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Abstract

Tabu search algorithms are among the most effective approaches for solving the job-shop
scheduling problem (JSP). Yet, we have little understanding of why these algorithms work
so well, and under what conditions. We develop a model of problem difficulty for tabu
search in the JSP, borrowing from similar models developed for SAT and otherNP -
complete problems. We show that the mean distance between random solutions and the
nearest optimal solution is highly correlated with the cost of locating optimal solutions to
typical, random JSPs. Additionally, this model accounts for the cost of locating sub-optimal
solutions, and provides an explanation for differences in the relative difficulty of square ver-
sus rectangular JSPs. We also identify two important limitations of our model. First, model
accuracy is inversely correlated with problem difficulty, and is exceptionally poor for rare,
very high-cost problem instances. Second, the model is significantly less accurate when
considering structured, non-random JSPs. Our results are likely to be useful in future re-
search on models of problem difficulty for local search in SAT, as local search cost in both
SAT and the JSP is largely dictated by the same features of the search space. Similarly,
our research represents the first attempt to quantitatively model the cost of tabu search for
anyNP -complete problem, and may possibly be leveraged in an effort to understand tabu
search in domains other than job-shop scheduling.
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1 Introduction

The job-shop scheduling problem (JSP) is widely acknowledged as one of the most
difficult NP -complete problems encountered in practice. Nearly every well-known
optimization or approximation technique has been applied to the JSP, including
linear programming, Lagrangian relaxation, branch-and-bound, constraint satisfac-
tion, local search, and even neural networks and expert systems [1]. Most recent
comparative studies of algorithms for solving the JSP conclude that local search
algorithms provide the best overall performance on the set of widely-used bench-
mark problems; for example, see the recent surveys by Bla˙zewicz et al. [2] or Jain
and Meeran [1]. Within the broad class of local search algorithms, the strongest
performers are typically derivatives of tabu search [2] [1] [3], the sole exception
being the guided local search algorithm of Balas and Vazacopoulos [4]. The power
of tabu search for the JSP is perhaps best illustrated by Nowicki and Smutnicki’s
algorithm [5], which is capable of solving a notoriously difficult benchmark prob-
lem, Fisher and Thompson’s infamous10 � 10 instance [6], in less than a minute
on now-dated hardware. In contrast, a number of algorithms for the JSP still have
significant difficulty in finding optimal solutions to this problem instance.

Despite the relative simplicity and superior performance of tabu search algorithms
for the JSP, very little is known aboutwhy these algorithms work so well, and
under what conditions. For example, we currently have no answers to fundamental
questions such as “Why is one problem instance more difficult than another?” and
“What features of the search space influence search cost?”. No published research
has presented models of problem difficulty for tabu search algorithms for the JSP.
Further, only one group of researchers, Mattfeld et al. [7], has analyzed the link
between problem difficulty and local search for the JSP in general.

In contrast, models of problem difficulty for local search do exist for many other
well-knownNP -complete problems. The majority of these models consider the
Boolean Satisfiability Problem (SAT), and the most recent models account for
much of the variance in local search cost observed in a particular class of random
problem instances commonly known as Random3-SAT [8] [9] [10]. All of these
models are based on particular features of the search space, and hypothesize that
a particular feature, or set of features, is largely responsible for the cost required
by a local search algorithm to locate an optimal solution to a problem instance.
The hypothesis is generally tested via linear or multiple regression methods, with
the regressionr2 value quantifying the accuracy of the resulting model. We refer
to models developed using this methodology asdescriptive cost modelsof local
search; the goal of such models is to account for a significant proportion (ideally
all) of the variance in local search cost observed for a set of problem instances.

Descriptive cost models of local search in SAT are based on three search space fea-
tures: the number of optimal solutions, the backbone size, and the mean distance
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between random solutions and the nearest optimal solution. Clark et al. [8] intro-
duced the first descriptive cost model for SAT, and demonstrated that the logarithm
of the number of optimal (i.e., satisfying) solutions accounts for a significant pro-
portion of the variability in local search cost. In SAT, thebackboneof a problem
instance is the set of Boolean variables that have the same truth value in all opti-
mal solutions. Both Parkes [9] and Singer et al. [10] demonstrated that the size of
the problem backbone is positively correlated with the cost of local search in SAT.
More recently, Singer et al. [10] demonstrated that local search cost in SAT is posi-
tively correlated with the mean distance between random solutions and the nearest
optimal solution.

Descriptive cost models for problems other than SAT have received relatively little
attention, the sole exception being the related and more general Constraint Satisfac-
tion Problem (CSP) [8]. However, the factors underlying the descriptive cost mod-
els for SAT are very intuitive, and this intuition extends beyond SAT to many other
NP -complete problems, including the JSP; for example, most researchers would
be surprised if the number of optimal solutions didnot influence local search cost.
However, the search spaces of the JSP and SAT are qualitatively dissimilar, and
local search algorithms for SAT differ in many ways from tabu search algorithms
for the JSP. For example, local search algorithms for SAT have a strong stochastic
component, while tabu search algorithms for the JSP are much more deterministic.
Consequently, it is unclear a priori whether the descriptive cost models for SAT can
be leveraged in an effort to understand problem difficulty for tabu search in the JSP.

In this paper, we develop a descriptive cost model of tabu search in the JSP, draw-
ing heavily from the existing descriptive cost models of local search in SAT. The
resulting model accounts for a significant proportion of the variance in the cost
of finding optimal solutions to random JSPs. We then use the model to explain
two well-known but poorly-understood qualitative observations regarding problem
difficulty in the JSP, and identify two important limitations of the model. More
specifically, our research makes the following contributions:

(1) We show that the search space features known to influence the cost of lo-
cal search in SAT, specifically the number of optimal solutions (joptsolsj) and
the mean distance between random solutions and the nearest optimal solu-
tion (dlopt-opt), also influence the cost of locating optimal solutions using tabu
search in the JSP. Further, thestrengthof the influence of these two factors is
nearly identical in both problems. As in SAT, we find thatd lopt-opt has a much
stronger influence thanjoptsolsj on search cost in the JSP, and ultimately ac-
counts for a significant proportion of the variance in search cost observed for
a set of identically-sized problem instances. This result was somewhat un-
expected given the differences between the search spaces and local search
algorithms of the JSP and SAT.

(2) Our experiments indicate that for JSPs with moderate to large backbones, the
correlation between backbone size and the number of optimal solutions is
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extremely high. As a direct consequence, for these problems, backbone size
provides no more information than the number of optimal solutions, and vice
versa: one of the two factors is necessarily redundant. Given the recent surge
of interest in the link between backbone size and problem difficulty, the strong
one-to-one correspondence between these two factors was completely unan-
ticipated.

(3) In contrast to Singer et al. [10], we findno interaction effect between the
backbone size anddlopt-opt. Further, we find that descriptive cost models based
on either multiple factors or interacting factors are no more accurate that the
simple model based solely ondlopt-opt.

(4) A simple extension of thedlopt-opt descriptive cost model accounts for most
of the variance in the cost of findingsub-optimalsolutions to the JSP. This
extension is the first quantitative model of the cost of locating sub-optimal
solutions to anyNP -complete problem, and provides an explanation for the
existence of ‘cliffs’ in the cost of finding sub-optimal solutions of varying
quality [11].

(5) For some time, researchers have observed that ‘square’ JSPs are generally
more difficult than ‘rectangular’ JSPs. We show that this phenomenon is likely
due to differences in the distribution ofdlopt-opt for the two problem types. For
square JSPs, the proportion of problem instances with large values ofdlopt-opt

is substantial, while most instances of rectangular JSPs have very small values
of dlopt-opt.

(6) We identify two important limitations of thed lopt-opt model. First, we show that
model accuracy is inversely proportional to problem difficulty, and is excep-
tionally poor for very high-cost problem instances. Second, we demonstrate
that thedlopt-opt model is significantly less accurate when we consider more
structured JSPs, specifically those containing workflow partitions.

Because local search cost in both the JSP and SAT is influenced by the same search
space features, our results for the JSP also identify likely deficiencies in the de-
scriptive cost models of local search in SAT. Specifically, we conjecture that the
following also hold in SAT: (1) the tight correspondence between backbone size
and the number of optimal solutions, (2) the extreme inaccuracies of thed lopt-opt

model on very high-cost problem instances, and (3) the degradation in the accuracy
of thedlopt-opt model for structured problem instances.

Although tabu search algorithms have been successfully applied to a number of
NP -complete problems, very little is known in general about which search space
features influence problem difficulty, and to what degree. Our research provides a
preliminary answer to this question for one particular problem, the JSP, and only
for a relatively simple form of tabu search. Consequently, our results may be use-
ful to researchers developing models of problem difficulty for tabu search inNP -
complete problems other than the JSP, or for models of more advanced tabu search
algorithms for the JSP.

