User Tools

Site Tools


start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
start [2022/08/22 10:51] andersonstart [2022/11/30 12:45] (current) – external edit 127.0.0.1
Line 15: Line 15:
 |< 100% 18% 20% 22% 20% 20%  >| |< 100% 18% 20% 22% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^ ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^
-| Week 1:\\  Aug 23, 25   | Overview of course. Review of neural networks training and use.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/01 Introduction to CS545.ipynb|01 Introduction to CS545]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/02 Searching for Good Weights in a Linear Model.ipynb|02 Searching for Good Weights in a Linear Model]]   | [[https://jupyterlab.readthedocs.io/en/stable/getting_started/overview.html|JupyterLab Introduction]], watch the video then play with jupyter lab.  |  [[https://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/Quiz1.ipynb|Quiz 1]] due Friday, August 2610:00 PM  +| Week 1:\\  Aug 23, 256   | Overview of course. Review of neural networks training and use.  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/01 Introduction to CS545.ipynb|01 Introduction to CS545]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/02 Searching for Good Weights in a Linear Model.ipynb|02 Searching for Good Weights in a Linear Model]]   | [[https://jupyterlab.readthedocs.io/en/stable/getting_started/overview.html|JupyterLab Introduction]], watch the video then play with jupyter lab.  \\ [[https://tinyurl.com/2qw45tlp|The Batch]] from DeepLearning.AI. YayColorado!     
-| Week 2:\\  Aug 30, Sept 1  | Regression with neural networks.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/03 Fitting Simple Models Using Gradient Descent in the Squared Error.ipynb|03 Fitting Simple Models Using Gradient Descent in the Squared Error]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/04 Introduction to Neural Networks.ipynb|04 Introduction to Neural Networks]]  |+| Week 2:\\  Aug 30, Sept 1  | Thursday lecture cancelled. Please watch pre-recorded lecture in Echo360. Quiz1 and A1 questions. Regression with neural networks.  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/03 Fitting Simple Models Using Gradient Descent in the Squared Error.ipynb|03 Fitting Simple Models Using Gradient Descent in the Squared Error]]   |[[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/Quiz1.ipynb|Quiz 1]] due Wednesday, August 31, 10:00 PM, in Canvas  |
  
  
Line 23: Line 23:
 |< 100% 18% 20% 22% 20% 20%  >| |< 100% 18% 20% 22% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^ ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^
-| Week 3:\\  Sept 6, 8  | A1 questionsOptimizers. Neural Network class | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/05 Optimizers.ipynb|05 Optimizers]]  | +| Week 3:\\  Sept 6, 8  | Introduction to Neural Networks  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/04 Introduction to Neural Networks.ipynb|04 Introduction to Neural Networks]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/04a Simple Animations.ipynb|04a Simple Animations]]\\   | [[https://doi.org/10.1016/j.neucom.2022.06.111|Activation functions in deep learning: A comprehensive survey and benchmark]], Neurocomputing, volume 503, 2022, pp. 92-108  |   
-| Week 4:\\  Sept 13, 15  | A2. AutoencodersClassification  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/06 Autoencoders.ipynb|06 Autoencoders]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/07 Introduction to Classification.ipynb|07 Introduction to Classification]]  | |  | +| Week 4:\\  Sept 13, 15\\    Python classes.  A2.    | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/04b Introduction to Python Classes.ipynb|04b Introduction to Python Classes]]  | [[https://docs.python.org/3/tutorial/classes.html|Classes Tutorial]]  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A1 Three-Layer Neural Network.ipynb|A1 Three-Layer Neural Network]] due Monday, Sept 12th, at 10:00 PM\\  [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/solutions/Anderson-Solution-A1.ipynb|Anderson-Solution-A1]]  | 
-| Week 5:\\  Sept 20, 22  | Classification.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/08 Classification with Linear Logistic Regression.ipynb|08 Classification with Linear Logistic Regression]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/09 Classification with Nonlinear Logistic Regression Using Neural Networks.ipynb|09 Classification with Nonlinear Logistic Regression Using Neural Networks]]    +| Week 5:\\  Sept 20, 22  | Optimizers. Autoencoders.  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/05 Optimizers.ipynb|05 Optimizers]] \\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/05a Collecting All Weights into One-Dimensional Vector for Use in Optimizers.ipynb|05a Collecting All Weights into One-Dimensional Vector for Use in Optimizers]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/06 Autoencoders.ipynb|06 Autoencoders]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/06a Visualizing Weights.ipynb|06a Visualizing Weights]]   | [[https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf|Pandas Cheat Sheet]]  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A2 NeuralNetwork Class.ipynb|A2 NeuralNetwork Class]] due Thursday, Sept 22nd, at 10:00 PM\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/solutions/Anderson-A2-Solution.ipynb|Anderson-A2-Solution]]  | 
-| Week 6:\\  Sept 27, 29  |   [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/10 JAX.ipynb|10 JAX]]\\ [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/neuralnetworks_app.tar|neuralnetworks_app.tar]]  | [[https://moocaholic.medium.com/jax-a13e83f49897|JAX Ecosystem]]\\ [[https://streamlit.io/|Streamlit]]  | |  +| Week 6:\\  Sept 27, 29  |  A3. Classification [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/07 Introduction to Classification.ipynb|07 Introduction to Classification]]  |  |  |
  
