User Tools

Site Tools


schedule

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
schedule [2016/02/22 16:19]
anderson [Announcements]
schedule [2020/08/28 09:14]
127.0.0.1 external edit
Line 1: Line 1:
 ====== Schedule ====== ====== Schedule ======
- 
-Follow this link to view all [[https://echo.colostate.edu/ess/portal/section/37e115b6-e68b-4318-89ff-d1ecf025c0b9|lecture videos]]. 
  
 ===== Announcements ===== ===== Announcements =====
  
-  Feb 22: [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs480/notebooks/A3 Neural Network Regression.ipynb|A3 Neural Network Regression]], now includes link to ''A3grader.tar'' that contains ''A3grader.py''.+Links to live MS Teams events: 
 +  Lectures: [[https://teams.microsoft.com/l/meetup-join/19%3a323d2d59a8f64282b836e440b8cb32d9%40thread.tacv2/1598126257845?context=%7b%22Tid%22%3a%22afb58802-ff7a-4bb1-ab21-367ff2ecfc8b%22%2c%22Oid%22%3a%22bcd6d782-40c2-430e-8091-fd9ebd260de7%22%7d|Tuesdays/Thursdays, 2:00 - 3:15 PM]] 
 +  * Office hours: Apoorv [[https://teams.microsoft.com/l/meetup-join/19%3a323d2d59a8f64282b836e440b8cb32d9%40thread.tacv2/1598126257845?|Mondays, 2:00 - 4:00 PM]] 
 +  * Office hours: Chaitanya [[https://teams.microsoft.com/l/meetup-join/19%3a323d2d59a8f64282b836e440b8cb32d9%40thread.tacv2/1598301087268?|Fridays2:00 - 4:00 PM]] 
 +  * Office hours: Chuck [[https://teams.microsoft.com/l/meetup-join/19%3a323d2d59a8f64282b836e440b8cb32d9%40thread.tacv2/1598288070646?|Wednesdays, 9:00 - 10:00 AM]] 
 + 
  
-===== January =====+Recordings of lecture and office hour videos are available from the Home page of our  
 +[[https://colostate.instructure.com/courses/109411|Canvas site]].
  
-|< 100% 20% 20% 30% 10% 20%  >| +To use jupyter notebooks on our CS department machinesyou must add this line to your .bashrc file:
-^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments +
-| Week 1:\\  Jan 19 - Jan 22    | Overview. Intro to machine learning. Python.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs480/notebooks/01 Course Overview.ipynb|01 Course Overview]],\\  [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs480/notebooks/02 Matrices and Plotting.ipynb|02 Matrices and Plotting]],  | TextSections 1.1-1.5. Section 1 of   [[http://www.scipy-lectures.org|Scipy Lecture Notes]]      |  |  +
-| Week 2:\\ Jan 25 - Jan 29    | Probability distributions and regression.    | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs480/notebooks/03 Linear Regression.ipynb|03 Linear Regression]],\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs480/notebooks/04 Gaussian Distributions.ipynb|04 Gaussian Distributions]],\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs480/notebooks/05 Fitting Gaussians.ipynb|05 Fitting Gaussians]],\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs480/notebooks/06 Probabilistic Linear Regression.ipynb|06 Probabilistic Linear Regression]]    | Sections 4.1-4.2, 4.6-4.9, 5.8-5.9      [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs480/notebooks/A1 Linear Regression.ipynb|A1 Linear Regression]] due Friday, January 29th at 10:00 PM. Download and unzip [[http://www.cs.colostate.edu/~anderson/cs480/notebooks/A1 Grader.zip|A1 Grader.zip]]\\ Here are five examples of good solutions: [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs480/notebooks/A1good/A1a.ipynb|A1a]], [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs480/notebooks/A1good/A1b.ipynb|A1b]], [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs480/notebooks/A1good/A1c.ipynb|A1c]], [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs480/notebooks/A1good/A1d.ipynb|A1d]], [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs480/notebooks/A1good/A1e.ipynb|A1e]]   |  +
  
