User Tools

Site Tools


start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
start [2020/11/06 07:52]
127.0.0.1 external edit
start [2020/12/09 18:42] (current)
Line 43: Line 43:
 | Week 8:\\ Oct 12 - Oct 16  | Constraint satisfaction.\\ Min-conflicts.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/16 Constraint Satisfaction Problems.ipynb|16 Constraint Satisfaction Problems]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/17 Min-Conflicts.ipynb|17 Min-Conflicts]]  <!-- \\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/25 Min-Conflicts in Python with Examples.ipynb|25 Min-Conflicts in Python with Examples]] -->   | Chapter 6  | | Week 8:\\ Oct 12 - Oct 16  | Constraint satisfaction.\\ Min-conflicts.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/16 Constraint Satisfaction Problems.ipynb|16 Constraint Satisfaction Problems]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/17 Min-Conflicts.ipynb|17 Min-Conflicts]]  <!-- \\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/25 Min-Conflicts in Python with Examples.ipynb|25 Min-Conflicts in Python with Examples]] -->   | Chapter 6  |
 | Week 9:\\ Oct 19 - Oct 23  | Natural language processing.   | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/18 Introduction to Natural Language Processing.ipynb|18 Introduction to Natural Language Processing]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/19 More NLP.ipynb|19 More NLP]] <!-- \\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/27 Word Embeddings.ipynb|27 Word Embeddings]] -->  | [[https://towardsdatascience.com/word-embedding-with-word2vec-and-fasttext-a209c1d3e12c|Word2Vec and FastText Word Embedding with Gensim]]  |  [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A4 Reinforcement Learning Solution To Towers of Hanoi.ipynb|A4 Reinforcement Learning Solution To Towers of Hanoi]] due Tuesday, Oct. 20, 10:00 PM. Here are [[http://www.cs.colostate.edu/~anderson/cs440/notebooks/goodones|good solutions from your classmates]]  | | Week 9:\\ Oct 19 - Oct 23  | Natural language processing.   | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/18 Introduction to Natural Language Processing.ipynb|18 Introduction to Natural Language Processing]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/19 More NLP.ipynb|19 More NLP]] <!-- \\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/27 Word Embeddings.ipynb|27 Word Embeddings]] -->  | [[https://towardsdatascience.com/word-embedding-with-word2vec-and-fasttext-a209c1d3e12c|Word2Vec and FastText Word Embedding with Gensim]]  |  [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A4 Reinforcement Learning Solution To Towers of Hanoi.ipynb|A4 Reinforcement Learning Solution To Towers of Hanoi]] due Tuesday, Oct. 20, 10:00 PM. Here are [[http://www.cs.colostate.edu/~anderson/cs440/notebooks/goodones|good solutions from your classmates]]  |
-| Week 10:\\ Oct 26 - Oct 30  | Introduction to Neural Networks  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/20 Introduction to Neural Networks.ipynb|20 Introduction to Neural Networks]]\\  [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/21 Pytorch Neural Networks.ipynb|21 Pytorch Neural Networks]]   <!-- \\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/17 More Introduction to Neural Networks.ipynb|17 More Introduction to Neural Networks]]  -->  | Sections 18.6 and 18.7    | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A5.1 Min-Conflicts.ipynb|A5.1 Min-Conflicts]] due Friday Oct 30, 10:00 PM. Here are [[http://www.cs.colostate.edu/~anderson/cs440/notebooks/goodones|good solutions from your classmates]]   |+| Week 10:\\ Oct 26 - Oct 30  | Introduction to Neural Networks  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/20 Introduction to Neural Networks.ipynb|20 Introduction to Neural Networks]]\\  [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/21 Pytorch Neural Networks.ipynb|21 Pytorch Neural Networks]]   <!-- \\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/17 More Introduction to Neural Networks.ipynb|17 More Introduction to Neural Networks]]  -->  | Sections 18.6 and 18.7    | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A5.1 Min-Conflicts.ipynb|A5.1 Min-Conflicts]] due Friday Oct 30, 10:00 PM. Here are [[http://www.cs.colostate.edu/~anderson/cs440/notebooks/goodones|good solutions from your classmates]]   |
  