4



In the following section, we briefly review existing models of problem difficulty
and identify the sub-set of models that form the basis of our analysis. In Section 3,
we define the job-shop scheduling problem and introduce the tabu search algo-
rithm used in our experiments; the section concludes with a discussion of prior
work on problem difficulty for local search in the JSP. In Section 4, we develop
a model of the cost required by tabu search to find optimal solutions to the JSP.
Section 5 details two important applications of the resulting model: accounting for
the cost of locatingsub-optimalsolutions to the JSP, and providing an explanation
for differences in the relative difficulty of square versus rectangular JSPs. In Sec-
tion 6, we expose two important limitations of the model, both of which suggest
new directions in research on models of problem difficulty. Finally, we conclude
by discussing the implications of our results in Section 7.

2 Models of problem difficulty

One key lesson from the research into models of problem difficulty is the often
‘universal’ nature of these models, in that they typically apply to a wide range
of NP -complete problems. For example, phase transitions have been observed in
problems ranging SAT to Graph K-colorability [12]. Similarly, the distribution of
local optima in many problems exhibits a ‘Big-Valley’ structure, for example in
both the Traveling Salesman and Graph Bi-Partitioning Problems [13]. Given the
pervasiveness of these phenomena, the obvious first step in our research is to de-
termine whether existing models of problem difficulty can be extended to the JSP.
However, before investigating particular models of problem difficulty, we first con-
sider the following questions:

� What type of information should our model provide?
� What existing models provide this type of information?
� What is our success criteria?

Our immediate goal is to develop an understanding of existing tabu search algo-
rithms for the JSP; subsequently, we intend to leverage such knowledge to improve
the performance of existing algorithms. A detailed understanding of how an algo-
rithm interacts with the search space is clearly required to propose enhancements in
a principled manner. Consequently, our goal is to produce quantitative models that
relate search space features to search cost; we refer to such models asdescriptive
cost models. Good descriptive cost models account for a significant proportion of
the variance in search cost observed for a set of problem instances.

Most models of problem difficulty do not share our goal of relating search space
features to search cost, and as a consequence generally fail to account for any sig-
nificant proportion of the variability in search cost. Within the AI community, phase
transitions [12] are the dominant model of problem difficulty. Phase transition mod-
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els partition the ‘universe’ of problem instances into a large number of sub-classes,
and are able to account for mean differences in sub-class difficulty. However, the
variance in problem difficulty within a sub-class is unaccounted for, and is typi-
cally largest in the most difficult sub-classes (i.e., those near the transition region).
For example, the local search cost in the most difficult sub-class of100-variable
Random 3-SAT instances varies over5 orders of magnitude [8]. Outside of AI,
the most widely studied models of problem difficulty are correlation length and
the Big-Valley local optima distribution. A correlation length model measures the
‘smoothness’ of a search space by analyzing the autocorrelation of the time-series
of solution quality produced by a random walk. However, the correlation length
for a large number of problems isstrictly a function of the problem size (e.g., the
number of cities in the Traveling Salesman Problem) [14]. Consequently, correla-
tion length models fail to account forany of the often large variance in problem
difficulty observed for an ensemble of fixed-size problem instances. Similarly, Big-
Valley local optima distributions are found in both easy and hard problems; the
model generally fails to account for the relative difficulty of individual problem
instances.

To date, researchers have only produced descriptive cost models of local search
in SAT and the closely related Constraint Satisfaction Problem. Descriptive cost
models of local search in SAT are based on three search space features: the number
of optimal solutions, the backbone size, and the mean distance between random
solutions and the nearest optimal solution. In Section 4, we define each of these
features, discuss the properties of existing descriptive cost models that are based
on these features, and analyze the applicability of these features to descriptive cost
models of tabu search in the JSP.

Because our descriptive cost models are either linear or multiple regression models
(see Section 4), model accuracy is naturally quantified by ther2 value of the re-
gression model [15]. We can also quantify worst-case model accuracy by analyzing
the magnitude of the residuals under the regression model. Ultimately, our goal is
to produce a descriptive cost model with (1)r2 � 0:8 and (2) the actual search
cost varying no more than1=2 an order of magnitude from the predicted search
cost. Although somewhat arbitrary, any descriptive cost model satisfying these two
criteria would conclusively identify those search space features that largely dictate
the cost of tabu search in the JSP. Further, more stringent criteria are likely to leave
insufficient room for measurement error. Finally, as we discuss in Section 4, the
task of producing descriptive cost models satisfying the two proposed criteria is
sufficiently challenging.
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3 The job-shop scheduling problem, local search, and problem difficulty

We now introduce the job-shop scheduling problem and detail the specific tabu
search algorithm that forms the basis of our analysis. We then briefly review prior
research on problem difficulty and job-shop scheduling.

3.1 The job-shop scheduling problem

We consider the well-knownn � m static job-shop scheduling problem (JSP), in
which n jobs must be processed exactly once on each ofm machines. Each jobi
(1 � i � n) is routed through them machines in some pre-defined order�i, where
�i(j) denotes thejth machine (1 � j � m) in the routing order. The processing of
a job on a machine is called anoperation, and the processing of jobi on machine
�i(j) is denoted byoij. An operationoij must be processed on machine�i(j) for
an integral duration of�ij > 0. Once processing is initiated, an operation cannot
be pre-empted, and concurrency is not allowed. Finally, for2 � j � m, oij cannot
begin processing untiloij�1 has completed processing.

A solution s to an instance of then � m JSP specifies a processing order for all
of the jobs on each machine, and implicitly specifies an earliest start timeest(x)

and earliest completion timeect(x) for each operationx [16]. Although a num-
ber of objective functions have been defined for the JSP, most research consid-
ers the problem of makespan minimization [2]. ThemakespanCmax(s) of a so-
lution s is the maximum earliest completion time of the last operation of any
job: Cmax(s) = max(ect(o1;m); ect(o2;m); :::; ect(on;m)). We denote the optimal
makespan of a problem instance byC�

max. The decision problem of finding a solu-
tion to the JSP with a makespan less than or equal to some constantL is known to
beNP -complete form � 2 andn � 3 [17]. Further, the JSP is widely regarded as
one of the most difficultNP -complete problems encountered in practice [2] [1].

As discussed in Section 3.3, extraction and manipulation of the critical paths of a
solutions is a key component of tabu search algorithms for the makespan mini-
mization form of the JSP. Acritical path of a solutions consists of a sequence of
operationso1; o2; :::; ol such that (1)est(o1) = 0, (2) ect(ol) = Cmax(s), and (3)
est(oi) = ect(oi�1) for 1 � i � l, whereect(o0) = 0 by convention. The opera-
tionsoi are known ascritical operations. A critical block consists of a contiguous
sub-sequence of operations on a critical path that are processed on the same ma-
chine. A solutions may possess more than one critical path. If multiple critical
paths exist, they may share common sub-sequences of critical operations.
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3.2 Generating problem instances

An instance of then�m JSP is uniquely defined by the set ofnm operation dura-
tions�ij and then job routing orders�i (1 � i � n and1 � j � m). Typically, the
�ij are independently and uniformly sampled from a fixed-width interval, typically
[1; 99] (e.g., see Taillard [18]). Most often, the job routing orders�i are produced
by generating independent random permutations of the integers[1::m]. We refer to
problem instances in which both the�ij and�i are independently and uniformly
sampled asgeneralJSPs.

Well-known specializations of the JSP impose non-random structure on the job
routing orders. One such specialization we consider in Section 6.2 are JSPs with
workflow. In workflow JSPs, the set of machines is typically divided into two equal-
sized partitions containing machines1 throughm=2 andm=2 + 1 throughm, re-
spectively, and every job must be processed on all machines in the first partition
before any machine in the second partition. Within the partitions, the job routing
orders are produced by generating independent random permutations of the integers
[1::m=2] and[m=2 + 1::m], respectively.

3.3 Algorithm description

The analyses in Sections 4 through 6 are based on a tabu search algorithm for the
JSP introduced by Taillard [16], which we denoteTSTaillard. We note thatTSTaillard

is not the best available tabu search algorithm for the JSP; both the tabu algo-
rithms by Nowicki and Smutnicki [5] and Dell’Amico and Trubian [19] provide
stronger overall performance. Rather, we have selectedTSTaillard for three reasons.
First, TSTaillard provides reasonable performance of the set of widely-used bench-
mark problems, and out-performs many other local and constructive search algo-
rithms for the JSP. Second, high-performance tabu search algorithms are generally
much more complex thanTSTaillard, complicating analysis. Instead of tackling the
most complex algorithms first, our goal is to develop a descriptive cost model for a
straightforward implementation of tabu search in the JSP, and then tosystematically
assess the influence of more complex algorithmic features on the descriptive cost
model of the basic algorithm. Third, as we now discuss, certain features ofTSTaillard

make it particularly amenable to analysis, especially in comparison to more ad-
vanced tabu search algorithms for the JSP.