-===== February =====+  export PATH=/usr/local/anaconda/bin:$PATH
  
-|< 100% 20% 20% 3010% 20%  >|+This is a tentative schedule of CS440 topics for Fall, 2020.  This will be updated during the summer and as the fall semester continues. 
 + 
 + 
 +===== August ===== 
 + 
 +|< 100% 18% 20% 2220% 20%  >|
 ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^ ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^
-| Week 3:\\ Feb 1 Feb 5      Ridge regressionData partitioningOn-line, incremental regression. Regression with fixed nonlinearities.  |  [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs480/notebooks/07 Linear Ridge Regression and Data Partitioning.ipynb|07 Linear Ridge Regression and Data Partitioning]],\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs480/notebooks/08 Sample-by-Sample Linear Regression.ipynb|08 Sample-by-Sample Linear Regression]],\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs480/notebooks/09 Linear Regression with Fixed Nonlinear Features.ipynb|09 Linear Regression with Fixed Nonlinear Features]]    | | +| Week 1:\\  Aug 24 Aug 28    What is AI?  Promises and fears.\\ Python review.\\ Problem-Solving Agents.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/01 Introduction to AI.ipynb|01 Introduction to AI]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/02 Introduction to Python.ipynb|02 Introduction to Python]]   | Chapters 12, 3.1 of Russell and Norvig.\\ Section 1 of [[http://www.scipy-lectures.org|Scipy Lecture Notes]]  \\ [[http://science.sciencemag.org/content/357/6346/7.full|AI, People, and Society]], by Eric Horvitz.\\ [[https://aeon.co/essays/can-we-design-machines-to-make-ethical-decisions|Automated Ethics]], by Tom Chatfield.\\ [[http://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html?_r=0|The Great A.IAwakening]], by Gideon Lewis-Krause\\ <!-- [[https://www.commondreams.org/news/2017/07/19/fundamental-existential-threat-lawmakers-warned-risks-killer-robots|"Fundamental Existential Threat": Lawmakers Warned of the Risks of Killer Robots]], by Julia Conley\\ -->    
-| Week 4:\\ Feb 8 - Feb 12     | Nonlinear regression with neural networks.    | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs480/notebooks/10 Nonlinear Regression with Neural Networks.ipynb|10 Nonlinear Regression with Neural Networks]],\\  [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs480/notebooks/11 More Nonlinear Regression with Neural Networks.ipynb|11 More Nonlinear Regression with Neural Networks]]  | 11.1-11.511.7.1, 11.7.4, 11.8.1-11.8.2  |  +
-| Week 5:\\ Feb 15 - Feb 19    | Autoencoders. Recurrent neural networks.       [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs480/notebooks/12 Autoencoder Neural Networks.ipynb|12 Autoencoder Neural Networks]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs480/notebooks/13 Recurrent Neural Networks.ipynb|13 Recurrent Neural Networks]]   | 11.911.12, 11.14   |  [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs480/notebooks/A2 Linear Regression with Fixed Nonlinear Features.ipynb|A2 Linear Regression with Fixed Nonlinear Features]] due MondayFeb 15 at 10:00 PM.   | +
-| Week 6:\\ Feb 22 Feb 26    Classification, generative models.    [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs480/notebooks/14 Introduction to Classification.ipynb|14 Introduction to Classification]]   | 4.3-4.5, 5.5-5.7  |+
  
