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Abstract

A new coil dynamic model is presented that utilizes the exact solution to the
coil governing partial di�erential equation for a step change in water 
ow rate.
This new model is the �rst step to developing a future model that can accurately
predict the coil dynamics for several varying coil inlet conditions expected to
occur under MIMO control. The new model is compared with previously pub-
lished simpli�ed PDE coil models and against actual measured coil dynamics.
Several advantages of this new coil model are discussed.

1 Introduction

This report investigates a dynamic heat exchanger model derived from the
�rst principles of thermodynamics. Previously published dynamic models for
heat exchangers have been discrete time models (DTMs) or simpli�ed �rst prin-
ciple derivations. This section begins by analytically solving the governing par-
tial di�erential equation for a cross 
ow, 
uids unmixed, �nned tube heat ex-
changer. It concludes by comparing the dynamic prediction to actual dynamic
performance of the heat exchanger for a step change in water 
ow rate. The
model presented is the �rst step in the development of a PDE model that can
predict the coil dynamics under several simultaneous changing inlet conditions.
This future model will be helpful for the simulation of more complex HVAC
control schemes.

Dynamic models of a cross 
ow heat exchanger were �rst presented by Gart-
ner and Harrison in 1965 [1]. Their model as well as other published models
that followed primarily investigated the frequency response of heat exchangers
[2][3][4]. Other models solved the PDE of one �nned element of the cross 
ow
heat exchanger and used the solution to these elements to determine the solution
of the heat exchanger [5][6]. The computation time of these �nite element solu-
tions was fairly lengthy. Still other models considered a discrete time solution
of the heat exchanger dynamics [7].

Tamm was the �rst to develop a dynamic multi-row counter
ow coil model
[8]. His model, like Gartner and Harrison was interpreted in the frequency
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domain. The terms needed in the solution grew exceedingly numerous as the
number of coil passes increased. The �nite element models of B.A. Reichert and
associates [5] as well as S. Kabelac [6] investigate multi-pass heat exchangers as
well. Both publications address the lengthy amount of time that counter 
ow
arrangement models need to converge on a solution.

The master's thesis of McCutchan investigated the time solution of a cross

ow, water to air heat exchanger [9]. His thesis extended the work of Gartner
and Harrison by developing a �rst principles model of a �nned serpentine cross

ow heat exchanger. The mixed partial di�erential equation that resulted was
considered too diÆcult to solve when McCutchan's research was published. In-
stead, McCutchan divided the dynamics of the coil into two separate actions
and used superposition to determine model predictions.

2 PDE Model

In order to simulate complex HVAC control schemes such as MIMO (Multi
Input Multi Output) controllers that utilize several changing heating coil inlet
conditions at the same time, more complex coil dynamic models must be de-
veloped. The dynamic model presented here is the �rst step in developing a
more complex model and is an extension of the model presented in the paper
by Pearson, Leonard, and [10]. Their model is developed for a single pass, cross

ow, hot water to air, �nned tube heat exchanger but can also be extended to
a multi pass heat exchanger such as the one used in this study. The partial dif-
ferential equation model discussed but not solved in their paper was developed
from �rst principle energy balances. This model looks at the coil dynamics for
the case of a step change in hot water 
ow rate initially having no 
ow and no
temperature gradient from the coil water to the air 
owing across the coil.

Assumptions:

1. The densities and speci�c heats of the tube material, �n material, water,
and air are considered to be constant and are evaluated at their mean
value.

2. The heat capacitive e�ects of the water and metal contained in the U-
tube bends are accounted for by distributing the U-bend metal and water
throughout the �nned portion of the coil.

3. Convective heat transfer coeÆcients on the air and water sides are inde-
pendent of temperature, time, location and are evaluated at their mean
temperature.

4. Conductive resistance through the tube wall is negligible.

5. Thermal resistance between the tube and �ns is negligible.

6. Heat conduction in the water and tube in the axial direction is negligible.
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7. Conduction through the �ns from row to row is negligible.

8. Air temperature and velocity are constant throughout the entrance cross
section to the heat exchanger.

9. The e�ective temperature di�erence between the metal and air for the
heat transfer purposes is based upon the log mean temperature di�erence
between the metal and air.

10. Fin e�ectiveness is constant.

Each run of the heat exchanger can now be modeled as a long �nned tube
heat exchanger as shown by Figure 1. The energy balance across an element

Figure 1: Straight Line Model of Heat Exchanger

of the heat exchanger shown in �gure 2 leads to the set of three equations with
three unknowns (Tao, Tt, Tw) describing the transient heat transfer process.
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Figure 2: Thermal Energy Balance on an Element of the Straight Line Heat
Exchanger Model

Lets equations 1, 2, and 3 to be expressed in dimensionless form as

B1
@�w
@x�

+B2(�w � �t) +B1
@�w
@t�

= 0 (4)

�xao �B2(�w � �t) +B3
@�t
@t�

= 0 (5)

�xao = B4LM�D (6)

Where solving LM�D for �t gives and additional relationship

�xao = C4�t (7)

Combining equations 4 through 7 yields the mixed partial di�erential equation
that describes the outlet air temperature.
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Equation 8 is the same as equation 5 printed in the Pearson paper. In order to
solve this PDE, the boundary and initial conditions must be speci�ed.