At the core of any local search algorithm is a move operator, which defines the set
of solutions that can be reached from the current solution; elements of this set are
calledneighborsof the current solution. In the JSP, neighbors are generally pro-
duced by re-ordering the sequence of operations on a critical path; only through
such re-ordering is it possible to produce a neighbor with a makespan better than
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that of the current solution [20]. The first move operator for the JSP was introduced
by van Laarhoven et al. [20], and is often denoted byN1 . The neighborhood of
a solutions under theN1 move operator is generated by swapping the order of
all distinct pairs of adjacent operations on the same critical block ins. An impor-
tant property ofN1 is that it induces search spaces that are provablyconnected, in
that it is always possible to move from an arbitrary solution to a global optimum.
Consequently, it is possible to construct a local search algorithm based onN1 that
will eventually locate an optimal solution, given a sufficiently large run-time. Hoos
[21] refers to algorithms with this property as beingprobabilistically approximately
complete, or PAC; the probability of the algorithm locating an optimal solution ap-
proaches1 as the run-time approaches1. A primary reason we considerTSTaillard

in our analysis is that it is based on theN1 operator. Further,TSTaillard is, at least
empirically, PAC: in producing the results discussed in Sections 4 through 6, no
trial of TSTaillard failed to locate an optimal solution. In contrast, many of the more
advanced tabu search algorithms for the JSP use move operators that induce discon-
nected search spaces, and are consequently not PAC: e.g., Nowicki and Smutnicki’s
algorithm. Our primary goal is to model the cost of locating optimal solutions to
the JSP, and as we discuss later in this section, the measurement of this cost is
straightforward only if an algorithm is PAC.

The descriptive cost models we consider in Section 4 are based in part on search
space features that involve distances between pairs of solutions; for example, the
average distance between local optima or the mean distance between random solu-
tions and the nearest optimal solution. Ideally, the distance between two solutions is
defined as the minimum number of applications of a particular move operator that
are required to transform one solution into the other. Unfortunately, computation of
this measure is generally intractable, and operator-independent measures are typi-
cally substituted. The most widely used operator-independent distance measure in
the JSP is defined as follows [7]. Letpreceedsi;j;k(s) be a Boolean-valued function
indicating whether jobi is processed before jobj on machinek in a solutions. The
distanceD(s1; s2) between two solutionss1 ands2 to ann�m JSP instance is then
given by:

mX
i=1

n�1X
j=1

nX
k=j+1

preceedsi;j;k(s1)� preceedsi;j;k(s2) (1)

where the symbol� denotes the Boolean XOR operator. We denote the normalized
distance2D(s1; s2)=mn(n� 1) byD(s1; s2); clearly,0 � D(s1; s2) � 1. Another
important property of theN1 operator is the fact that Equation 1 provides a rela-
tively tight lower bound on the number of applications of theN1 move operator to
transform solutions1 into solutions2. In contrast, similar lower bounds or even es-
timates for more advanced JSP move operators, including that used by Dell’Amico
and Trubian’s algorithm, are currently unknown.
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TSTaillard is a relatively ‘vanilla’ implementation of tabu search [22]. As with most
tabu search algorithms for the JSP, recently swapped pairs of jobs are prevented
from being re-established for a particular duration, called the tabu tenure. In each
iterationof TSTaillard, allN1 neighbors are generated. The neighbors are then classi-
fied as tabu (the pair of jobs was recently swapped) or non-tabu, and the best non-
tabu move is taken; ties are broken randomly. All runs are initiated from randomly
generated local optima, produced using a standard steepest-descent algorithm initi-
ated from a random ‘semi-active’ solution [16]. The only long-term memory mech-
anism is a simple aspiration criterion, which over-rides the tabu status of any move
that results in a solution that is better than any encountered during the current run.
As indicated by Taillard ([16], p. 100), long-term memory is only necessary for
problems that require a very large (> 1 million) number of iterations, which is not
the case for the test problems considered in our analysis. The only parameters of
TSTaillard involve computation of the tabu tenure, which is uniformly sampled from
the interval[6; 14] every15 iterations. Empirically,TSTaillard fails to be PAC without
such a dynamic tabu tenure, or if the tabu tenure is sampled from a smaller interval
(e.g.,[5; 10]).

The cost required to solve a given problem instance usingTSTaillard, or any PAC algo-
rithm, is naturally defined as the number of iterations required to locate an optimal
solution. However, the number of iterations is stochastic (with an approximately
exponential distribution [16]), due to both the randomly generated initial solution
and random tie-breaking when more than one ‘best’ non-tabu move is available.
Consequently, we define the local search cost for a problem instance as the median
number of iterations required to locate an optimal solution over5000 independent
runs, which we denotecostmed. This contrasts with SAT, in which researchers have
reported that only1000 samples are required to produce relatively stable estimates
of the median [21] [10].

3.4 Prior research on problem difficulty in the JSP

A number of qualitative observations regarding the relative difficulty of various
types of JSPs have emerged over time, from a wide variety of sources [1]:

(1) For both general and workflow JSPs, ‘square’ (n=m � 1) problems are gen-
erally more difficult than ‘rectangular’ (n=m� 1) problems.

(2) Given fixedn andm, workflow JSPs are generally more difficult than general
JSPs.

(3) Given fixedn andm, relative problem difficulty is largely algorithm indepen-
dent.

Clearly, any such model needs at least to be consistent with, and should ultimately
provide explanations for, each of these three observations.
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Large differences in the difficulty of square versus rectangular JSPs are easily il-
lustrated by considering the best-known makespans and lower bounds for the prob-
lems in Taillard’s benchmark suite, which are available from the OR-Library [23].
Specifically, the optimal makespans of all the relatively small20�20 and30�20 in-
stances are currently unknown, while optimality has been established for all but two
of the larger50� 20 and100� 20 instances, although the search spaces are astro-
nomically larger in the latter instances. Taillard [16] studied the impact of changes
in the ratio ofn=m on search cost forTSTaillard. His experiments demonstrated that
for n=m � 6, the growth in the cost of locating optimal solutions growspolyno-
mially with increases inn andm, despite an exponential growth in the size of the
search spaces. In contrast, for problems withn=m � 1, the search cost grows expo-
nentially with increases inn andm, as expected given the proportionate growth in
the size of the search space. Although intuitive explanations have been proposed for
why the growth in problem difficulty changes with increases inn=m, a complete
understanding of this phenomenon remains elusive. No research has analyzed the
changes in search space features asn=m is varied, which is of particular interest
when developing descriptive cost models of local search.

The second observation stems largely from computational experiments on two sets
of 50 � 10 general and workflow JSPs introduced by Storer et al. [24]: a large
number of algorithms for the JSP have more difficulty finding high-quality solu-
tions to the instances with workflow. Further, the optimal makespans of all the
general instances are known, while optimality has only been established for one
of the workflow instances. The sole quantitative study of problem difficulty in the
JSP is due to Mattfeld et al. [7], and is largely devoted to providing an explanation
for the differences in relative difficulty of general and workflow JSPs. Mattfeld et
al.’s study also provides a possible explanation for why genetic algorithms gener-
ally perform poorly on the JSP. Mattfeld et al. identified significant differences in
the search spaces of Storer et al.’s general and workflow instances, specifically by
demonstrating that the extension of the search space (as measured by the average
distance between random local optima) is larger in workflow JSPs than in general
JSPs. This suggests a cause for the relative differences in search cost between the
two problem types. Similar differences were observed for two other quantitative
search space measures: entropy and correlation length.

Finally, the third observation results from the fact that easy (difficult) benchmark
problem instances are easy (difficult) forall search algorithms, including those
based on branch-and-bound, constraint programming, and local search. A causal
basis for this phenomenon is lacking, although we hypothesize an explanation for
the class of local search algorithms in Section 4.5.
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4 Modeling the cost of locating optimal solutions

We now introduce and analyze several models of the cost required byTSTaillard to
find optimal solutions to general JSPs. Each model is based on a specific feature of
the search space: the number of optimal solutions, the backbone size, the average
distance between local optima, and mean distance between random solutions and
the nearest optimal solution. Similar models have been considered in other contexts,
primarily SAT, and we analyze their ability to model the cost of tabu search for
general JSPs. We then consider models based on aggregations of these factors,
specifically analyzing the impact of additive and interaction effects.

Because the models we adapt were originally developed for otherNP -complete
problems such as SAT, their applicability to the JSP is unclear a priori. For example,
the SAT search space is dominated by plateaus of equally-fit quasi-solutions, each
containing an identical, small number of unsatisfied clauses. The main challenge for
local search is to either find an exit from a plateau to an improving quasi-solution, or
to escape the plateau by accepting a short sequence of dis-improving moves [25]. In
contrast, the JSP search space is dominated by local optima with variable-sized and
variable-depth attractor basins, which local search algorithms must either escape or
avoid. Further, local search algorithms for SAT are largely stochastic, while tabu
search algorithms such asTSTaillard are largely deterministic. On the other hand, the
features underlying these models are very intuitive, and would appear to influence
the difficulty of local search in a wide range ofNP -complete problems.

