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Abstract

Neura networks are trained to classify half-second segments of six-channel, EEG datainto one of five
classes corresponding to five cognitive tasks performed by four subjects. Two and three-layer feedfor-
ward neural networks are trained using 10-fold cross-validation and early stopping to control over-fitting.
EEG signals were represented as autoregressive (AR) models. The average percentage of test segments
correctly classified ranged from 71% for one subject to 38% for another subject. Cluster analysis of the
resulting neural networks' hidden-unit weight vectorsidentifies which EEG channels are most relevant to
this discrimination problem.

1 Introduction

Visual inspection of multiple time series of EEG signalsin their unprocessed formis still the predom-
inant way of discriminating and classifying EEG patterns in the medical community and requires highly
trained medical professionals. Since the early days of automatic EEG processing, representations based on
a Fourier transform have been most commonly applied. This approach is based on earlier observations that
the EEG spectrum contains some characteristic waveformsthat fall primarily within four frequency bands—
delta(1-3H2z), theta (4—7 Hz), alpha(8-13 Hz), and beta (14—20 Hz). Such methods have proved beneficial
for various EEG characterizations, but the Fourier Transform and its discrete version, the FFT, suffer from
large noise sensitivity. Numerous other techniques from the theory of signal analysis have been used to ob-
tain representations and extract the features of interest for classification purposes. For an overview of these
techniques, see[5].

Neural networksand statistical pattern recognition methods have been applied to EEG analysis; some of
thiswork is briefly reviewed in this section. The experimentsreported in this article use neural networksto
learn EEG classification functions, but go beyond thistypical use by applying cluster analysisto theresulting
weight vectors. Thisanaysisrevealssome of therelationshipsbetween EEG featuresand their classification
that exist in the learned classification function. It also provides information that can support and generate
hypothesesabout brain activity underlying the studied cognitive behaviors. Therepresentationsused to code
theinformationin EEG signalsgreatly influenceswhat can belearned from the analysis of the neural network
classifiers.

Some recent work that dealswith the problem of EEG representati ons finds time domain methods based
on parametric models very useful for EEG feature extraction. Tseng, et al., [21] evaluated different para-
metric models on afairly large database of EEG segments. Using inverse filtering, white noise tests, and
one-second EEG segments, they found that autoregressive (AR) models of orders between 2 and 32 yielded
the best EEG estimation. For a method which avoidsthe use of signal segmentation and providesan on-line
AR parameter estimation that fits nonstationary signals, like EEG, see[6]. Inaproblem of classifying EEGs
of normal subjects from those with psychiatric disorders, Tsoi, et al ., [22] used AR representationsin a pre-
processing stage and artificial neural networksin the classification stage. Inouye, et al. [9], used the entropy
of the power spectraand amutual information measureto determine directi onal EEG patterns during mental
arithmetic and aresting state. Rotation and changein size of mental images and its corresponding patterns
of cerebral activations are considered in [18].

Finding a suitable representation of EEG signals is the key to learning a reliable discrimination and to
understanding the extracted relationships[1, 2]. Inthisarticle, the coefficients of sixth-order AR modelsare



used to represent the EEG signals. Standard, feed-forward neural networks are trained as classifiers using
error backpropagation with early stopping and ten-fold crossover. Therepresentation and training procedure
are defined in Section 2. Results are presented in Section 3. Section 4 contains a description and results of
the cluster analysis performed on trained networks. Section 5 summarizes the conclusions and limitations
of the classification experiments.

2 Method

2.1 EEG Data Acquisition and Representation

All data used in this article was obtained previously by Keirn and Aunon [13, 12] using the following
procedure. The subjects were seated in an Industrial Acoustics Company sound controlled booth with dim
lighting and noiselessfansfor ventilation. An Electro-Cap elastic electrode cap was used to record from po-
sitions C3, C4, P3, P4, O1, and O2, defined by the 10-20 system of electrode placement [10]. The el ectrodes
were connected through abank of Grass 7P511 amplifiers and bandpassfiltered from 0.1-100 Hz. Datawas
and recorded at a sampling rate of 250 Hz with aLab Master 12 bit A/D converter mounted in an IBM-AT
computer. Eye blinks were detected by means of a separate channel of data recorded from two electrodes
placed above and below the subject’s | eft eye.