  
Line 50: Line 50:
 |< 100% 18% 20% 22% 20% 20%  >| |< 100% 18% 20% 22% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^ ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^
-| Week 11:\\ Nov 2 - Nov 6  | More Neural Networks. Autoencoders.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/22 Classification with Pytorch Neural Networks.ipynb|22 Classification with Pytorch Neural Networks]]  <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/17 More Introduction to Neural Networks.ipynb|17 More Introduction to Neural Networks]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/22 Autoencoder Neural Networks.ipynb|22 Autoencoder Neural Networks]] -->  |    |     | +| Week 11:\\ Nov 2 - Nov 6  | More Neural Networks  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/22 Classification with Pytorch Neural Networks.ipynb|22 Classification with Pytorch Neural Networks]]  <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/17 More Introduction to Neural Networks.ipynb|17 More Introduction to Neural Networks]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/22 Autoencoder Neural Networks.ipynb|22 Autoencoder Neural Networks]] -->  |    |     | 
-| Week 12:\\ Nov 9 - Nov 13  | Introduction to ClassificationBayes RuleGenerative versus DiscriminativeLinear Logistic Regression | <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/18 Introduction to Classification.ipynb|18 Introduction to Classification]] -->  |     | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A6 Neural Networks.ipynb|A6 Neural Networks]] due Friday Nov 13, 10:00 PM. <!-- Here are [[http://www.cs.colostate.edu/~anderson/cs440/notebooks/goodones|good solutions from your classmates]] -->  +| Week 12:\\ Nov 9 - Nov 13  | Interpreting what a neural network has learned  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/23 Interpreting What a Neural Network Has Learned.ipynb|23 Interpreting What a Neural Network Has Learned]]   <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/18 Introduction to Classification.ipynb|18 Introduction to Classification]] -->  |     | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A6 Neural Networks.ipynb|A6 Neural Networks]] due <color red>Sunday Nov 15, 10:00 PM.</color>\\ Here are [[http://www.cs.colostate.edu/~anderson/cs440/notebooks/goodones|good solutions from your classmates]]   
-| Week 13:\\ Nov 16 - Nov 20  | Classification with Neural NetworksReinforcement Learning with Neural Networks | <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/19 Classification with Linear Logistic Regression.ipynb|19 Classification with Linear Logistic Regression]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/20 Classification with Nonlinear Logistic Regression Using Neural Networks.ipynb|20 Classification with Nonlinear Logistic Regression Using Neural Networks]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/21 Reinforcement Learning with a Neural Network as the Q Function.ipynb|21 Reinforcement Learning with a Neural Network as the Q Function]]  -->  |    | A7 due Thursday Nov 19, 10:00 PM  |+| Week 13:\\ Nov 16 - Nov 20  | Natural language processing with neural nets  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/24 NLP With Transformers.ipynb|24 NLP With Transformers]]  <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/19 Classification with Linear Logistic Regression.ipynb|19 Classification with Linear Logistic Regression]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/20 Classification with Nonlinear Logistic Regression Using Neural Networks.ipynb|20 Classification with Nonlinear Logistic Regression Using Neural Networks]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/21 Reinforcement Learning with a Neural Network as the Q Function.ipynb|21 Reinforcement Learning with a Neural Network as the Q Function]]  -->  |    |  |
 |  Nov 23 - Nov 27  |  Fall Recess!  | |  Nov 23 - Nov 27  |  Fall Recess!  |
  
Line 59: Line 59:
 |< 100% 18% 20% 22% 20% 20%  >| |< 100% 18% 20% 22% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^ ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^
-| Week 14:\\ Nov 30 - Dec 4  | Reinforcement Learning with Neural Networks   <!-- [[http://www.cs.colostate.edu/~anderson/cs440/notebooks/15ijcnn.pdf|Slides for Faster Reinforcement Learning After Pretraining]] -->   [[http://www.cs.colostate.edu/~anderson/res/rl/pretrainijcnn15.pdf|Faster Reinforcement Learning After Pretraining Deep Networks to Predict State Dynamics]] by Anderson, Lee and Elliott  <!-- [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A6 Min-Conflicts.ipynb|A6 Min-Conflicts]] due WednesdayNov. 28, 10:00 PM.  -->   |  +| Week 14:\\ Nov 30 - Dec 4  | Clustering. Word embeddings.\\ Genetic algorithms.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/25 Clustering of Word Embeddings.ipynb|25 Clustering of Word Embeddings]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/26 Genetic Algorithm Search.ipynb|26 Genetic Algorithm Search]]   |  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A7.1 NLP with Transformers and the T5 Model.ipynb|A7.1 NLP with Transformers and the T5 Model]] due SundayDec 6, 10:00 PM\\ Here are [[http://www.cs.colostate.edu/~anderson/cs440/notebooks/goodones|good solutions from your classmates]]   |  
-| Week 15:\\ Dec 7 - Dec 11  | Recent AI Success  | <!-- **Dec 3:**\\ Tom Cavey: //Image Classification and Object Detection of Things Around CSU//\\ Jason Stock: //Classification of Data from the Sloan Digital Sky Survey//\\ Marylou Nash: //Physical Routing on ICs or PCBs with A*//\\  **Dec 5:**\\ Jake Walker: //Legal, Ethical, and Security Concerns for Autonomous Driving Technologies//\\ Andy Dolan: //Using Machine Learning Methods to Classify BGP Messages//\\ Miles Wood: //Using Q-Learning to Learn to Play Chad, a Chess Variant//\\ Apoorv Pandey: //Using Q-Learning to Learn to Play 2x2 Dots and Boxes//\\ **Dec 7:**\\ Markus Dabell: //Classification of Handwritten Digits from the MNIST Dataset//\\ Sajeeb Roy Chowdhury: //Searching for Optimal Schreier Trees in the Field of Combinatorics//\\ Mike Hamilton: //The Amazon AWS DeepRacer Platform for Reinforcement Learning Experimentation//  -->  |   |  +| Week 15:\\ Dec 7 - Dec 11  | Brain-Computer Interfaces. Pre-training for faster reinforcement learning.     |   |  
-| Final Exam Week:\\ Dec 14 - Dec 18  | No exam.    |  | | Final assignment A8 due Dec 15th.   |+| Final Exam Week:\\ Dec 14 - Dec 18  | No exam.    |  | | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs440/notebooks/A8 Report Template.ipynb|A8 Report Template]] due Tuesday, December 15th, 10:00 PM.   |
  
  
start.1604674365.txt.gz · Last modified: 2020/11/06 07:52 by 127.0.0.1