In this section, we demonstrate that despite strong differences in both search space
topologies and local search mechanisms, adaptations of the SAT descriptive cost
models do yield an accurate descriptive cost model of search cost inTSTaillard for
the general JSP. Specifically, we show that (1) only the mean distance between
random local optima and the nearest global optimum accounts for a substantial
proportion of the variance in local search cost, (2) simultaneous consideration of
other features, through the addition of either additive or interaction terms, does not
enhance the accuracy of this model, and (3) the correlation between the number of
optimal solutions and the backbone size is extremely high, with one factor provid-
ing no more information than the other.

The material presented in this section is a significant extension of an analysis we
previously reported [26]. In our prior work, we directly replicated the methodol-
ogy introduced by Singer et al. [10], and demonstrated that the SAT descriptive
cost models also applied toTSTaillard for the general JSP. In this section, instead of
controlling for various features a priori, we adopt a different methodology. Instead,
we explicitly focus on model accuracy for ‘typical’ instances of the general JSP.
The new methodology also enables our new insights concerning the existence of
interactions between the various search space features.
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Finally, as discussed in Section 2, we quantify the accuracy of each descriptive cost
model using linear or multiple regression techniques. Unless otherwise noted, the
assumptions concerning model errors (e.g., the errors are normally distributed and
homogeneous) are approximately satisfied, and theF -statistics are significant at
p < 0:0001. For instances where the regression assumptions are not satisfied, we
additionally report the non-parametric Spearman’s rank correlation coefficient.

4.1 Test problems

For a number of reasons, models of problem difficulty are generally produced by
considering relatively small problem instances. We develop our descriptive cost
models using6 � 4 and 6 � 6 general JSPs; we selected these two groups be-
cause they represent rectangular and square JSPs, respectively (see Section 3.4).
For both groups, we generated1000 instances using the procedures discussed in
Section 3.2. Three of the four models we consider require computation ofall opti-
mal solutions to a problem instance, which can number in the tens of millions for
6� 4 and6� 6 general JSPs. Further,costmed for each problem instance is defined
as the median search cost over5000 independent runs ofTSTaillard, which requires
considerable CPU time for even small JSPs. Consequently, extensive analysis of
descriptive cost models on larger general JSPs is currently impractical. For each
of the 2000 problem instances, we used an independent implementation of Beck
and Fox’s [27] constraint-directed scheduling algorithm to compute the optimal
makespan, the backbone size, and the set of optimal solutions. Finally, we note that
the distribution oflog10(costmed) is approximately normal for both problem groups,
with any deviation due to the presence of a few very high-cost problem instances.

4.2 The number of optimal solutions and search cost
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Fig. 1. Scatter-plots oflog10(joptsolsj) versuslog10(costmed) for 6�4 (left figure) and6�6
(right figure) general JSPs; the least-squares fit lines are super-imposed. Ther2 values for
the corresponding regression models are0:5307 and0:2231, respectively.
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The first descriptive cost model we consider is based on the number of optimal so-
lutions to a problem instance, which we denotejoptsolsj. Intuitively, a decrease in
the number of optimal solutions should yield an increase in local search cost. This
observation formed the basis of the first descriptive cost model of local search in
both SAT and CSP, first introduced by Clark et al. [8] (and later refined by Singer
et al. [10]). Clark et al. demonstrated a relatively strong negativelog10-log10 cor-
relation between the number of optimal solutions and search cost for three local
search algorithms, withr-values ranging anywhere from�0:77 to �0:91. How-
ever, the model failed to account for the large cost variance observed for problems
with small numbers of optimal solutions, where model residuals varied over three
or more orders of magnitude. We have also observed very similar behavior for
TSTaillard in the general JSP [26].

We show scatter-plots oflog10(joptsolsj) versuslog10(costmed) for 6 � 4 and6 � 6

general JSPs in Figure 1. Ther2 values for the corresponding regression models
are 0:5365 and 0:2223, respectively. Although the model errors are clearly het-
erogeneous [8] [26], the results are consistent with the computed rank correlation
coefficients (�0:7277 and�0:4661, respectively). In comparing the results for the
6 � 4 and6 � 6 general JSPs, it is important to note the large difference in size
of the search spaces:260 versus290, respectively. Consequently, although the range
of log10(joptsolsj) is nearly identical in both cases, the relative number of optimal
solutions is, on average, much smaller for the6 � 6 general JSP. Given that the
accuracy of thejoptsolsjmodel is poor for instances with small numbers of optimal
solutions, the discrepancy between ther2 values of the6�4 and6�6 general JSPs
can be explained by noting that the frequency of instances with relatively small
numbers of optimal solutions is larger in square general JSPs [26].

The results presented in Figure 1 indicate that for typical general JSPs, a descriptive
cost model based onjoptsolsj is relatively inaccurate, accounting for roughly50%
of the variance in search cost in thebestcase. In the general JSP, asn=m ! 1,
the frequency of problem instances with a large number of optimal solutions in-
creases. By extrapolation, we would then expect the accuracy of thejoptsolsjmodel
to increase asn=m!1. In contrast, the accuracy of the model appears worst for
the most difficult class of general JSP (i.e., those withn=m � 1:0), with model
residuals varying over2 to 3 orders of magnitude.

4.3 Backbone size and search cost

Recently, researchers have introduced several models of problem difficulty that are
based on the concept of a backbone. Informally, thebackboneof a problem instance
is the set of solution attributes that have identical values inall optimal solutions to
the instance. For example, in SAT the backbone is the set of Boolean variables
that have identical values in all optimal (i.e., satisfying) assignments; in the TSP,
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Fig. 2. Scatter-plots ofjbackbonej2 versuslog10(costmed) for 6 � 4 (left figure) and6 � 6
(right figure) general JSPs; the least-squares fit lines are super-imposed. Ther2 values for
the corresponding regression models are0:5307 and0:2231, respectively.

the backbone consists of the set of edges common to all optimal tours. The recent
interest in backbones stems largely from the discovery that backbone size (as mea-
sured by thefractionof solution attributes appearing in the backbone) is correlated
with search cost in SAT (e.g., see Monasson et al. [28]). Specifically, Parkes [9]
showed that large-backboned SAT instances begin to appear in large quantities in
the critical region of the phase transition (for a more detailed investigation into the
relationship between backbone size and the SAT phase transition, see Singer et al.
[10] or Singer [29]). Similarly, Achlioptas et al. [30] demonstrated a rapid transi-
tion from small to large-backboned instances in the phase transition region. While
researchers have demonstrated a correlation between backbone size and problem
difficulty in SAT, none of the papers cited directly measure thestrengthof this
correlation.

Only Slaney and Walsh [31] have studied the influence of backbone size on search
cost in problems other than SAT. Focusing on constructive search algorithms, they
analyze the cost of both finding an optimal solution and proving optimality in a
number ofNP -complete problems, including the TSP and the number partitioning
problem. For these two problems, Slaney and Walsh report a weak-to-moderate cor-
relation between backbone size and the cost of finding an optimal solution (0:138

to 0:388). No studies to date have directly quantified the correlation between back-
bone size and problem difficulty for local search algorithms, and this relationship
has only been qualitatively explored for SAT.

The definition of a backbone clearly depends on how solutions are represented. The
most common solution encoding used in local search algorithms for the JSP, includ-
ing TSTaillard, is thedisjunctive graph[32]. In the disjunctive graph representation,
there aren(n � 1)=2 Boolean ‘order’ variables for each of them machines, each
of which represents a precedence relation between a distinct pair of jobs on a ma-
chine. Consequently, we define the backbone of a JSP as the set of Boolean order
variables that have the same value in all optimal solutions. We define the backbone
size in the JSP as the fraction of the possiblemn(n� 1)=2 order variables that are
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fixed to the same value in all optimal solutions, which we denote byjbackbonej.

Following Slaney and Walsh, our initial analysis considered the influence ofjbackbonej
on log10(costmed). We observed a significant quadratic component in the relation-
ship, and the linear term in the quadratic regression model is statistically insignifi-
cant. We show scatter-plots ofjbackbonej2 versuslog10(costmed) for 6� 4 and6� 6

general JSPs in Figure 2. Ther2 values for the corresponding regression models are
0:5307 and0:2331, respectively. As with thejoptsolsj, the model errors are hetero-
geneous, although the results are consistent with the computed rank correlation co-
efficients (0:7275 and0:4701, respectively). In both instances, ther-values (0:7285
and0:4828, respectively) are significantly larger than that reported by Slaney and
Walsh for constructive search algorithms. Further, we found absolutely no evidence
that the most difficult instances possess medium-sized backbones, as conjectured
by Achlioptas et al. [30] for SAT.