For this paper, the data from four subjects performing five mental tasks was analyzed. These tasks were
chosen by Keirn and Aunon to invoke hemispheric brainwave asymmetry [16]. Thefivetasksare: the base-
line task, for which the subjects were asked to relax as much as possible; the letter task, for which the sub-
jects were instructed to mentally compose a letter to a friend or relative without vocalizing; the math task,
for which the subjects were given nontrivial multiplication problems, such as 49 times 78, and were asked
to solve them without vocalizing or making any other physical movements; the visual counting task, for
which the subjects were asked to imagine a blackboard and to visualize numbers being written on the board
sequentially; and the geometric figure rotation, for which the subjects were asked to visualize a particular
three-dimensional block figure being rotated about an axis. Data was recorded for 10 seconds during each
task and each task was repeated five times per session. Most subjects attended two such sessions recorded
on separateweeks, resulting in atotal of 10 trialsfor each task. With a250 Hz sampling rate, each 10 second
trial produces 2,500 samples per channel. These are divided into half-second segments that overlap by one
quarter-second, producing at most 39 segments per trial—segments containi ng eye blinks are discarded.

2.2 AR Representation of EEG Signals

Keirnand Aunon [13] and others[1, 2] achieved the best classification results using aFourier Transform
based on AR coefficients. In thisarticle, the first representation studied is composed of just the AR coeffi-
cients. Let a; . bethe it coefficient of the AR model for channel ¢, where c = {C'3, C4, P3, P4,01,02}
andi = 1,...,n withn beingtheorder of themodel. Theprediction, z; ., of theorder n, AR model isgiven

by
Tio(t) = agewio(t —1i).
i=1

The coefficients that minimize the squared error of this prediction were estimated using the Burg method
[11].! The AIC criterion is minimized for orders of two and three [20], but based on previous results by
Keirnand Aunon, an order of six wasused. The 36 coefficients (6 channelsx 6 orders) for each segment are
concatenated into one feature vector consisting of the six coefficientsfor the C3 channel, then for the C4, P3,
P4, O1, and O2 channels. A total of 1,385 half-second windows compose the 10 trias, with 277 windows
from each of the five tasks. Each tria contains the same number of windows from each task, though the
trials contain a different total number of windows, ranging from 100 to 175.

2.3 Neural Network Classifier

The classifier implemented for this work is a standard, feedforward, neural network with one or two
hidden layers and one output layer, trained with the error backpropagation algorithm[19, 7]. The activation
function for all unitsis the asymmetric sigmoid function. The topology of a network will be denoted by a

1The Burg method was implemented using the MATLAB function ar. See the Mathworks, Incorporated, web page at
http://www.mathworks.com for more information.



hyphenated pair of numbersindicating the number of unitsin thefirst hidden layer and in the second hidden
layer. For example, a 10-5 network has 10 unitsin thefirst hidden layer and 5 in the second. A 10-0 network
has 10 unitsin asingle hidden layer.

Training the network is accomplished by initializing all weightsto small, random values and then per-
forming a gradient-descent search in the network’s weight space for a mini mum of a squared error function
of the network’s output. The error is between the network’s output and the target value for each input vec-
tor. For the five-task experiments, the target values were set to 1,0,0,0,0 for the baseline task, 0,1,0,0,0 for
the letter task, 0,0,1,0,0 for the math task, 0,0,0,1,0 for the counting task, and 0,0,0,0,1 for the rotation task.
Different learning rates were used for the hidden layers and the output layer. After trying a large number
of different values, we found that a learning rate of 0.1 for the hidden layers and 0.01 for the output layer
produced the best performance.

