User Tools

Site Tools


start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
start [2020/09/17 13:55]
127.0.0.1 external edit
start [2020/12/09 18:42] (current)
Line 31: Line 31:
 ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^nderson/cs545/doku.php?id=schedule#september ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^nderson/cs545/doku.php?id=schedule#september
 | Week 2:\\ Aug 31 - Sept 4    | Help with A1.\\ Problem-solving search and how to measure performance.\\ Iterative deepening and other uninformed search methods.   | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/03 Problem-Solving Agents.ipynb|03 Problem-Solving Agents]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/04 Measuring Search Performance.ipynb|04 Measuring Search Performance]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/05 Iterative Deepening and Other Uninformed Search Methods.ipynb|05 Iterative Deepening and Other Uninformed Search Methods]]   | Sections 3.1 - 3.4 of Russell and Norvig  |    | Week 2:\\ Aug 31 - Sept 4    | Help with A1.\\ Problem-solving search and how to measure performance.\\ Iterative deepening and other uninformed search methods.   | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/03 Problem-Solving Agents.ipynb|03 Problem-Solving Agents]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/04 Measuring Search Performance.ipynb|04 Measuring Search Performance]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/05 Iterative Deepening and Other Uninformed Search Methods.ipynb|05 Iterative Deepening and Other Uninformed Search Methods]]   | Sections 3.1 - 3.4 of Russell and Norvig  |   
-| Week 3:\\ Sept 7 - Sept 11  | Informed search. A* search. Python classes, sorting, numpy arrays.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/06 Python Implementation of Iterative Deepening.ipynb|06 Python Implementation of Iterative Deepening]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/07 Informed Search.ipynb|07 Informed Search]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/08 Python Classes.ipynb|08 Python Classes]]   | Rest of Chapter 3  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A1.1 Uninformed Search.ipynb|A1.1 Uninformed Search]] due Tuesday, Sept. 8, 10:00 PM.  Submit your notebook in Canvas.  <!--\\ Here are [[http://www.cs.colostate.edu/~anderson/cs440/notebooks/goodones|good solutions from your classmates]]  --> +| Week 3:\\ Sept 7 - Sept 11  | Informed search. A* search. Python classes, sorting, numpy arrays.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/06 Python Implementation of Iterative Deepening.ipynb|06 Python Implementation of Iterative Deepening]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/07 Informed Search.ipynb|07 Informed Search]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/08 Python Classes.ipynb|08 Python Classes]]   | Rest of Chapter 3  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A1.1 Uninformed Search.ipynb|A1.1 Uninformed Search]] due Tuesday, Sept. 8, 10:00 PM.  Submit your notebook in Canvas.\\ Here are [[http://www.cs.colostate.edu/~anderson/cs440/notebooks/goodones|good solutions from your classmates]] 
-| Week 4:\\ Sept 14 - Sept 18   | A* optimality, admissible heuristics, effective branching factor.\\ Local search and optimization.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/09 Heuristic Functions.ipynb|09 Heuristic Functions]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/10 Local Search.ipynb|10 Local Search]]   | Chapter 4  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A2.1 Iterative-Deepening Search.ipynb|A2.1 Iterative-Deepening Search]] due Tuesday, Sept. 15, 10:00 PM. <!-- \\ Here are [[http://www.cs.colostate.edu/~anderson/cs440/notebooks/goodones|good solutions from your classmates]]  -->  | +| Week 4:\\ Sept 14 - Sept 18   | A* optimality, admissible heuristics  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/09 Heuristic Functions.ipynb|09 Heuristic Functions]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/10 Local Search.ipynb|10 Local Search]]   | Chapter 4  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A2.1 Iterative-Deepening Search.ipynb|A2.1 Iterative-Deepening Search]] due Tuesday, Sept. 15, 10:00 PM.\\ Here are [[http://www.cs.colostate.edu/~anderson/cs440/notebooks/goodones|good solutions from your classmates]] 