Of more interest is the exceptionally close correspondence between ther2 values of
thejbackbonej andjoptsolsjmodels; the absolute differences for the6� 4 and6� 6

general JSPs are only0:0058 and0:0108, respectively. Upon closer examination,
this phenomenon is due to an extremely high correlation betweenjbackbonej2 and
log10(joptsolsj): �0:9337 and�0:9103 for 6� 4 and6 � 6 problems, respectively.
Within each problem group, the correlation is near-perfect for instances with large
backbones, and gradually decays asjbackbonej ! 0:0. Our results indicate that,
somewhat surprisingly, for problem instances with moderate-to-large backbones,
the backbone size is essentially a proxy for the number of optimal solutions, and
vice-versa. From the standpoint of models of problem difficulty for reasonably dif-
ficult general JSPs (i.e., those with moderate-to-large backbones), the two features
are redundant. In retrospect, this observation is not surprising given what is implied
by a large backbone – as more order variables are fixed, fewer solutions can satisfy
the constraints of the backbone. We conjecture that a similar phenomenon occurs
in SAT.

4.4 The average distance between local optima and search cost

Search in algorithms with a strong bias toward local optima, such as tabu search and
certain hybridized genetic algorithms, is largely constrained to the sub-space of lo-
cal optima. Consequently, we would expect search cost in these algorithms to be at
least somewhat correlated with the size of this sub-space. A similar observation led
Mattfeld et al. [7] to consider whether differences in the size of this sub-space could
account for relative differences in the difficulty of general and workflow JSPs. Us-
ing Equation 1 (presented in Section 3.3), Mattfeld et al. define the size of the local
optima sub-space as the average normalized distanceD(s1; s2) between distinct
random pairs of local optima; we denote this measure byloptdist. Mattfeld et al. did
not directly analyze the ability ofloptdist to account for the variance in search cost
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Fig. 3. Scatter-plots oflog10(loptdist) versuscostmed for 6� 4 (left figure) and6� 6 (right
figure) general JSPs; the least-squares fit lines are super-imposed. Ther2 values for the
corresponding regression models are0:2415 and0:2744, respectively.

observed for different instances of a given problem size.

For each of our general JSPs, we computeloptdist using a set of5000 random
local optima produced using the steepest-descent procedure documented in Sec-
tion 3.3. Scatter-plots ofloptdist versuslog10(costmed) for 6 � 4 and6 � 6 general
JSPs are shown in Figure 3. Ther2 values for the corresponding regression models
are0:2415 and0:2744, respectively. These results confirm the intuition that the size
of the local optima sub-space is correlated with the cost of finding optimal solu-
tions underTSTaillard, albeit more weakly than eitherjoptsolsj or jbackbonej in 6 � 4

general JSPs (i.e.,r2 values of0:2415 versus0:5365 and0:5307, respectively). The
strength of the correlation is roughly identical to that ofjoptsolsj andjbackbonej for
6�6 general JSPs (i.e.,r2 values of0:2744 versus0:2223 and0:2331, respectively).
Finally, in contrast to bothjoptsolsj andjbackbonej, the strength of theloptdistmodel
is largely insensitive to relatively small changes in the problem dimensions.

To summarize, the descriptive cost model based onloptdist fails to account for a
significant proportion of the variance in the cost ofTSTaillard in the general JSP.
Further, the models based on bothjoptsolsj andjbackbonej are at least as accurate as
the loptdistmodel. Finally, in Section 6.2 we re-visit and ultimately refute Mattfeld
et al.’s original claim regarding the ability of differences inloptdist to account for
differences in the difficulty of general and workflow JSPs.

4.5 The distance between initial solutions and the nearest optimal solution and
search cost

In both the JSP and SAT, the accuracy of thejoptsolsj model decreases as the num-
ber of optimal solutions approaches0. Analogously, thejbackbonej model is more
accurate on problem instances with small backbones. Singer et al. [10] recently
introduced a descriptive cost model for SAT that largely corrects for these deficien-
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Fig. 4. Scatter-plots of
p
dlopt-opt versuslog10(costmed) for 6 � 4 (left figure) and6 � 6

(right figure) general JSPs; the least-squares fit lines are super-imposed. Ther2 values for
the corresponding regression models are0:826 and0:6541, respectively.

cies. Local search algorithms for SAT, such as GSAT or Walk-SAT [21], quickly
locate sub-optimalquasi-solutions, in which relatively few clauses are unsatisfied.
These quasi-solutions form a sub-space that contains all optimal solutions, and is
largely interconnected; once a solution in this sub-space is identified, local search
is typically restricted to this sub-space. This observation led Singer et al. to hypoth-
esize that the distance between the first quasi-solution encountered and the nearest
optimal solution largely dictates the cost of local search in SAT.

A obvious analog of quasi-solutions in SAT are local optima in the JSP. For each
of our general JSPs, we generated5000 random local optima using the steepest-
descent procedure documented in Section 3.3. We then computed the mean nor-
malized distance between the resulting local optima and the nearest optimal solu-
tion using Equation 1 (presented in Section 3.3); we denote the result byd lopt-opt.
The distances are normalized to enable comparisons between6� 4 and6� 6 gen-
eral JSPs; Singer et al. did not perform normalization because the problem size
is held constant in their experiments. An initial regression model ofd lopt-opt ver-
suslog10(costmed) indicated a slight curvature in the residual plots for small values
of dlopt-opt, which is corrected via substitution by the term

q
dlopt-opt. Scatter-plots

of
q
dlopt-opt versuslog10(costmed) for 6 � 4 and6 � 6 general JSPs are shown in

Figure 4. Ther2 values for the corresponding regression models are0:826 and
0:6541. As we discuss in detail below and in Section 6.1, the model errors are het-
erogeneous; however, the results are consistent with the computed rank correlation
coefficients(0:9162 and0:8072, respectively).

Clearly, thedlopt-opt model is significantly more accurate than any of thejoptsolsj,
jbackbonej, or loptdistmodels. In both6� 4 and6� 6 general JSPs, there is strong
evidence that the model residuals are heterogeneous, generally growing larger with
increases in

q
dlopt-opt. Consequently, thedlopt-opt model is less accurate for problem

instances with largedlopt-opt, or equivalently, with largecostmed. Singer et al. report
a similar phenomenon in thedlopt-opt model for SAT, and these results are consistent
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with our prior research on local search cost in the general JSP [26].

The discrepancy between ther2 values for6 � 4 and6 � 6 general JSPs is due to
two factors. First, there are more very high-cost6 � 6 instances (e.g., those with
log10(costmed) > 3:5), and large model residuals are typically associated with such
instances. Second, although the range ofdlopt-opt is nearly identical in6�4 and6�6

general JSPs, the relative frequency of instances for which
q
dlopt-opt� 0:3 is much

larger in6 � 4 general JSPs (161 versus67). We further analyze the relationship
between thedlopt-opt model and very high-cost general JSPs in Section 6.1 and con-
sider the influence of the ratio of jobs to machines (n=m) on the accuracy of the
dlopt-opt model in Section 5.2.

To summarize, the descriptive cost model based ondlopt-opt accounts for a substan-
tial proportion of the variance in the cost ofTSTaillard in typical general JSP. With
few exceptions, the model residuals vary over roughly1 to 1:5 orders of magnitude
in 6�4 and6�6 problems, respectively; the improvement is substantial in compar-
ison to the residuals for the models based on eitherjoptsolsj, jbackbonej, or loptdist.
Finally, thedlopt-opt model is also consistent with the observation that hard (easy)
problem instances tend to be hard (easy) for all local search algorithms, as dis-
cussed in Section 3.4. Intuitively, if the distance between random solutions and the
nearest optimal solution for a particular problem instance is very large, we would
expect the instance to be difficult foranyalgorithm based on local search, as search
in these algorithms clearly progresses in small increments.

4.6 Multiple-feature models and search cost

Table 1
The correlation (Pearson’s) between search space features for6� 4 general JSPs.

log
10
(joptsolsj) jbackbonej loptdist dlopt-opt

log
10
(joptsolsj) 1.0 -0.921 -0.039 -0.751

jbackbonej -0.921 1.0 0.006 0.722

loptdist -0.039 0.006 1.0 0.571

dlopt-opt -0.751 0.722 0.571 1.0

We now consider whether a descriptive cost model that is more accurate than the
dlopt-opt model can be produced by considering combinations of additive and/or in-
teraction effects of the four search space features we considered thus far. We pro-
ceed via well-known multiple regression methods. Ideally, the independent vari-
ables in a multiple regression model are highly correlated with the dependent vari-
able, but not with each other; if the independent variables are highly correlated, they
are said to be collinear. Collinearity is known to cause difficulties for model selec-
tion techniques in multiple regression, in part because the regression coefficients
are not unique, making interpretation very difficult [15]. In Table 1, we show the
correlation for6� 4 general JSPs between the four search space features that serve
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as the independent variables in our multiple regression model. Similar correlations
hold for6� 6 general JSPs, indicating a high degree of collinearity among the four
search space features we have considered. Finally, when the sample size is large,
terms may be statistically significant due to high power, but in reality may have
very small practical effect: i.e., dropping these terms yields a negligible reduction
in the modelr2.