The classification performance of a neural network depends on the initial wei ght values and on the data
used to train and test. If the data contains noise or does not completely specify the target function, a neural
network will over-fit the training data and it will not correctly interpolate and extrapolate the training data,
i.e., it will not generalize well.

To limit the amount of over-fitting during training, the following 10-fold, cross-validation procedurewas
performed. Eight of the ten trials were used for the training set, one of the remaining trials was selected
for validation and the last trial was used for testing. The error of the network on the validation data was
calculated after every pass, or epoch, through the training data. After 3,000 epochs, the network state (its
weight values) at the epoch for which thevalidation error is smallest was chosen asthe network that will most
likely performwell on novel data. Thisbest network wasthen applied to the test set; the result indicateshow
well the network will generalize to novel data. With 10 trials, there are 90 ways of choosing the validation
and test trials with the remaining eight trials combined for the training set. Results described in the next
section are reported as the average classification accuracy on the test set averaged over all 90 partitions of
the data. Each of the 90 repetitions started with different, random, initial weights.

The neural networksweretrained using aCNAPS Server I1,2 aparallel, SIMD architecturewith 128, 20
MHz, processors, upgradableto 512 processors. The experiments reported in this article were implemented
on the CNAPS machineusing Buildnet, alibrary of C-callable functionsthat implement the error backprop-
agation agorithm (and others). Training a neural network with a single hidden layer containing 20 hidden
units (a 20-0 network) took an average of 3.2 minutes on the CNAPS, while on a Sun SparcStation 20, the
same experiment took an average of 20 minutes. An experiment of 90 repetitions required 4.8 hours on the
CNAPS and 30 hours on the SparcStation.

3 Reaults

Toillustrate the cross-validation procedure, Figure 1 showsthe RM S error after every 300 epochs, aver-
aged over output units and over patternsin the training set, validation set, and test sets, for the three curves,
respectively. Though not plotted, the initial RMS error is 0.5, because the initial output of the network is
0.5 and the desired output values are 0 or 1. The training error decreases throughout the training period of
3,000 epochs, but a clear minimum occurs in the validation error. A vertical lineis drawn at epoch 396 at
which the error for the validation set is the lowest. The error and classi fication performance on the test set
iscalculated at that epoch as an indication of how well this network will generalize to novel data. Thisplot
was obtained from a 20-0 network.

This training and testing process was repeated 89 more times for each network topology. To compare
various networks, the number of test ssgmentsfor which the correct output unit produced the highest output
are counted and expressed as a percentage of the total number of test segments.

The AR representation was used to determineif two hidden layers provide any advantage over asingle
hidden layer for this recognition problem. Figure 2a. shows the average percent of the test segments that
are classified correctly for various network topologies (h; and ko are the number of unitsin the first and
second hidden layers). The 90% confidence intervals show that the variation in performance for different
values of hy are not significant. Thus, two hidden layers provide no advantage. However, the improvement

2The CNAPS Server is a product of Adaptive Solutions, Incorporated. See http://www.asi.com for more information.



0.5

RMS NN _
Error 0.3F r

|

|

|

|

|

|

|

L

0.2

O. 1 Il Il Il Il I}
0 500 1000 1500 2000 2500 3000

Epochs

Figure 1: RMS error versustraining epochs for training, validation, and test sets.

in performancewith higher values of h, are significant, until »; becomesequal to 10. The best performance
is achieved with a 20-0 network, resulting in an average of 54% correct.
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Figure 2: Average percent of test segments correctly classified for different network topologies: a.) Results
just for Subject 1, where h, isthe number of unitsin thefirst hidden layer and k- isthe number in the second
hiddenlayer; error barsshow 90% confidenceintervals; b.) Resultsfor all subjectswithasinglehiddenlayer.

For the remaining experiments, asingle hidden layer isused. Figure 2.b summarizesthe average percent
of test segmentsclassified correctly for various-sized networksusing each of thefour representations. Again,
90% confidence intervals are included. For Subject 1, better performance resul ts from five or more hidden
units. For the other subjects, the increased performance for five or more hidden units is not statistically
significant.