-| Week 5:\\ Sept 21 - Sept 25   | Adversarial search. Minimax. Alpha-beta pruning. Stochastic games. <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/11 Adversarial Search.ipynb|11 Adversarial Search]]  -->  | Chapter 5  | +| Week 5:\\ Sept 21 - Sept 25   Effective branching factor.\\ Local search and optimization. Adversarial search. Minimax. Alpha-beta pruning. Stochastic games.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/11 Adversarial Search.ipynb|11 Adversarial Search]]   | Chapter 5  | 
-| Week 6:\\ Sept 28 - Oct 2   | Negamax, with pruning. Introduction to Reinforcement Learning. <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/12 Negamax.ipynb|12 Negamax]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/13 Modern Game Playing.ipynb|13 Modern Game Playing]]\\  [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/14 Introduction to Reinforcement Learning.ipynb|14 Introduction to Reinforcement Learning]]   -->    | Chapter 21\\ [[http://incompleteideas.net/book/bookdraft2017nov5.pdf|Reinforcement Learning: An Introduction]]    <!--  [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A3 A*, IDS, and Effective Branching Factor.ipynb|A3 A*, IDS, and Effective Branching Factor]] due Wednesday, Sept. 26, 10:00 PM.  Submit your notebook in Canvas-->   |+| Week 6:\\ Sept 28 - Oct 2   | Negamax, with pruning. Introduction to Reinforcement Learning.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/12 Negamax.ipynb|12 Negamax]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/13 Modern Game Playing.ipynb|13 Modern Game Playing]]\\  [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/14 Introduction to Reinforcement Learning.ipynb|14 Introduction to Reinforcement Learning]]      | Chapter 21\\ [[http://incompleteideas.net/book/bookdraft2017nov5.pdf|Reinforcement Learning: An Introduction]]     [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A3 A*, IDS, and Effective Branching Factor.ipynb|A3 A*, IDS, and Effective Branching Factor]] due Wednesday, Sept. 30, 10:00 PM.\\ Here are [[http://www.cs.colostate.edu/~anderson/cs440/notebooks/goodones|good solutions from your classmates]]  |
  
 ===== October ===== ===== October =====
Line 40: Line 40:
 |< 100% 18% 20% 22% 20% 20%  >| |< 100% 18% 20% 22% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^ ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^
-| Week 7:\\ Oct 5 - Oct 9  | Reinforcement Learning for Two-Player Games. <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/14 Introduction to Reinforcement Learning.ipynb|14 Introduction to Reinforcement Learning]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/15 Reinforcement Learning for Two-Player Games.ipynb|15 Reinforcement Learning for Two-Player Games]]  -->  | Chapter 21\\ [[http://incompleteideas.net/book/bookdraft2017nov5.pdf|Reinforcement Learning: An Introduction]]  |  | +| Week 7:\\ Oct 5 - Oct 9\\ <color red>Oct 8 Lecture will not meet, but recording will be available.</color>  | Reinforcement Learning for Two-Player Games.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/15 Reinforcement Learning for Two-Player Games.ipynb|15 Reinforcement Learning for Two-Player Games]]   | Chapter 21\\ [[http://incompleteideas.net/book/bookdraft2017nov5.pdf|Reinforcement Learning: An Introduction]]  |  | 
-| Week 8:\\ Oct 12 - Oct 16  | Introduction to Neural Networks  <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/16 Introduction to Neural Networks.ipynb|16 Introduction to Neural Networks]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/17 More Introduction to Neural Networks.ipynb|17 More Introduction to Neural Networks]]  -->  | Sections 18.6 and 18.7  |   | +| Week 8:\\ Oct 12 - Oct 16  | Constraint satisfaction.\\ Min-conflicts.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/16 Constraint Satisfaction Problems.ipynb|16 Constraint Satisfaction Problems]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/17 Min-Conflicts.ipynb|17 Min-Conflicts]]  <!-- \\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/25 Min-Conflicts in Python with Examples.ipynb|25 Min-Conflicts in Python with Examples]] -->   | Chapter 6  