 ===== October ===== ===== October =====
Line 32: Line 32:
 |< 100% 18% 20% 22% 20% 20%  >| |< 100% 18% 20% 22% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^ ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^
-| Week 7:\\  Oct 4, 6  | Convolutional neural networks.  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/11 Convolutional Neural Networks.ipynb|11 Convolutional Neural Networks]]\\ [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/CNN Backprop.pdf|CNN Backpropagation Notes]]  | [[https://spectrum.ieee.org/special-reports/the-great-ai-reckoning/|The Great AI Reckoning]]  +| Week 7:\\  Oct 4, 6  | Classification. Convolutional neural networks.  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/08 Classification with Linear Logistic Regression.ipynb|08 Classification with Linear Logistic Regression]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/09 Classification with Nonlinear Logistic Regression Using Neural Networks.ipynb|09 Classification with Nonlinear Logistic Regression Using Neural Networks]]  | [[https://spectrum.ieee.org/special-reports/the-great-ai-reckoning/|The Great AI Reckoning]]  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A3 NeuralNetwork Class Using Optimizers.ipynb|A3 NeuralNetwork Class Using Optimizers]] due Thursday, October 6th, at 10:00 PM.    | 
-| Week 8:\\  Oct 11, 13  | Pytorch. Convolutional neural nets  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/12 Introduction to Pytorch.ipynb|12 Introduction to Pytorch]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/13 Convolutional Neural Networks in Pytorch.ipynb|13 Convolutional Neural Networks in Pytorch]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/14 Convolutional Neural Networks in Numpy.ipynb|14 Convolutional Neural Networks in Numpy]]  | +| Week 8:\\  Oct 11, 13  | Pytorch. Convolutional neural nets  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/10 JAX.ipynb|10 JAX]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/11 Convolutional Neural Networks.ipynb|11 Convolutional Neural Networks]]\\ [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/neuralnetworks_streamlit.tar|neuralnetworks_streamlit.tar]]\\ [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/CNN Backprop.pdf|CNN Backpropagation Notes]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/12 Introduction to Pytorch.ipynb|12 Introduction to Pytorch]]  | [[https://moocaholic.medium.com/jax-a13e83f49897|JAX Ecosystem]]\\ [[https://streamlit.io/|Streamlit]]\\ [[https://www.deeplearning.ai/blog/acing-data-science-job-interview/?utm_campaign=The%20Batch&utm_medium=email&_hsmi=229461727&_hsenc=p2ANqtz-9bQj7qnAn_EuLfiAfXWztDKramW14RY0e9d9AEJEO_Xb-ABdnYZGPWanYADOLb_2B5GJup_AX4Qr_ge1C-iscdRBPZhAS2ruIHrOjnVo_NesAG0-s&utm_content=229461727&utm_source=hs_email|Breaking Into AI: Sahar Nasiri on Acing the Data Science Job Interview]]  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A4 Neural Network Classifier.ipynb|A4 Neural Network Classifier]] due Friday, October 14th, at 10:00 PM. A4 solution available [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/A4solution.tar|here as A4solution.tar]], and here are [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/goodones|examples of good solutions.]]  | 
-| Week 9:\\  Oct 18, 20  | Reinforcement Learning  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/15 Introduction to Reinforcement Learning.ipynb|15 Introduction to Reinforcement Learning]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/16 Reinforcement Learning with Neural Network as Q Function.ipynb|16 Reinforcement Learning with Neural Network as Q Function]]  | |   +| Week 9:\\  Oct 18, 20  | Convolutional Neural Nets in Pytorch. Reinforcement Learnirng  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/13 Convolutional Neural Networks in Pytorch.ipynb|13 Convolutional Neural Networks in Pytorch]] \\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/15 Introduction to Reinforcement Learning.ipynb|15 Introduction to Reinforcement Learning]] [[https://arxiv.org/pdf/2210.08340.pdf|Toward Next-Generation Artificial Intelligence: Catalyzing the NeuroAI Revolution]]      
-| Week 10:\\  Oct 25, 27  | Reinforcement Learning  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/17 Reinforcement Learning for Two Player Games.ipynb|17 Reinforcement Learning for Two Player Games]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/18 Reinforcement Learning to Control a Marble.ipynb|18 Reinforcement Learning to Control a Marble]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/19 Reinforcement Learning Modular Framework.ipynb|19 Reinforcement Learning Modular Framework]]  +| Week 10:\\  Oct 25, 27  | Reinforcement Learning  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/16 Reinforcement Learning with Neural Network as Q Function.ipynb|16 Reinforcement Learning with Neural Network as Q Function]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/17 Reinforcement Learning for Two Player Games.ipynb|17 Reinforcement Learning for Two Player Games]] | [[https://lastweekin.ai/p/190?utm_source=substack&utm_medium=email|Last Week in AI]] newsletter, with lots of topics for possible semester projects.\\ [[https://www.cell.com/neuron/fulltext/S0896-6273(22)00806-6#%20|Pong in a dish]]  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/Project Proposal and Report Example.ipynb|Project Proposal]], due Friday, October 28, 10:00 PM  |
  
