User Tools

Site Tools


start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

start [2020/04/24 18:07]
anderson [April]
start [2020/06/25 10:41]
Line 1: Line 1:
-====== Schedule Spring 2020 ====== 
- 
-Examples of good solutions are now available at [[http://www.cs.colostate.edu/~anderson/cs445/goodSolutions|this site.]] 
- 
- 
- 
-===== January ===== 
- 
-|< 100% 10% 20% 30% 20% 20%  >| 
-^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^ 
-| Week 1:\\ Jan 21, 23  | Overview of course, kinds of machine learning, python, jupyter notebooks.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/01 Course Overview.ipynb|01 Course Overview]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/01a Matrix Multiplication on GPU.ipynb|01a Matrix Multplication on GPU]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/02 Matrices and Plotting.ipynb|02 Matrices and Plotting]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/03 Linear Regression with SGD.ipynb|03 Linear Regression with SGD]]  | 
-| Week 2:\\ Jan 28, 30  | Supervised learning. Linear and nonlinear regression with artificial neural networks.   | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/04 Linear Regression with Fixed Nonlinear Features.ipynb|04 Linear Regression with Fixed Nonlinear Features]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/05 Introduction to Neural Networks.ipynb|05 Introduction to Neural Networks]]  | 
- 
-===== February ===== 
- 
-|< 100% 10% 20% 30% 20% 20%  >| 
-^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^ 
-| Week 3:\\ Feb 4, 6   | Gradient descent with Adam. Effects of network size and other parameters.   | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/05 Introduction to Neural Networks.ipynb|05 Introduction to Neural Networks]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/06.1 Gradient Descent with Adam.ipynb|06.1 Gradient Descent with Adam]]  |  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/A1.1 Linear Regression with SGD.ipynb|A1.1 Linear Regression with SGD]] due Thursday, Feb 6th, at 10:00 PM  | 
-| Week 4:\\ Feb 11, 13  | Optimizers class. NeuralNetwork class. Partioning data.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/07.2 Optimizers, Data Partitioning, Finding Good Parameters.ipynb|07.2 Optimizers, Data Partitioning, Finding Good Parameters]] | [[https://ai.facebook.com/blog/hiplot-high-dimensional-interactive-plots-made-easy?utm_source=Deep%20Learning%20Weekly&utm_campaign=23123dfe9c-EMAIL_CAMPAIGN_2019_04_24_03_18_COPY_01&utm_medium=email&utm_term=0_384567b42d-23123dfe9c-72953565|HiPlot]] a new plotting library for visualizing results from multiple training experiments  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/Exercises1.ipynb|Exercises1]]. Do not check-in.  Exercises will not be graded.  | 
-| Week 5:\\ Feb 18, 20  | Pytorch basics, loss functions, optimizers and nn module.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/08 Pytorch autograd, nn.Module.ipynb|08 Pytorch autograd, nn.Module]] | [[https://www.cs.colostate.edu/~anderson/cs445/notebooks/LaProp.pdf|LaProp optimizer]]  |[[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/A2.5 Multilayer Neural Networks for Nonlinear Regression.ipynb|A2.5 Multilayer Neural Networks for Nonlinear Regression]] due Thursday, Feb 20th 10:00 PM   | 
-| Week 6:\\ Feb 25, 27  | Classification with generative models. LDA and QDA.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/09 Introduction to Classification.ipynb|09 Introduction to Classification]]  | 
- 
-===== March ===== 
- 
-|< 100% 10% 20% 30% 20% 20%  >| 
-^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^ 
-| Week 7:\\ Mar 3, 5  | Classification with linear logistic regression   | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/10 Classification with Linear Logistic Regression.ipynb|10 Classification with Linear Logistic Regression]]  | [[http://www.cs.colostate.edu/~anderson/cs445/notebooks/Sejnowski-2020.pdf|The unreasonable effectiveness of deep learning in 
-artificial intelligence]]  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/A3.3 Cross-validation with Pytorch.ipynb|A3.3 Cross-validation with Pytorch]] due Thursday, March 5th, 10:00PM  | 
-| Week 8:\\ Mar 10, 12  |  Class inheritance. Nonlinear logistic regression with neural nets.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/11 Code Reuse by Class Inheritance.ipynb|11 Code Reuse by Class Inheritance]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/12.1 Classification with Nonlinear Logistic Regression Using Neural Networks.ipynb|12.1 Classification with Nonlinear Logistic Regression Using Neural Networks]]   | 
-|  Mar 16 - 20  |  Spring Break  | 
-| Week 9:\\ Mar 24, 26  | Start of online-only lectures. Thursday this week is first online class. No new material covered, but assignment questions can be discussed.  | Join the Microsoft Teams meeting using your firstname.lastname@colostate.edu login.  | 
- 
-===== April ===== 
- 
-|< 100% 10% 20% 30% 20% 20%  >| 
-^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^ 
-| Week 10:\\ Mar 31, Apr 2  | Convolutional neural networks  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/13 Convolutional Neural Networks.ipynb|13 Convolutional Neural Networks]], [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/14 Convolutional Neural Network Training with Numpy.ipynb|14 Convolutional Neural Network Training with Numpy]]   | |  |  
-| Week 11:\\ Apr 7, 9   | Classification with Pytorch. Assignment 5. , with discrete state and action using tables and neural networks.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/15 Convolutional Neural Networks in Pytorch.ipynb|15 Convolutional Neural Networks in Pytorch]]  | | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/A4.2 Classification of Hand-Drawn Digits.ipynb|A4.2 Classification of Hand-Drawn Digits]] due Tuesday, April 7th, 10:00PM  | 
-| Week 12:\\ Apr 14, 16  | Reinforcement learning.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/16 Introduction to Reinforcement Learning.ipynb|16 Introduction to Reinforcement Learning]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/17 Reinforcement Learning with Neural Network as Q Function.ipynb|17 Reinforcement Learning with Neural Network as Q Function]]  |  [[http://incompleteideas.net/book/the-book.html|Reinforcement Learning: An Introduction]], by Richard Sutton and Andrew Barto, 2nd edition  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/Project Proposal.ipynb|Project Proposal]] due Thursday, April 16th, 10:00PM\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/A5.4 2-D and 1-D Convolutional Neural Networks in Pytorch.ipynb|A5.4 2-D and 1-D Convolutional Neural Networks in Pytorch]] due Saturday, April 18th, 10:00PM  | 
-| Week 13:\\ Apr 21, 23  | Reinforcement learning. History and future of AI as discussed in [[https://www.elementai.com/podcast#|episode of AI Element Podcast]]  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/18.1 Reinforcement Learning to Control a Marble.ipynb|18.1 Reinforcement Learning to Control a Marble]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/19 Reinforcement Learning for Two Player Games.ipynb|19 Reinforcement Learning for Two Player Games]]  |     
-| Week 14:\\ Apr 28, 30  | Decision Trees. Random Forests. Support Vector Machines. Ensembles.  | | | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/A6 Tic Tac Toe.ipynb|A6 Tic Tac Toe]] due Friday May 1st by 10:00 PM.   | 
- 
-===== May ===== 
- 
-|< 100% 10% 20% 30% 20% 20%  >| 
-^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^ 
-| Week 15:\\ May 5, 7  | Unsupervised learning. Clustering, K-Means, PCA, t-SNE.  | | |  A7  | 
-| May 11 - 15  |  Final Exam Week  |  |  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs445/notebooks/Project Report Example.ipynb|Project Report]] due Tuesday, May 12, 10:00 PM.  | 
- 
- 
  
start.txt ยท Last modified: 2020/06/25 10:41 (external edit)