-===== March =====+===== September =====
  
-|< 100% 20% 20% 30% 10% 20%  >|+|< 100% 18% 20% 22% 20% 20 >
 +^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^nderson/cs545/doku.php?id=schedule#september 
 +| Week 2:\\ Aug 31 - Sept 4    | Problem-solving search and how to measure performance.\\ Iterative deepening and other uninformed search methods.   | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/03 Problem-Solving Agents.ipynb|03 Problem-Solving Agents]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/04 Measuring Search Performance.ipynb|04 Measuring Search Performance]] <!-- \\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/05 Iterative Deepening and Other Uninformed Search Methods.ipynb|05 Iterative Deepening and Other Uninformed Search Methods]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/06 Python Implementation of Iterative Deepening.ipynb|06 Python Implementation of Iterative Deepening]]  -->   | Sections 3.1 - 3.4 of Russell and Norvig  |   |  
 +| Week 3:\\ Sept 7 - Sept 11  | Informed search. A* search. Python classes, sorting, numpy arrays.  |   | Rest of Chapter 3  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A1 Uninformed Search.ipynb|A1 Uninformed Search]] due Tuesday, Sept. 8, 10:00 PM.  Submit your notebook in Canvas.  <!--\\ Here are [[http://www.cs.colostate.edu/~anderson/cs440/notebooks/goodones|good solutions from your classmates]]  --> | 
 +| Week 4:\\ Sept 14 - Sept 18   | A* optimality, admissible heuristics, effective branching factor.\\ Local search and optimization.  | <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/07 Informed Search.ipynb|07 Informed Search]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/08 Python Classes.ipynb|08 Python Classes]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/09 Heuristic Functions.ipynb|09 Heuristic Functions]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/10 Local Search.ipynb|10 Local Search]]  -->  | Chapter 4  |  <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A2 Iterative-Deepening Search.ipynb|A2 Iterative-Deepening Search]] due Friday, Sept. 14, 10:00 PM.  Submit your notebook in Canvas.\\ Here are [[http://www.cs.colostate.edu/~anderson/cs440/notebooks/goodones|good solutions from your classmates]]  --> 
 +| Week 5:\\ Sept 21 - Sept 25   | Adversarial search. Minimax. Alpha-beta pruning. Stochastic games.  | <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/11 Adversarial Search.ipynb|11 Adversarial Search]]  -->  | Chapter 5  | 
 +| Week 6:\\ Sept 28 - Oct 2   | Negamax, with pruning. Introduction to Reinforcement Learning.  | <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/12 Negamax.ipynb|12 Negamax]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/13 Modern Game Playing.ipynb|13 Modern Game Playing]]\\  [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/14 Introduction to Reinforcement Learning.ipynb|14 Introduction to Reinforcement Learning]]   -->    | Chapter 21\\ [[http://incompleteideas.net/book/bookdraft2017nov5.pdf|Reinforcement Learning: An Introduction]]    <!--  [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A3 A*, IDS, and Effective Branching Factor.ipynb|A3 A*, IDS, and Effective Branching Factor]] due Wednesday, Sept. 26, 10:00 PM.  Submit your notebook in Canvas. -->   | 
 + 
 +===== October ===== 
 + 
 +|< 100% 18% 20% 22% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^ ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^
-| Week 7:\\ Feb 29 - Mar     Classification, discriminant models.  Ranking.  | | 10.1-10.4, 10.5-10.10     [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs480/notebooks/A3 Neural Network Regression.ipynb|A3 Neural Network Regression]] due Monday, Feb 29 at 10:00 PM.  | +| Week 7:\\ Oct - Oct 9  Reinforcement Learning for Two-Player Games.  | <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/14 Introduction to Reinforcement Learning.ipynb|14 Introduction to Reinforcement Learning]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/15 Reinforcement Learning for Two-Player Games.ipynb|15 Reinforcement Learning for Two-Player Games]]  -->  | Chapter 21\\ [[http://incompleteideas.net/book/bookdraft2017nov5.pdf|Reinforcement Learning: An Introduction]]  | 
-| Week 8:\\ Mar 7 Mar 11     Classification with neural networks    | 11.7.2     | +| Week 8:\\ Oct 12 Oct 16  Introduction to Neural Networks  | <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/16 Introduction to Neural Networks.ipynb|16 Introduction to Neural Networks]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/17 More Introduction to Neural Networks.ipynb|17 More Introduction to Neural Networks]]  -->  Sections 18.6 and 18.7    
-|  Mar 14 Mar 18    Spring Break!          +| Week 9:\\ Oct 19 Oct 23  More Neural NetworksAutoencoders.  <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/17 More Introduction to Neural Networks.ipynb|17 More Introduction to Neural Networks]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/22 Autoencoder Neural Networks.ipynb|22 Autoencoder Neural Networks]] -->  
-| Week 9:\\ Mar 21 Mar 25    Convolutional, bottleneck, and deep networks   | | 11.8.3, 11.11, 11.13     |  +| Week 10:\\ Oct 26 Oct 30  Introduction to Classification. Bayes Rule. Generative versus Discriminative. Linear Logistic Regression.  | <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/18 Introduction to Classification.ipynb|18 Introduction to Classification]] -->  |  | <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A4 Reinforcement Learning Solution to Towers of Hanoi.ipynb|A4 Reinforcement Learning Solution to Towers of Hanoi]] due Monday, Oct. 22, 10:00 PM.  Submit your notebook in Canvas. -->  |
-| Week 10:\\ Mar 28 Apr 1    Nonparametric methods.  | | 8.1-8.10  |+
  
