watson, Fall 2003. Empirical Modeling and Analysis of Local Search Algorithms for the Job-Shop Scheduling Problem. Dr. Watson is a researcher in the Discrete Algorithms and Mathematics Group at Sandia National Laboratory.

Upsilon Pi Epsilon

2003 Inductees

Hari Aiyer Carol L. Kaito Robert E. St. John
Monica Dilip Chawathe Anthony J. Martino Aishvarya Shukla
Gabriel J. X. Dance Clint C. McMahl David R. Sullivan
Sean A. Davis Jay A. Paolucci Sonja V. Tideman
Deepali Deshpande Thomas S. Price Brian T. Treveathan
Matther T. Despain Yedduladodi R. Reddy Xiuping Wang
Jochen Deyke Roger A. Robbins Saul Weiss
Kelly S. Graus Charlie Ross Lingzhi Yang
Catherine E. Jones Ian D. E. Rousom Kalyani Vunnava

www.cs.colostate.edu
ATTENTION ALUMNI

Please take a moment to update your contact information and share your positive ideas and suggestions for the department. We appreciate your input!

NAME __

ADDRESS ___

CITY ___________________ STATE ______ ZIP ______________

EMAIL __

COMMENTS: ___

Return this form to: Lisa Knebl
Computer Science Department
Colorado State University
Fort Collins, CO 80523-1873

Or E-mail us at: newsletter@cs.colostate.edu