Inspection of how the network’s classification changes from one segment to the next suggeststhat better
performance might be achieved by averaging the network’s output over consecutive segments. To investi-
gate this, a 20-unit network trained with data from Subject 1 is studied. The graphsin the left column of
Figure 3a show the output values of the network’s five output units for each segment of test data from one
trial. On each graph the desired value for the corresponding output is also drawn. The bottom graph shows
thetruetask and thetask predicted by the network. For thistrial, 54% of the segmentsare classified correctly
when no averaging across segments is performed. The other column of graphs shows the network’s output
and predicted classification that result from averaging over 20 consecutive segments. Potential confusions
that the classifier might make can beidentified by therelatively high responses of an output unit for test seg-
ments that do not correspond to the task represented by that output unit. For example, in the third graphin
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Figure 3: a.) Network output values and desired values for onetest trial for Subject 1. b.) The percent of
averaged windows classified correctly versus the number of consecutive windows averaged over. 20 con-
secutive windows span approximately five seconds.

the right column, the output value is high during math segments, asit should be, but it isalso relatively high
during count segments. Also, the output of the count unit, shown in the fourth graph, is high during count
segments, but is also relatively high during letter segments.

For thistrial, averaging over 20 segments results in 96% correct, but perf ormance is not improved this
much on all trials. The best classification performance for the 20-0 network, averaged over all 90 repeti-
tions, is achieved by averaging over all segments. Figure 3b shows how the percent correct varies with the
number of consecutive segments averaged for each subject. Averaging over consecuti ve segmentsimproves
the classification accuracy of datafrom Subjects 1 and 4 by about 16%, but only improves the accuracy for
the other two subjects by about 5%.

4 Analysisof the Neural Network Classifier

One of the networkswith 20 hidden unitsthat was trained on Subject 1 datais shown in Figure4a. Pos-
itive weights are drawn as filled boxes, negative weights as unfilled boxes. The width and height of a box
is proportional to the weight's magnitude. The weights of the hidden layer are drawn as the upper matrix
of boxes and the weights of the output layer are drawn as the lower matrix. The weights of the first hidden
unit appear in the left-most column of the upper matrix, while the weights of the first output unit, the one
corresponding to the baseline task, are drawn as the first row of the lower matrix.

As an example of how these diagrams can provide clues about what was learned, consider the second
hidden unit, i.e., the unit whose weights appear in the second column from the left of the upper matrix and
whose output is connected to the units in the output layer through the weightsin the second column of the
lower matrix. Thisunit is connected through a strong positive weight to the third output unit, the one corre-
sponding to the math task, and through small magnitude or negative wei ghtsto the other output units. Thus,
when this hidden unit’s output valueis high the network more strongly predicts that the input vector isfrom
amath task and lessstrongly predictsthat it isfrom the other tasks. The most noticeableinput weightsof this
unit are the two pairs of oppositely-signed weights at positions 25 and 31, the components corresponding to
the first order coefficients for the O1 and O2 channels. This suggests the math data is related to an asym-
metry in the first-order AR coefficients for EEG data recorded from the occipital region (O1 vs. O2). The
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Figure4: a) A 20-0 network. The columns of the upper matrix represent the weightsin each hidden unit and
the rows of the lower matrix represent the weightsin each output unit. Positive weights are filled, negative
weights are unfilled. b) Results of k-means clustering for 20 clusters with Subject 1 data.

tenth hidden unit approximately represents the inverse of the effect of the second hidden unit. Hidden unit
12 hasrelatively large weightsfor higher ordersin the C3, O1, and O2 channels. Thisunit hasthe strongest
positive effect on the baseline task.