 ===== November ===== ===== November =====
Line 41: Line 41:
 |< 100% 18% 20% 22% 20% 20%  >| |< 100% 18% 20% 22% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^ ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^
-| Week 11:\\  Nov 1, 3  | Transfer learning in Reinforcement Learning.\\ Brain-Computer Interfaces  Slide presentations  | [[http://www.cs.colostate.edu/~anderson/wp/pubs/pretrainijcnn15.pdf|Faster Reinforcement Learning After Pretraining Deep Networks to Predict State Dynamics]], [[https://ieeexplore.ieee.org/document/9533751|Increased Reinforcement Learning Performance through Transfer of Representation Learned by State Prediction Model]]  +| Week 11:\\  Nov 1, 3  | Reinforcement Learning for control dynamical systems.  Transfer learning in Reinforcement Learning.    | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/18 Reinforcement Learning to Control a Marble.ipynb|18 Reinforcement Learning to Control a Marble]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/19 Reinforcement Learning Modular Framework.ipynb|19 Reinforcement Learning Modular Framework]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/20 Reinforcement Learning to Control a Marble Variable Goal.ipynb|20 Reinforcement Learning to Control a Marble Variable Goal]]  | [[http://www.cs.colostate.edu/~anderson/wp/pubs/pretrainijcnn15.pdf|Faster Reinforcement Learning After Pretraining Deep Networks to Predict State Dynamics]], [[https://ieeexplore.ieee.org/document/9533751|Increased Reinforcement Learning Performance through Transfer of Representation Learned by State Prediction Model]]  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A5 Convolutional Neural Networks.ipynb|A5 Convolutional Neural Networks]] due Friday, November 4th, at 10:00 PM.\\ Here are [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/goodones|examples of good solutions.]]   | 
-| Week 12:\\  Nov 8, 10  | BCI. Recurrent Neural Networks. | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/20 Recurrent Networks in Numpy.ipynb|20 Recurrent Networks in Numpy]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/21 Recurrent Networks in Pytorch.ipynb|21 Recurrent Networks in Pytorch]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/22 Classifying EEG Using Recurrent Neural Networks.ipynb|22 Classifying EEG Using Recurrent Neural Networks]]  | |  | +| Week 12:\\  Nov 8, 10  | Brain-Computer Interfaces. Linear dimensionality reduction. | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/21 Linear Dimensionality Reduction with PCA.ipynb|21 Linear Dimensionality Reduction with PCA]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/22 Linear Dimensionality Reduction with Sammon Mapping.ipynb|22 Linear Dimensionality Reduction with Sammon Mapping]]  | |  | 
-| Week 13:\\  Nov 15, 17  | K-means clustering. K-nearest-neighbor classification. Support Vector Machines.   | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/23 K-Means Clustering, K-Nearest-Neighbor Classification.ipynb|23 K-Means Clustering, K-Nearest-Neighbor Classification]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/24 Support Vector Machines.ipynb|24 Support Vector Machines]]    |   +| Week 13:\\  Nov 15, 17  | Recurrent neural networks.   | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/23 Recurrent Neural Networks.ipynb|23 Recurrent Neural Networks]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/24 Recurrent Network Applications.ipynb|24 Recurrent Network Applications]]  |  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A6 Reinforcement Learning to Control a Robot.ipynb|A6 Reinforcement Learning to Control a Robot]] due Friday, November 18th, at 10:00 PM.  | 
-| Week 14:\\  Nov 29, Dec 1  | Introduction to Transformers  | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/25 Introduction to Transformers.ipynb|25 Introduction to Transformers]] | +| Fall Break:\\ Nov 21-25 | 
 +| Week 14:\\  Dec 1  | K-means clustering. K-nearest-neighbor classification.   | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/25 K-Means Clustering, K-Nearest-Neighbor Classification.ipynb|25 K-Means Clustering, K-Nearest-Neighbor Classification]]   |
  