-| Week 9:\\ Oct 19 - Oct 23  | More Neural NetworksAutoencoders.  <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/17 More Introduction to Neural Networks.ipynb|17 More Introduction to Neural Networks]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/22 Autoencoder Neural Networks.ipynb|22 Autoencoder Neural Networks]] --> +| Week 9:\\ Oct 19 - Oct 23  | Natural language processing  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/18 Introduction to Natural Language Processing.ipynb|18 Introduction to Natural Language Processing]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/19 More NLP.ipynb|19 More NLP]] <!-- \\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/27 Word Embeddings.ipynb|27 Word Embeddings]] -->  | [[https://towardsdatascience.com/word-embedding-with-word2vec-and-fasttext-a209c1d3e12c|Word2Vec and FastText Word Embedding with Gensim]]  |  [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A4 Reinforcement Learning Solution To Towers of Hanoi.ipynb|A4 Reinforcement Learning Solution To Towers of Hanoi]] due Tuesday, Oct. 20, 10:00 PM. Here are [[http://www.cs.colostate.edu/~anderson/cs440/notebooks/goodones|good solutions from your classmates]]  | 
-| Week 10:\\ Oct 26 - Oct 30  | Introduction to ClassificationBayes RuleGenerative versus DiscriminativeLinear Logistic Regression.  | <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/18 Introduction to Classification.ipynb|18 Introduction to Classification]] -->  <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A4 Reinforcement Learning Solution to Towers of Hanoi.ipynb|A4 Reinforcement Learning Solution to Towers of Hanoi]] due Monday, Oct. 22, 10:00 PM.  Submit your notebook in Canvas-->   |+| Week 10:\\ Oct 26 - Oct 30  | Introduction to Neural Networks  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/20 Introduction to Neural Networks.ipynb|20 Introduction to Neural Networks]]\\  [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/21 Pytorch Neural Networks.ipynb|21 Pytorch Neural Networks]]   <!-- \\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/17 More Introduction to Neural Networks.ipynb|17 More Introduction to Neural Networks]]  --> Sections 18.6 and 18.7    | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A5.1 Min-Conflicts.ipynb|A5.1 Min-Conflicts]] due Friday Oct 30, 10:00 PM. Here are [[http://www.cs.colostate.edu/~anderson/cs440/notebooks/goodones|good solutions from your classmates]]   | 
  
 ===== November ===== ===== November =====
Line 49: Line 50:
 |< 100% 18% 20% 22% 20% 20%  >| |< 100% 18% 20% 22% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^ ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^
-| Week 11:\\ Nov 2 - Nov 6  | Classification with Neural Networks. Reinforcement Learning with Neural Networks.  <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/19 Classification with Linear Logistic Regression.ipynb|19 Classification with Linear Logistic Regression]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/20 Classification with Nonlinear Logistic Regression Using Neural Networks.ipynb|20 Classification with Nonlinear Logistic Regression Using Neural Networks]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/21 Reinforcement Learning with a Neural Network as the Q Function.ipynb|21 Reinforcement Learning with a Neural Network as the Q Function]]  -->  | |   +| Week 11:\\ Nov 2 - Nov 6  | More Neural Networks  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/22 Classification with Pytorch Neural Networks.ipynb|22 Classification with Pytorch Neural Networks]]  <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/17 More Introduction to Neural Networks.ipynb|17 More Introduction to Neural Networks]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/22 Autoencoder Neural Networks.ipynb|22 Autoencoder Neural Networks]] -->        
-| Week 12:\\ Nov 9 - Nov 13  | Introduction to Pytorch.\\ Constraint satisfaction.\\ Min-conflicts.  <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/23 Introduction to Pytorch.ipynb|23 Introduction to Pytorch]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/24 Constraint Satisfaction Problems.ipynb|24 Constraint Satisfaction Problems]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/25 Min-Conflicts in Python with Examples.ipynb|25 Min-Conflicts in Python with Examples]] --  | Chapter 6\\ [[http://dl.acm.org/citation.cfm?id=1928809|A new iterated local search algorithm for solving broadcast scheduling problems in packet radio networks]]  <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A5 Neural Networks.ipynb|A5 Neural Networks]] due Monday, Nov. 5, 10:00 PM.\\ -->   | +| Week 12:\\ Nov 9 - Nov 13  | Interpreting what a neural network has learned  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/23 Interpreting What a Neural Network Has Learned.ipynb|23 Interpreting What a Neural Network Has Learned]]   <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/18 Introduction to Classification.ipynb|18 Introduction to Classification]] -->  |     [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A6 Neural Networks.ipynb|A6 Neural Networks]] due <color red>Sunday Nov 15, 10:00 PM.</color>\\ Here are [[http://www.cs.colostate.edu/~anderson/cs440/notebooks/goodones|good solutions from your classmates]]   | 