This diagram pertains to just one of the 90 training repetitions. It is obvioudy too tedious to visualy
study all 90 repetitions to ook for patternsin weight vectors. One approach to dealing with this quantity of
information is to cluster the weight vectors from all 90 repetitions. Vectors to be clustered are formed by
concatenating the input weights from a hidden unit with its output wei ghts—the weights with which the unit
is connected to the five output units. The results of applying the k-means clustering algorithm with & = 20,
i. e, for 20 clusters, is shown in Figure 4b. The k-means algorithm was initialized by randomly selecting &
hidden unit weight vectors asthe initial cluster centers.

Fivecluster centers(1, 4, 15, 16, and 17) consist of input weights near zero. Thisindicatesthat anumber
of hidden units maintain input weight values near zero during training. The second cluster and the third
cluster correspond to the first two types of units described in the above discussion of Figure 4; the second
cluster suppresses (is connected negatively to) the math task output unit and the third cluster suppressesall
but the math task unit. Most of the other clustersal so contain significant weightsfor the O1 and O2 channels.
One cluster that includes large weights in other channelsis cluster 18, for which the first order weights are
relatively large, positive values for the C3, P3, and O1. These electrodes record from the left hemisphere.
Thiscluster has positive output weightsfor the baseline, letter, and math tasks, and negativefor the counting
and rotation task, suggesting a hemispheric asymmetry in the EEG signals related to thefirst three tasks.

Prior to training all representation components were normalized to have the same mean and variance.
This removes biases that would arise from differing input component variances, allowing the direct com-
parison of the magnitudes of the weightsin these clusters.

This demonstrates how the cluster analysis of alarge number of resulting weight vectors can lead to an
understanding of what relationships the networks have extracted from the data. It also shows how assump-



tions about the data, such as the removal of known noise sources, can be verified.

The clustering results can also be used to form hypotheses about which representation components are
most relevant to the classification problem. These hypotheses can then be used to direct a pruning procedure
in which subsets of the least relevant components are removed and the networks retrained. Yet another use
of the clustersis to construct a new network consisting of a hidden layer of fixed units whose weights are
determined by the clusters. Since the clustering is performed on sets of weight vectors from training runs
based on different partitions of the data, the performance of a network constructed of cluster centers might
be similar to that achieved by a committee of networks trained on different data partitions.

5 Conclusion

When the output of the network was averaged over 20 consecutive, half-second segments and each seg-
ment was represented by sixth-order AR models, approximately 70% of the EEG test patterns for two sub-
jects were classified as the correct mental task. For two additional subjects, 45% and 33% were correctly
classified.

Cluster analysis was applied to learned weight vectors, revealing some of the acquired relationships
between representation components and mental tasks. The results of clustering can be used both for the
construction of lower-dimensional representations and for investigati ng hypothesesregarding differencesin
brain activity related to different cognitive behavior.

Oneof the strengths of thisstudy isitsrigoroustraining procedureinvolving cross-validation, early stop-
ping, and alarge number of training repetitions, made possible by parallel hardware. Early stopping isone of
the smplest methods for limiting the complexity of a network. Other methods might lead to better general-
ization performance. Finnoff, Hergert, and Zimmerman [4] comparethe performanceof anumber of weight
decay, pruning, and early stopping methods, on a variety of artificial data sets. They found much variation
in the rel ative rankings of these methods across different data sets, though their results suggest that asimple
weight decay mechanism would produce better generalization than the early stopping method applied in this
article.

The most likely route to better performance is to test other EEG signal representations. Perhaps per-
formance would be improved by replacing the linear AR predictive model with a nonlinear model and us-
ing the coefficients of the nonlinear model as the signal representation. lasemidis, et a., [8] for example,
demonstrate that AR models of EEG during epileptic seizuresfail to capture time dependenciesthat can be
captured using new, nonparametric methods developed for analyzing chaotic signals. Fernandez, et al., [3]
found significant relationshi ps between mental tasks and features calcul ated as the relative power in certain
frequency bands during the task minus the power during a rest period. Referencing the components of the
signal representation to the rest condition might improve the performance reported in this article.
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