 ===== December ===== ===== December =====
Line 50: Line 51:
 |< 100% 18% 20% 22% 20% 20%  >| |< 100% 18% 20% 22% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^ ^  Week      ^  Topic      ^  Material  ^  Reading          ^  Assignments  ^
-| Week 15:\\  Dec 6, 8  | Transformers: Self-Attention Replaced by Fourier Transform.\\ Cascade Ensemble Network   | [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/26 FNet--Replace Self-Attention with Fourier Transform.ipynb|26 FNet--Replace Self-Attention with Fourier Transform]]\\ [[http://nbviewer.ipython.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/27 Cascade Ensemble Network.ipynb|27 Cascade Ensemble Network]] |  +| Week 15:\\  Dec 6, 8  | GTA Saira Jabeen summarizes her research.  Support Vector Machines. Introduction to Transformers  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/26 Support Vector Machines.ipynb|26 Support Vector Machines]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/27 Introduction to Transformers.ipynb|27 Introduction to Transformers]] |   |  |  
-| Dec 12-16  |  Final Exam Week  |  No Exams in this course +| Dec 12-16  |  Final Exam Week  |  No Exams in this course  | |[[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/Project Proposal and Report Example.ipynb|Project Report]], due Monday, December 12th, 10:00 PM.  [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/titles.html|Here is a list of project titles and authors.]]   |
  
  
  
start.1661187080.txt.gz · Last modified: 2022/08/22 10:51 by anderson