We first consider multiple regression models with only additive terms. In both6�4

and6 � 6 general JSPs, the models resulting from forward selection, backward
elimination, and step-wise model selection methods [15] [33] were very different,
as expected given collinear independent variables and a large sample size. However,
the dlopt-opt term was present in all of the resulting models, and was consistently
the most statistically significant term. For6 � 4 and6 � 6 general JSPs, the best
multiple regression models we obtained yieldedr2 values of0:8296 and0:6589,
respectively; further, ther2 values for all models were very similar. Given that
the correspondingr2 values for the basicdlopt-opt model are0:8260 and 0:6541,
we conclude that the addition of theloptdist, joptsolsj, andjbackbonej features fails
to enhance the accuracy of thedlopt-opt model. Similarly, we foundno statistically
significant interaction terms. Further, ther2 values for any models with interaction
terms were no larger than those obtained by models without interaction terms.

Interestingly, although Singer et al. control for backbone size in their experiments,
they do not explicitly indicate whether an interaction effect betweendlopt-opt and
jbackbonej was observed. However, their results do suggest a lack of interaction
effect, in that the slopes of thedlopt-opt model are largely homogeneous across a
wide range of backbone sizes and clause-to-variable ratios (e.g., see Singer et al.
(2000), Table 2, p. 249); the intercepts are slightly more variable, which is likely
due in part to the presence of high-residual problem instances.

4.7 A note on backbone robustness

In addition to introducing thedlopt-opt model for SAT, Singer et al. also posited a
causal model to account for the variance indlopt-opt observed for different problem
instances. Their model is based on the notion ofbackbone robustness. A SAT in-
stance is said to have arobustbackbone if a substantial number of clauses can be
deleted before the backbone size is reduced by at least half. Conversely, an instance
is said to have afragile backbone if the deletion of just a few clauses reduces the
backbone size by half or more. Singer et al. argue that “backbone fragility approx-
imately corresponds to how extensive the quasi-solution area is” ([10], p.251), by
noting that a fragile backbone allows for largedlopt-opt because of the sudden drop in
backbone size, whiledlopt-opt is necessarily small in problem instances with robust
backbones.
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As evidence of this hypothesis, Singer et al. measured a moderate (� �0:5) neg-
ative correlation between backbone robustness and the log of local search cost for
large-backboned SAT instances. Surprisingly, this correlation degraded as the back-
bone size was decreased, leading to the hypothesis that “finding the backbone is less
of an issue and so backbone fragility, which hinders this, has less of an effect” ([10],
p. 254), although this conjecture was not explicitly tested. We have previously re-
ported very similar results for general JSPs [26]. As indicated in Section 4.5 and
more fully in Section 6, we have since discovered relatively serious deficiencies in
thedlopt-opt model, and feel it is somewhat premature to posit causal hypotheses be-
fore the source of these deficiencies is completely understood. As a consequence,
we have failed to pursue further analyses of backbone robustness in the JSP.

5 Applications of thedlopt-opt model

The analyses presented in Section 4 demonstrate that thedlopt-opt descriptive cost
model accounts for a substantial proportion of the variance in the cost of find-
ing optimal solutions to typical general JSPs under theTSTaillard algorithm. Further,
more complex models that considerdlopt-opt in conjunction with backbone size, the
number of optimal solutions, and the size of the search space failed to yield even
marginal improvements. In this section, we additionally show that thed lopt-optmodel
accounts for both (1) a substantial proportion of the variance in the cost of finding
sub-optimalsolutions to typical general JSPs underTSTaillard and (2) differences in
the relative difficulty of general JSPs with different job-to-machine ratios.

5.1 Modeling the cost of locating sub-optimal solutions
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Fig. 5. The offsetx from the optimal makespanC�
max, 0 � x � 25, versus the cost

costmed(x) required to locate a solution withCmax � C�
max + x for two 6 � 6 general

JSPs. The numeric annotations indicate eitherdinit�T (x) for specific ax, or the range of
dinit�T (x) over a contiguous sub-interval ofx.

21



Because they are incomplete, local search algorithms are only used to find solutions
to satisfiable SAT instances, where the evaluation of the global optima is known,
and is equal to the total number of clausesm. Such a priori knowledge leads to
the obvious termination criterion: keep searching until a global optimum is located.
Consequently, analyses of problem difficulty for local search in SAT only consider
the cost required to locate globally optimal solutions. For mostNP -complete prob-
lems, however, the evaluation of the global optima is not known a priori. Armed
only with the knowledge that larger run-times generally lead to higher-quality so-
lutions, local search practitioners generally use the following termination criterion:
allocate as much CPU time as possible, and return the best solution found.

Although larger run-times generally yield higher-quality solutions, the relationship
is typically discontinuous, non-linear, or both. Often, small or moderate increases in
run-time fail, on average, to improve solution quality; for example, St¨utzle ([11], p.
47) notes that in the Traveling Salesman Problem “...instances appear to have ‘hard
cliffs’ for the local search algorithm, corresponding to deep local minima, which
are difficult to pass.”. Similar observations have been reported for a variety ofNP -
complete problems, including the JSP. Another manifestation of this phenomenon
has been observed by several researchers, including ourselves. Here, multiple in-
dependent trials of a particular local search algorithm typically yield sub-optimal
solutions that can be partitioned into a very small number of sub-sets (often1), with
each sub-set containing solutions with identical evaluations.

One simple way to visualize these and other similar observations is to plot the cost
required to achieve a solution with an evaluation ofat leastC �

max + x over a wide
range ofx � 0. In Figure 5, we provide examples of such plots for two moderately
difficult 6�6 general JSPs. In both plots, the offset from the optimal makespanx is
varied from0 to 25, and the median cost (over5000 independent runs ofTSTaillard)
required to find a solution with an evaluation of at leastC �

max + x is computed for
eachx, and is denoted bycostmed(x). In the left side of Figure 5, we see a typical
example of a problem instance with discrete jumps in search cost at specific sub-
optimal makespans, with plateaus in search cost in between the jump points. In the
right side of Figure 5, we show a problem instance for which the decay in search
cost is generally more gradual; a large, discontinuous jump in search cost occurs
only betweenx = 0 andx = 1.

As shown in Section 4, thedlopt-opt descriptive cost model accounts for a significant
proportion of the variance in the cost of finding optimal solutions to general JSPs
usingTSTaillard. Intuitively, this cost is large ifTSTaillard is, on average, initiated from
solutions that are very distant from the nearest optimal solution. We conjecture that
this intuition extends toanysub-set of solutions, including sub-optimal solutions;
we would expect local search cost to be proportional to the distance between the
initial solutions and the nearest target solution. As evidence of this conjecture, we
consider a setT (x) containing all solutions with a makespan betweenC �

max and
C�

max + x, x � 0, and denote the mean distance between random local optima and
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the nearest solution in the setT (x) by dinit�T (x); as in the computation ofdlopt-opt,
the statistics are taken over5000 independent samples. We have annotated the plots
in Figure 5 with the computeddinit�T (x), 0 � x � 25. In both instances, (1) large
jumps in search cost are clearly coincide with large jumps indinit�T (x), (2) inter-
vals of roughly constant search cost correspond to contiguous sub-intervals ofx

with nearly identical values ofdinit�T (x), and (3) gradual drops in search cost coin-
cide with gradual drops indinit�T (x). Consequently, we hypothesize thatdinit�T (x)

accounts for a significant proportion of the variance in the cost of findingboth
optimal and sub-optimal solutions to typical general JSPs usingTSTaillard.

To test this hypothesis, we computedcostmed(x) anddinit�T (x) for both our6 � 4

and6 � 6 general JSPs, varyingx from 1 to 25. Finding solutions to6 � 4 and
6 � 6 general JSPs withCmax > C�

max + 25 is generally easy forTSTaillard, with
costmed(25) � 100 in all but a few cases. Under this methodology, we are effectively
creating25 derivatives of each problem instance (one for each value ofx), which
results in new ‘sub-optimal’6 � 4 and6 � 6 problem groups, each with25 000
instances. For many of the derivative instances, especially those produced using
largex, costmed(x) = 0, or equivalentlydinit�T (x) � 0:0. We observed1293 6 � 4

zero-cost instances, and60 6 � 6 zero-cost instances; in both cases, the zero-cost
instances are excluded in the following analysis.

Fig. 6. Scatter-plots of
p
dlopt-optversuslog10(costmed) for the sub-optimal6�4 (left figure)

and6�6 (right figure) general JSP problem groups; the regression lines are super-imposed.
Ther2 values for the corresponding regression models are0:8866 and0:8252, respectively.

