User Tools

Site Tools


start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
start [2020/12/03 10:38]
127.0.0.1 external edit
start [2021/05/28 10:00] (current)
Line 1: Line 1:
 ====== Schedule ====== ====== Schedule ======
 +/***
  
 Links to MS Teams Events: Links to MS Teams Events:
Line 8: Line 9:
  
 Lecture videos are available from the [[https://colostate.instructure.com/courses/109894|Canvas home page]]. Lecture videos are available from the [[https://colostate.instructure.com/courses/109894|Canvas home page]].
 +
 +***/
  
 To use jupyter notebooks on our CS department machines, you must add this line to your .bashrc file: To use jupyter notebooks on our CS department machines, you must add this line to your .bashrc file:
Line 13: Line 16:
   export PATH=/usr/local/anaconda/bin:$PATH   export PATH=/usr/local/anaconda/bin:$PATH
  
-This is a tentative schedule of CS545 topics for Fall, 2020.  This will be updated during the summer and as the fall semester continues.+tentative schedule of CS545 topics for Fall, 2021, will appear here during the summer of 2021. 
 + 
 +===== August ===== 
 + 
 +|< 100% 18% 20% 22% 20% 20%  >| 
 +^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments 
 +| Week 1:\\  Aug 24, 26   | Overview of course, python, machine learning, and expectations of students' understanding of machine learning concepts | 
 +| Week 2:\\  Aug 31, Sept 2  | 
 + 
 +/*** [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/01 Introduction to CS545.ipynb|01 Introduction to CS545]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/02 Searching for Good Weights in a Linear Model.ipynb|02 Searching for Good Weights in a Linear Model]] ***/  | /*** [[http://www.labri.fr/perso/nrougier/from-python-to-numpy/|From Python to Numpy]], Chapters 1 - 2\\ [[http://www.scipy-lectures.org/|Scipy Lectures]], Section 1\\ [[https://jakevdp.github.io/PythonDataScienceHandbook/04.00-introduction-to-matplotlib.html|Visualization with Matplotlib]]\\ [[http://www.deeplearningbook.org/|Deep Learning]], Chapters 1 - 5.1.4  ***/  
 + 
 + 
 +===== September ===== 
 + 
 +|< 100% 18% 20% 22% 20% 20%  >| 
 +^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments 
 +| Week 3:\\  Sept 7, 9  | 
 +| Week 4:\\  Sept 14, 16  | 
 +| Week 5:\\  Sept 21, 23  | 
 +| Week 6:\\  Sept 28, 30  | 
 + 
 +===== October ===== 
 + 
 +|< 100% 18% 20% 22% 20% 20%  >| 
 +^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments 
 +| Week 7:\\  Oct 5, 7  | 
 +| Week 8:\\  Oct 12, 14  | 
 +| Week 9:\\  Oct 19, 21  | 
 +| Week 10:\\  Oct 26, 28  | 
 + 
 +===== November ===== 
 + 
 +|< 100% 18% 20% 22% 20% 20%  >| 
 +^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments 
 +| Week 11:\\  Nov 2, 4  | 
 +| Week 12:\\  Nov 9, 11  | 
 +| Week 13:\\  Nov 16, 18  | 
 +| Nov 23, 25  |  Fall Recess !!  | 
 +| Week 14:\\  Nov 30, Dec 2  | 
 + 
 +===== December ===== 
 + 
 +|< 100% 18% 20% 22% 20% 20%  >| 
 +^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments 
 +| Week 15:\\  Dec 7, 9  | 
 +| Dec 13-17  |  Final Exams  | 
 + 
 +/***
  
 ===== August ===== ===== August =====
Line 57: Line 107:
 ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^ ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^
 | Week 14:\\ Nov 30 - Dec 4   | Clustering.\\ Support Vector Machines.   | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/22 K-Means Clustering, K-Nearest-Neighbor Classification.ipynb|22 K-Means Clustering, K-Nearest-Neighbor Classification]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/23 Support Vector Machines.ipynb|23 Support Vector Machines]]    | | Week 14:\\ Nov 30 - Dec 4   | Clustering.\\ Support Vector Machines.   | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/22 K-Means Clustering, K-Nearest-Neighbor Classification.ipynb|22 K-Means Clustering, K-Nearest-Neighbor Classification]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/23 Support Vector Machines.ipynb|23 Support Vector Machines]]    |
-| Week 15:\\ Dec 7 - Dec 11    |  | +| Week 15:\\ Dec 7 - Dec 11   Transfer learning in Reinforcement Learning. Brain-computer interfaces.  
-| Finals Week:\\ Dec 14 - Dec 18  |  |  |  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A6 Reinforcement Learning to Control a Robot.ipynb|A6 Reinforcement Learning to Control a Robot]]  due Tuesday, Dec 15th, 10:00 PM. Here is [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/A3mysolution.tar|A3mysolution.tar]], a neural network implementation you may choose to use for A6.   |+| Finals Week:\\ Dec 14 - Dec 18  |  |  |  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A6.2 Reinforcement Learning to Control a Robot.ipynb|A6.2 Reinforcement Learning to Control a Robot]]  due Tuesday, Dec 15th, 10:00 PM. Here is [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/A3mysolution.tar|A3mysolution.tar]], a neural network implementation you may choose to use for A6.\\ Good examples of solutions are [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/goodones|available here]].   | 
  
 +***/
  
start.1607017105.txt.gz · Last modified: 2020/12/03 10:38 by 127.0.0.1