-| Week 13:\\ Nov 16 - Nov 20  | Natural language understanding and translation.   <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/26 Natural Language.ipynb|26 Natural Language]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/27 Word Embeddings.ipynb|27 Word Embeddings]] --> [[https://towardsdatascience.com/word-embedding-with-word2vec-and-fasttext-a209c1d3e12c|Word2Vec and FastText Word Embedding with Gensim]]  |  |+| Week 13:\\ Nov 16 Nov 20  | Natural language processing with neural nets.   [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/24 NLP With Transformers.ipynb|24 NLP With Transformers]]  <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/19 Classification with Linear Logistic Regression.ipynb|19 Classification with Linear Logistic Regression]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/20 Classification with Nonlinear Logistic Regression Using Neural Networks.ipynb|20 Classification with Nonlinear Logistic Regression Using Neural Networks]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/21 Reinforcement Learning with a Neural Network as the Q Function.ipynb|21 Reinforcement Learning with a Neural Network as the Q Function]]  -->  |    |  |
 |  Nov 23 - Nov 27  |  Fall Recess!  | |  Nov 23 - Nov 27  |  Fall Recess!  |
  
Line 58: Line 59:
 |< 100% 18% 20% 22% 20% 20%  >| |< 100% 18% 20% 22% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^ ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^
-| Week 14:\\ Nov 30 - Dec 4  | Faster Reinforcement Learning   <!-- [[http://www.cs.colostate.edu/~anderson/cs440/notebooks/15ijcnn.pdf|Slides for Faster Reinforcement Learning After Pretraining]] -->   [[http://www.cs.colostate.edu/~anderson/res/rl/pretrainijcnn15.pdf|Faster Reinforcement Learning After Pretraining Deep Networks to Predict State Dynamics]] by Anderson, Lee and Elliott  <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A6 Min-Conflicts.ipynb|A6 Min-Conflicts]] due WednesdayNov. 28, 10:00 PM.  -->  |  +| Week 14:\\ Nov 30 - Dec 4  | Clustering. Word embeddings.\\ Genetic algorithms.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/25 Clustering of Word Embeddings.ipynb|25 Clustering of Word Embeddings]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/26 Genetic Algorithm Search.ipynb|26 Genetic Algorithm Search]]   |  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A7.1 NLP with Transformers and the T5 Model.ipynb|A7.1 NLP with Transformers and the T5 Model]] due SundayDec 6, 10:00 PM\\ Here are [[http://www.cs.colostate.edu/~anderson/cs440/notebooks/goodones|good solutions from your classmates]]   |  
-| Week 15:\\ Dec 7 - Dec 11  |   | <!-- **Dec 3:**\\ Tom Cavey: //Image Classification and Object Detection of Things Around CSU//\\ Jason Stock: //Classification of Data from the Sloan Digital Sky Survey//\\ Marylou Nash: //Physical Routing on ICs or PCBs with A*//\\  **Dec 5:**\\ Jake Walker: //Legal, Ethical, and Security Concerns for Autonomous Driving Technologies//\\ Andy Dolan: //Using Machine Learning Methods to Classify BGP Messages//\\ Miles Wood: //Using Q-Learning to Learn to Play Chad, a Chess Variant//\\ Apoorv Pandey: //Using Q-Learning to Learn to Play 2x2 Dots and Boxes//\\ **Dec 7:**\\ Markus Dabell: //Classification of Handwritten Digits from the MNIST Dataset//\\ Sajeeb Roy Chowdhury: //Searching for Optimal Schreier Trees in the Field of Combinatorics//\\ Mike Hamilton: //The Amazon AWS DeepRacer Platform for Reinforcement Learning Experimentation//  -->  |   |  +| Week 15:\\ Dec 7 - Dec 11  | Brain-Computer Interfaces. Pre-training for faster reinforcement learning.     |   |  
-| Final Exam Week:\\ Dec 14 - Dec 18  |   |  | |   |+| Final Exam Week:\\ Dec 14 - Dec 18  | No exam.    |  | | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A8 Report Template.ipynb|A8 Report Template]] due Tuesday, December 15th, 10:00 PM.   |
  
  
start.1600372519.txt.gz · Last modified: 2020/09/17 13:55 by 127.0.0.1