In Figure 6, we show scatter-plots of
q
dlopt-opt versuslog10(costmed) for the sub-

optimal6�4 and6�6 problem groups; ther2 values for the corresponding regres-
sion models are0:8866 and0:8252, respectively. Clearly, thedlopt-optmodel accounts
for most of the variance in the cost of finding sub-optimal solutions to typical gen-
eral JSPs usingTSTaillard. We observed largerr2 values in the sub-optimal6 � 4

and6 � 6 problem groups than for the corresponding problem groups analyzed
in Section 4.5:0:8866 versus0:8260 for the 6 � 4 problems and0:8252 versus
0:6541 for the6�6 problems. We explain the greater accuracy of thedlopt-opt on the
sub-optimal problem groups by noting that the proportion of instances with small
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Fig. 7. Histograms ofdlopt-opt for 10 000 4� 3 (left figure) and7� 3 (right figure) general
JSPs.

values ofdlopt-opt is larger in the sub-optimal problem groups, which corresponds to
the region where thedlopt-opt model is most accurate.

We conclude by noting that thedlopt-optmodel provides the first quantitative explana-
tion for ‘cliffs’ in local search cost observed at particular sub-optimal evaluations:
abrupt changes in local search cost occur when there are abrupt changes indlopt-opt.
Similarly, the plateaus observed in Figure 5 occur because solutions on the plateau
are equi-distant from random local optima;TSTaillard is equally likely to encounter
any of the solutions on the plateau, given a fixed run-time. Similarly, gradual in-
creases in search cost occur when slightly better solutions are only marginally far-
ther from random local optima.

5.2 Explaining differences in the relative difficulty of square versus rectangular
JSPs

Given the accuracy of thedlopt-opt model for both6 � 4 and6 � 6 general JSPs, it
is natural to consider whether or not differences in the distribution ofd lopt-opt for
problems with different ratios ofn=m can account for the empirical observation
that square JSPs are generally more difficult than rectangular JSPs.

Fixingm = 3, we generated10 000 general JSPs forn = 4 throughn = 7; although
we initially considered larger values ofn, the huge number ofoptimalsolutions (>
1 billion in many cases) prevented us from efficiently computingd lopt-opt. We show
histograms ofdlopt-opt for 4� 3 and7� 3 general JSPs in Figure 7. In4� 3 general
JSPs, the right-tail mass of the distribution is substantial (e.g., ford lopt-opt � 0:3),
especially in comparison to the distribution for7� 3 general JSPs, where instances
with dlopt-opt � 0:3 are quite rare. We have also generated similar histograms for
general JSPs withn=m < 1, where the distribution mass continues to shift toward
0:5.

Although not entirely conclusive, our results provide relatively strong evidence that
the right-tail mass of thedlopt-opt distribution vanishes asn=m ! 1, suggesting a
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cause for the empirical observation that square JSPs are generally more difficult
than rectangular JSPs. Further, we hypothesize that the shift from an exponential
to polynomial growth in search cost atn=m � 6 is due to the disappearance of
any significant mass in the right tail of thedlopt-opt distribution. However, due to
the huge number of optimal solutions in problem instances withn=m � 4, we
are currently unable to empirically test this hypothesis. Finally, we note that the
accuracy of thedlopt-opt model should further improve asn=m ! 1, due to the
increasing frequency of instances with small values ofdlopt-opt. Consequently, from
the standpoint of models of problem difficulty, only general JSPs withn=m � 1:0

warrant significant attention in the future.

In a previous paper [26], we argued that a shift in the distribution ofjbackbonej, and
notdlopt-opt, was responsible for differences in the relative difficulty of square versus
rectangular JSPs. While our original observation still holds (i.e., that the proportion
of instances with small backbones grows asn=m!1), we have chosen to re-cast
our original results in terms of the most accurate descriptive cost model available,
which is based ondlopt-opt.

6 Limitations of the dlopt-opt model

Although thedlopt-opt descriptive cost model largely accounts for the cost of finding
both optimal and sub-optimal solutions to typical general JSPs usingTSTaillard, and
provides an explanation for the differences in the relative difficulty of general JSPs
with different job-to-machine ratios, the model is by no means perfect. As discussed
in Section 4.5, thedlopt-opt model is less accurate for problem instances with large
values ofdlopt-opt (or, equivalently, largecostmed), and consequently fails to account
for roughly35% of the cost variance in our6� 6 general JSPs.

In this section, we identify two additional limitations of thed lopt�opt model. First,
we conclusively demonstrate that the accuracy of thedlopt�opt model is exception-
ally poor for very high-cost general JSPs (we provided some preliminary evidence
for this conclusion in Section 4.5). Second, we show that thedlopt�opt model is un-
able to account for a significant proportion of the variance in the cost of finding
optimal solutions of more structured JSPs: e.g., workflow JSPs. Although both of
the results presented in this section are clearly ‘negative’, we feel it is important to
identify and report such deficiencies, as research into why thedlopt�opt model fails
in these circumstances is likely to lead to more general and accurate descriptive
cost models in the future.
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Fig. 8. Scatter-plots of
p
dlopt-opt versus log10(costmed) for easy (costmed 2 [1; 49]),

moderate (costmed 2 [50; 499]), high (costmed 2 [500; 4999]), and very high-cost
(costmed 2 [5000;1]) 6 � 4 (left figure) and6 � 6 (right figure) general JSPs; the
least-squares fit lines are super-imposed. Ther2 values for the corresponding regression
models are0:7742 and0:6820, respectively.

6.1 Modeling search cost in exceptionally hard general JSPs

In Section 4.5, we provided evidence that thedlopt-opt model is less accurate for
problem instances with large values ofdlopt-opt, or equivalently, largecostmed. Of
particular concern are the rare, very high-cost (costmed� 10000) instances appear-
ing in both sides of Figure 4; in all but one case, these instances possess the largest
residuals under the corresponding regression model. To determine whether large
model residuals are typically associated with very high-cost general JSPs, we cre-
ated groups of6 � 4 and6 � 6 general JSPs with equal proportions of problem
instances over the range ofcostmed. Specifically, we sub-divided the range of possi-
blecostmedvalues into the following four contiguous sub-intervals:[1; 49], [50; 499],
[500; 4999], and[5000;1]. These intervals qualitatively correspond to easy, mod-
erate, difficult, and very difficult problem instances, respectively. For both6�4 and
6� 6 general JSPs, we then produced500 instances belonging to each sub-interval
using a generate-and-test procedure.

We provide scatter-plots of
q
dlopt-opt versuslog10(costmed) for the two resulting

problem groups in Figure 8. Ther2 values for the corresponding regression model
are0:7742 and0:6820, respectively. First, we note that because the high-cost and
very high-cost instances reside in the right-tail of thelog10(costmed) distribution, the
large relative frequencies of problem instances withcostmed near the lower bounds
of the corresponding sub-intervals was expected. In both problem groups, we ob-
serve a substantial reduction in the accuracy of thedlopt-opt model for high-cost
(500 � costmed� 4999) instances. For very high-cost instances (costmed� 5000),
the degradation in accuracy is far more extreme, such that

q
dlopt-opt provides al-

most no information aboutcostmed. These results clearly reinforce the deficiencies
of thedlopt�opt model discussed in Section 4.5: accuracy is inversely proportional to
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bothdlopt-opt andcostmed. As a direct consequence, although we are now able to ac-
count for a significant proportion of the variance in search cost for ‘typical’ general
JSPs, an understanding of the search space properties that make certain problems
exceptionally difficult forTSTaillard remains elusive.

Several researchers have reported situations in which problems that are exception-
ally difficult for one algorithm are much easier for other algorithms [34] [35].
To date, this phenomenon has only been observed in constructive search algo-
rithms, and occurs when one algorithm makes a particular sequence of decisions
that yields a very difficult sub-problem [34]. Although this phenomenon hasnot
been observed for local search in anyNP -complete problem, it does raise an ob-
vious question: “Is the exceptional difficulty of our very high-cost general JSPs
algorithm-independent?”. To informally answer this question, we solved both the
500 very high-cost and1000 ‘typical’ 6 � 6 (i.e., those considered in Section 4)
instances using two local search algorithms other thanTSTaillard, and a constructive
heuristic search algorithm. Specifically, we considered the following local search
algorithms: (1) Nowicki and Smutnicki’s state-of-the-art tabu search algorithm [5]
and (2) van Laarhoven et al.’s simulated annealing algorithm [20]. We selected
Nowicki and Smutnicki’s algorithm because it uses a much more powerful move
operator thanTSTaillard, and in contrast incorporates advanced long-term memory
mechanisms (see Section 3.3); van Laarhoven et al.’s algorithm provides a well-
known alternative local search paradigm to tabu search. The constructive algorithm
we consider is Beck and Fox’s constraint-directed scheduling algorithm [27], which
was selected because it shares little in common with local search algorithms for the
JSP. In all three cases, the search cost (as measured by the median search cost
over1000 independent trials for the two local search algorithms, and the number
of nodes visited by the constructive algorithm) was significantly higher in the very
high-cost instances. We therefore conclude that it appears that the difficulty of our
very high-cost general JSPs is algorithm-independent.

