Message from the Department Chair

The 2003-2004 academic year has been a year of change. CSU ranks third in the nation in research funding among universities that do not have a medical school. The new CSU President, Larry Penley, intends to build on this success and attract more undergraduates from around the country by getting out the message that CSU offers a great undergraduate education.

It seems almost certain that Colorado State University will become an “enterprise” of the State of Colorado rather than a traditionally supported public university. This enterprise status will create more independence for CSU while reducing our reliance on state funding.

Another trend affecting computer science departments nationwide is much smaller freshman classes. The number of incoming freshman in Computer Science at CSU is half of what it was two years ago. Other departments in the United States also report 30 to 50 percent decreases in freshman class size. This means in about two or three years, the number of students graduating with bachelors degrees in computer science will decrease dramatically. Yet, despite the current job market and off-shoring, most projections indicate an increased demand for CS and IT professionals.

There are several advantages to a smaller freshman class. Our class sizes are more reasonable, student quality is up, and we are exploring ways to make the first programming class a more satisfying learning experience.

The Computer Science Department continues to improve and grow. We hired new Assistant Professor Daniel Massey this spring. Dr. Massey has been involved in both theoretical research and practical experience in network security and, in particular, internet security. He comes to CSU with a strong research program and funding record. We will hire another new faculty member this coming year, bringing the number of tenure track faculty to 18 and the total number of faculty to 22. Our research programs also continue to expand.

We look forward to a productive, successful 2004-2005 academic year and appreciate your participation and support.

Department Offers Computing Seminar for High School Women

This summer the Computer Science Department ran two one-week sessions of “Making Computers Friendly — A Seminar in Computing for High School Women.” Attendees worked in real computer science settings to make web pages by hand and wrote programs to do tasks ranging from simple math and conversations to Blackjack games and calculators. They learned about artificial intelligence and state-of-the-art computer vision. They also explored ways to influence product development. Attendees had a wonderful time, and the department hopes to offer this successful seminar again in the future.
Faculty Research Spotlight

Dr. Wim Böhm and Dr. Sanjay Rajopadhye

HiPHiPECS: High-level Programming of High Performance Embedded Computing Systems

In late 2002, the Computer Science Industrial Advisory Board relayed some of the needs of industry to the department: We need students who have both hardware design skills and high-level programming tool sophistication. We need to bridge the gap between computer science and electrical/computer engineering.

Dr. Wim Böhm and Dr. Sanjay Rajopadhye answered the call. With support from the National Science Foundation and Xilinx, they created HiPHiPECS: High-level Programming of High Performance Embedded Computing Systems. The goal of HiPHiPECS is to bring reconfigurable computing and, in particular, high performance embedded computing into the computer science curriculum.

According to Drs. Böhm and Rajopadhye, “A combination of top-down methods based on abstractions and bottom-up methods breaking down abstraction barriers is exactly what is needed to teach a great Embedded Systems Design course.” They see three levels of abstraction for embedded systems design: 1) at the bottom, circuit level, using VHDL or Verilog; 2) in the middle, operating system and architecture level, using an Embedded Design Kit; and 3) at the top, high-level programming languages and compilers to automatically derive hardware designs.

First offered in spring 2004, “Embedded Systems” (CS480) is the first part of their two-level course and teaches the bottom two abstraction levels. It familiarizes students with industry standard design tools for embedded and reconfigurable systems and introduces them to hardware design paradigms. This hands-on course has seven lab exercises, four using VHDL and three using the Xilinx Embedded Design Kit. Each of the seven lab exercises is interactive and requires imagination. To engage the students, many of the assignments emphasize game design. The final architecture is a hardware accelerated interactive board game, Connect Four. Student response to the new course has been enthusiastic.

The second, graduate-level course will focus on the creation of high-performance architectures using high-level design tools (SA-C and MMApha) developed here at CSU. The course covers an introduction to Dataflow computation, the Synchronous Dataflow Model (SDF), the Systolic and Polyhedral Model, and high-level programming of embedded systems. The course will be offered to graduate students in spring 2005.

Both courses utilize the newly created Embedded Systems Lab containing 12 workstations, each consisting of a PC, a Diligent FPGA board (D2E), and an IO board (DIO1) donated by Xilinx. Both the PC and the FPGA board are connected to their own flat panel display. Each PC is loaded with the latest versions of the ISE tools and the Embedded Design Kit (EDK) also donated by Xilinx.

Dr. Böhm and Dr. Rajopadhye’s objectives are training designers for tomorrow’s Systems-on-a-Chip (SoCs) and teaching engineers/scientists to operate at multiple levels of abstraction. They are developing a curriculum that casts circuit design as the final step in a step-wise refinement process from a high-level program to hardware. They plan to structure this course into tutorials for industry, organize workshops for academics, and possibly write a book when the course structure becomes stable. But they agree that the biggest reward of this project is seeing the spark and excitement in the eyes of the students.

“It was the most challenging and interesting class that I have taken, and I had fun.”

~ student evaluation
New Faculty Members

The department welcomes Dr. Daniel F. Massey to our faculty. Dr. Massey received his Ph.D. from UCLA and has been a researcher at the University of Southern California for the past 4 years. He is an expert on network security. RamBytes will feature Dr. Massey in an upcoming Faculty Research Spotlight segment.

CS Faculty Win Industrial Research Awards

Dr. Sudipto Ghosh, Providing Support for Executing and Testing UML Design Models. IBM-Eclipse.

Dr. Darrell Whitley and Dr. Ross Beveridge, Cooperative Coevolution for Constructing Teams of Agents. Raytheon Company.

Recent Ph.D. Graduates

Dr. Dae-Kyoo Kim, Summer 2004. A Meta-Modeling Approach to Specifying Patterns. Dr. Kim is an Assistant Professor in the Department of Computer Science and Engineering at Oakland University in Detroit, Michigan. His research interests are in software engineering, particularly, pattern formalization, model refactoring, aspect-oriented modeling, security, and component-based development.
Masters Degrees Awarded

Fall 2003 - Spring 2004

Padmanabhan Srihari Aiyer
Warin Avirutnant
Mingyan Bao
Sagar Shripati Bilgi
Jeffrey Lewis Boody
Keith Alan Bush
Abraham Joshua Suresh Daniel
Kenneth Patrick Davis
Deepali Deshpande
Trung Thanh Dinh Trong
Ting Feng
Erin Elisabeth Fox
Ketaki Krishnaku Garg
Craig Anderson Gideon
Sriram Govindarajan
Yaping Gu
Arne Regan Jamtgaard
Carol Lee Kaito
Gregory A. Kawell
James Nathaniel Knight

Madhusudhan Kovalmudi
Na Li
Monte S. Lunacek
Jayshankar Chandran Nair
David Arden Patterson
James L. Ross
Kurt. W. Schmidt
David Allan Starkey
James Richard Steinborn
Sudhin Sugathan
Suppachai Thaicharoen
David Lee Todd
Ramchander Varadarajan
Jian-Ping Yan
Ke Yang
Zongjun Yang
Hongyan Zhang
Lizhong Zhang
Steven Kirk Zimmerman