-===== April =====+===== November =====
  
-|< 100% 20% 20% 3010% 20%  >|+|< 100% 18% 20% 2220% 20%  >|
 ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^ ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^
-| Week 11:\\ Apr 4 Apr 8      Dimensionality reduction.  | | 6.1-6.8, 6.10-6.13  | +| Week 11:\\ Nov 2 Nov 6  Classification with Neural Networks. Reinforcement Learning with Neural Networks.  | <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/19 Classification with Linear Logistic Regression.ipynb|19 Classification with Linear Logistic Regression]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/20 Classification with Nonlinear Logistic Regression Using Neural Networks.ipynb|20 Classification with Nonlinear Logistic Regression Using Neural Networks]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/21 Reinforcement Learning with a Neural Network as the Q Function.ipynb|21 Reinforcement Learning with a Neural Network as the Q Function]]  -->  | |   
-| Week 12:\\ Apr 11 Apr 15    | Clustering  | 7.1-7.10    +| Week 12:\\ Nov 9 Nov 13  Introduction to Pytorch.\\ Constraint satisfaction.\\ Min-conflicts.  | <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/23 Introduction to Pytorch.ipynb|23 Introduction to Pytorch]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/24 Constraint Satisfaction Problems.ipynb|24 Constraint Satisfaction Problems]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/25 Min-Conflicts in Python with Examples.ipynb|25 Min-Conflicts in Python with Examples]] -->   | Chapter 6\\ [[http://dl.acm.org/citation.cfm?id=1928809|A new iterated local search algorithm for solving broadcast scheduling problems in packet radio networks]]  | <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A5 Neural Networks.ipynb|A5 Neural Networks]] due Monday, Nov. 5, 10:00 PM.\\ -->   | 
-Week 13:\\ Apr 18 Apr 22    | Support vector machines.   | 13.1-13.12   | +| Week 13:\\ Nov 16 Nov 20  Natural language understanding and translation.   <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/26 Natural Language.ipynb|26 Natural Language]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/27 Word Embeddings.ipynb|27 Word Embeddings]] -->  | [[https://towardsdatascience.com/word-embedding-with-word2vec-and-fasttext-a209c1d3e12c|Word2Vec and FastText Word Embedding with Gensim]]  |  | 
-| Week 14:\\ Apr 25 Apr 29    Reinforcement learning.   | | 18.1-18.9   |+|  Nov 23 - Nov 27  |  Fall Recess!  |
  
-===== May =====+===== December =====
  
-|< 100% 20% 20% 3010% 20%  >|+|< 100% 18% 20% 2220% 20%  >|
 ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^ ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^
-| Week 15:\\ May 2 May 6    Multiple models   | | 17.1-17.12   |+| Week 14:\\ Nov 30 Dec 4  Faster Reinforcement Learning   | <!-- [[http://www.cs.colostate.edu/~anderson/cs440/notebooks/15ijcnn.pdf|Slides for Faster Reinforcement Learning After Pretraining]] -->   [[http://www.cs.colostate.edu/~anderson/res/rl/pretrainijcnn15.pdf|Faster Reinforcement Learning After Pretraining Deep Networks to Predict State Dynamics]] by Anderson, Lee and Elliott  | <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A6 Min-Conflicts.ipynb|A6 Min-Conflicts]] due Wednesday, Nov. 28, 10:00 PM.  -->  |  
 +| Week 15:\\ Dec 7 - Dec 11  |   | <!-- **Dec 3:**\\ Tom Cavey: //Image Classification and Object Detection of Things Around CSU//\\ Jason Stock: //Classification of Data from the Sloan Digital Sky Survey//\\ Marylou Nash: //Physical Routing on ICs or PCBs with A*//\\  **Dec 5:**\\ Jake Walker: //Legal, Ethical, and Security Concerns for Autonomous Driving Technologies//\\ Andy Dolan: //Using Machine Learning Methods to Classify BGP Messages//\\ Miles Wood: //Using Q-Learning to Learn to Play Chad, a Chess Variant//\\ Apoorv Pandey: //Using Q-Learning to Learn to Play 2x2 Dots and Boxes//\\ **Dec 7:**\\ Markus Dabell: //Classification of Handwritten Digits from the MNIST Dataset//\\ Sajeeb Roy Chowdhury: //Searching for Optimal Schreier Trees in the Field of Combinatorics//\\ Mike Hamilton: //The Amazon AWS DeepRacer Platform for Reinforcement Learning Experimentation//  -->  |   |  
 +| Final Exam Week:\\ Dec 14 - Dec 18  |    | |   | 
 + 
 + 
 + 
  
schedule.txt · Last modified: 2024/01/08 18:40 (external edit)