Finally, we conjecture that the failure of thedlopt-opt model to account for local
search cost in very difficult problem instances also extends to SAT. Although Singer
et al. do not provide scatter-plots ofdlopt-opt versuslog10(costmed) for high-cost prob-
lem instances (e.g., those with large backbones), their analysis does indicate that
the accuracy of thedlopt-opt model is inversely proportional to backbone size (e.g.,
see Singer et al. (2000), Table 2, p. 249), and as a consequence, tocostmed(as in the
general JSP, local search cost and backbone size are positively correlated in SAT).
Further, very high-cost SAT instances possess the largest residuals under Singer
et al.’s model of backbone robustness (e.g., see Singer et al. (2000), Figure 11, p.
255), which in turn is highly correlated withd lopt-opt.
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Fig. 9. Scatter-plots of
p
dlopt-optversuslog10(costmed) for 6�4 (left figure) and6�6 (right

figure) workflow JSPs; the least-squares fit lines are super-imposed. Ther2 values for the
corresponding regression models are0:6082 and0:3049, respectively.

6.2 Modeling search cost in JSPs with workflow

In the JSP and SAT, the primary problem constraints are the job routing orders�i

and the disjunctive clauses, respectively. Most widely used benchmark suites con-
sist of problem instances in which these constraints are, in expectation, completely
random. An important issue is then generalization: real-world problems have non-
random constraints, and it is unclear whether descriptive cost models developed for
random problems are extensible to problems with more structured constraints. To
study the effect of non-random constraints on the accuracy of the descriptive cost
models examined in Section 4, we apply the same analysis to JSPs with workflow–
which impose a simple structure on the job routing orders. All results are produced
using groups of6� 4 and6� 6 workflow JSPs, each containing1000 problem in-
stances; the details of the problem generation process are discussed in Section 3.2.

We first consider the results for our6�4 workflow JSPs. A scatter-plot of
q
dlopt-opt

versuslog10(costmed) is shown in the left side of Figure 9. Ther2 value for the
corresponding regression model is0:6082, which is roughly75% of ther2 value
observed for the same model for6 � 4 general JSPs (see Section 4.2). In con-
trasting the left sides of Figures 4 and 9, it is clear that the presence of workflow
partitions greatly increases the relative frequency of instances with large values of
dlopt-opt, which partially explains the reduction in the observedr2. Workflow parti-
tions also have a substantial impact on the accuracy of the other models considered
in Section 4. For example, we observed anr2 value of only0:0016 for the loptdist
model, in contrast to0:2415 for our general JSPs: the extent of the search space
has no bearing on search cost in6� 4 workflow JSPs usingTSTaillard. In contrast to
the results fordlopt-opt, we observed roughly a20% increasein ther2 values for the
joptsolsj andjbackbonej models, to0:6155 and0:6107, respectively. Consequently,
the accuracy of thejoptsolsj, jbackbonej, anddlopt-opt models is nearly identical. Fi-
nally, we note that strong correlation betweenlog10(joptsolsj) and jbackbonej2 is
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maintained (r = 0:� 0:8936) in the6� 4 workflow JSPs.

Next, we consider the results for our6�6 workflow JSPs; a scatter-plot of
q
dlopt-opt

versuslog10(costmed) is shown in the right side of Figure 9. Here, we see a further
reduction in the accuracy of thedlopt-opt model; ther2 value is over50% less than
that observed for the same model for6� 6 general JSPs, dropping from0:6541 to
0:3049. As with 6� 4 workflow JSPs, the reduction in accuracy is partially due to
dramatic increases in the relative frequency of problem instances with very large
values ofdlopt-opt. Similarly, the correlation betweenloptdist and log10(costmed) is
insignificant (r2 = 0:002983), and we observed an increase in the accuracy of the
joptsolsj and jbackbonej models (tor2 values of0:3345 and0:2974, respectively);
the relatively strong correlation betweenlog10(joptsolsj) and jbackbonej2 was also
maintained (r = �0:8346).

Our results also cast serious doubt on Mattfeld et al.’s assertion that differences
in the relative difficulty of general and workflow JSPs are due to differences in
loptdist. While we observed statistically significant differences between the mean
loptdistof general and workflow JSPs (e.g.,0:2080 versus0:3465 in 6 � 6 JSPs),
we also computed a relatively weak correlation betweenloptdistandlog10(costmed)

for general JSPs – for workflow JSPs, the correlation between these same variables
is almost0. Statistically significant mean differences between general and work-
flow JSPs also exist forjoptsolsj, jbackbonej2, and

q
dlopt-opt. Further, each of these

models is at least as accurate as theloptdistmodel forbothgeneral and workflow
JSPs. Consequently, we believe that any of thejoptsolsj, jbackbonej, anddlopt-opt

models provideat leastan equally likely explanation as theloptdistmodel for the
differences in relative difficulty between general and workflow JSPs.

Finally, we note that our results provide the first solid evidence that the descriptive
cost models for random and structured problem instances may in fact be quite dif-
ferent; no research to date has considered the impact of problem structure on the
descriptive cost models for SAT. Given the strong similarities between the descrip-
tive cost models of the JSP and SAT, we conjecture that existing descriptive cost
models for SAT, because they are based on random problem instances, will fail to
account for a significant proportion of the variability in search cost observed for
structuredSAT instances.

7 Conclusion

Drawing from research on problem difficulty in SAT, we demonstrated that the
dlopt-opt descriptive cost model accounts for a significant proportion of the variance
in the cost of finding optimal solutions to general JSPs using a straightforward tabu
search algorithm. This result was somewhat unexpected, given strong differences in
both the search space topologies and local search algorithms for the general JSP and
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SAT. Further, the accuracy of the model is nearly identical in both problems. In the
course of our analyses, we also encountered several other important, unanticipated
results: (1) backbone size and the number of optimal solutions are largely redundant
features of the search space, (2) there is no significant interaction effect between
dlopt-opt and any of the other search space features we considered, and (3) multiple-
factor models do not significantly improve upon the accuracy of thed lopt-opt model.

We then used thedlopt-opt model to explain two additional phenomenon involving
problem difficulty in the JSP. First, we showed that thedlopt-opt model also accounts
for a significant proportion of the variance in the cost of findingsub-optimalso-
lutions to general JSPs. The resulting extension provides an explanation for the
discontinuous jumps in search cost observed at particular offsets from the optimal
makespan. Second, we demonstrated that strong differences in the distributions of
dlopt-opt provide a possible explanation for differences in the relative difficulty of
square versus rectangular JSPs: problem instances with large values ofdlopt-opt are
common in square JSPs, but are relatively rare in rectangular JSPs.

Finally, we showed that thedlopt-opt model has limitations. First, our analyses in-
dicated that the accuracy of the model is inversely proportional to the magnitude
of dlopt-opt, or equivalently, the difficulty of the problem instance. We also found
that the accuracy is exceptionally poor on relatively rare, very high-cost problem
instances. Second, we demonstrated that the accuracy of thedlopt-opt model is sig-
nificantly worse for a particular class of structured JSPs – those with workflow
partitions.

We selectedTSTaillard precisely because it serves as a baseline for more advanced
algorithms, such as the state-of-the-art algorithm of Nowicki and Smutnicki, which
employs a more advanced move operator and makes more extensive use of long-
term memory mechanisms. With a relatively accurate descriptive cost model of
Taillard’s algorithm, we can begin tosystematicallyassess the influence of these
more advanced features on the descriptive cost model. One inherent limitation of
our analysis is that it is only directly applicable to tabu-like search algorithms for
the JSP. Because descriptive cost models are tied to specific algorithms, it seems
likely that other factors are responsible for local search cost in algorithms such
as iterated local search or genetic algorithms, which are based on principles quite
different from tabu search. At the same time, it seems likely that variations on the
basicdlopt-opt model may account for the cost of tabu search in otherNP -complete
problems.

Because the descriptive cost models for both SAT and the JSP are very similar, it
also seems likely that our results will be useful to researchers working on models
of problem difficulty for local search in SAT. For example, our analyses indicate
that the backbone size and the number of optimal solutions are largely redundant,
that simultaneous consideration of number of optimal solutions, backbone size, the
average distance between local optima fail to improve the accuracy of the basic
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dlopt-opt model, and that the accuracy of thedlopt-opt model is exceptionally poor on
very high-cost problem instances. We conjecture similar observations hold in SAT.
Similarly, we showed that the descriptive cost models for random and structured
problem instances can be very different. If similar results hold in SAT, they would
provide some evidence that the best algorithms for solving random instances may
be based on different principles than the best algorithms for solving structured in-
stances.
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