In order to solve the boundary condition, the initial air outlet temperature
distribution must be known at the point x� = 0. The solution at this point can
be calculated by solving the energy balance at the inlet of the coil for a steady
state condition. Using the energy balance shown in �gure 2 for steady state,
the energy balance yields

�xao(0; 0) = Ci (9)
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The boundary condition at x� = 0 is obtained by solving equation 4 with the
help of equation 7

�xao(0; t
�) = Cf + (Ci � Cf ) exp(�(C4f +B2f

B3f
)t�) (10)

Solving for the initial air outlet temperature distribution to get the �rst initial
condition, the time derivatives in equation 8 are set to zero then �xao is solved
for yielding

�xao = Ci exp(�bix�) (11)

The second initial condition, @�xao(x
�;0)

@t�
is equal to 0 because the coil is at steady

state at t=0

@�xao(x
�; 0)

@t�
= 0 (12)

The form of equation 8 can be written in a way that makes it easier to work
with. Let u = �xao and the derivatives be set as subscripts of u. Also divide the
constant on the second order derivatives through and set the new constants to
simpli�ed variables, let

a = (
B3

C4
+
B1

C
)
B2C4

B1B3
; b =

B2C4

CB3
; c =

B2C4

B1B3
(13)

Equation 8 can now be written as

utt + utx + aut + bux + cu = 0 (14)

With boundary value and initial conditions as

u(0; t�) = Cf + (Ci � Cf ) exp(�(C4f +B2f

B3f
)t�) = f(t�) (15)

u(x�; 0) = Ci exp(�bix�) = g(x�) (16)

ut(x
�; 0) = 0 = h(x�) (17)

3 PDE Solution

The approach taken in this study is to separate the PDE given in equation
15 into a boundary value problem and an initial-boundary value problem then
combining the solutions of these sub-problems by superposition to obtain the
general solution. Because the dynamic case that this study investigates incor-
porates zero initial conditions, only the solution to the boundary value problem
is implemented in the following chapters. The solution to the initial-boundary
value problem is still presented as a matter of completion for future dynamic
coil models.
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For a non-zero boundary value condition and zero initial conditions, sub-
problem 1 is de�ned as

utt + utx + aut + bux + cu = 0 (18)

u(0; t�) = f(t�)

u(x�; 0) = 0

ut(x
�; 0) = 0

From here on down, the non-dimensional superscript � is dropped from all x
and t variables.

To simplify sub-problem 1, we let

u = ve((2b�a)x�bt) (19)

Equation 19 becomes

vtt + vtx +Av = 0 x � 0; t � 0; A = c� ab+ b2 (20)

Taking the LaPlace transform and solving with the boundary condition gives

v(x�; s) = ~F (s)e�
s
2+A

s
x (21)

Using the LaPlace identities

e�xs �f(s)!
�

0; for t < x
f(t� x); for t � 0

(22)

L�1[s ~F (s)] = ~F 0(t) (23)

L�1[
1

s
e�

Ax

s ] = Jo(2
p
Axt) (24)

L�1( �f(s)�g(s)) =

Z t

0

f(t� �)g(�)d� (25)

gives

v(x; t)!
�

0; for t < xR t�x

0
~F 0(t� x� �)Jo(2

p
Ax� )d�; for t � x

(26)

Using equation 26 and 19, the solution to sub-problem 1 becomes

u1(x; t) = v(x; t)e((2b�a)x�bt) (27)

For a boundary value condition forced to 0 and non-zero initial conditions,
sub-problem 2 is de�ned as

utt + utx + aut + bux + cu = 0 (28)

u(0; t) = 0

u(x; 0) = go(x)

ut(x; 0) = ho(x)
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Where go(x) and ho(x) are the odd extensions of the initial conditions g(x) and
h(x).

Using the transformations x̂ = 2x� t and t̂ = t, sub-problem 2 becomes

Ut̂t̂ � Ux̂x̂ +AUt̂ +BUx̂ + CU = 0 (29)

U(x̂; 0) = G(x̂)

Ut̂(x̂; 0) = H(x̂)

Where A = a, B = 2b� a, C = c.
The solution to equation 29 has already been presented by Guenther and

Lee in their book, "Partial Di�erential Equations of Mathematical physics and
Integral Equations", pp. 114-121 [11]. The solution is represented here with a
few notes on how the solution needs to be implemented for a cross 
ow heat
exchanger.
Letting,

� = x̂+ t̂ = 2x � = x̂� t̂ = 2(x� t)

� =
�A+B

4
� =

A+B

4

and

u(
1

2
(�+ �);

1

2
(�� �)) = w(�; �) exp[��+ ��] (30)

then

w�� = �kw (31)

w(�; �) = G(�) exp[�j�j�
2

] � ~G(�)

w�(�; �) =
1

2
[ ~G0(�) + J(�)] � �(�)

w�(�; �) =
1

2
[ ~G0(�)� J(�)] �  (�)

w�(�; �) � w�(�; �) = [
A

2
G(�) +H(�)] exp[�j�j�

2
]

� J(�)

where

k = �[C
4
+ ��] (32)

Note: the term exp[� j�j�
2 ] has to be written as an even extension in order to

keep the initial conditions as bounded odd extensions. The Guenther book has
this written as exp[���

2 ] [11]. Now de�ne

�(�; �) � 1

2
[ ~G(�) + ~G(�)] +

1

2

Z �

�

�(�)d� � 1

2

Z �

�

 (�)d� (33)
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Then the solution to 32 is

w(�; �) = �(�; �) + k

Z �

�

Z �

�

Io(2
p
k(�� �)(� � �))�(�; �)d�d� (34)

Applying equation 30, the solution to 29 is

u2(x; t) = w(2x; 2(x� t))e[�2x+�2(x�t)] (35)

By superposition, equations 27 and 35 add to form the general solution to 15

u(x; t) = u1(x; t) + u2(x; t) (36)

4 PDE Model Results

Figure 3 shows several coil model predictions to a step in water velocity from
0% to 20% valve opening for coils initially having no water 
ow and a zero initial
temperature gradient between the water and air. The comparison was done for
an air 
ow rate of 0.5 m3=s and inlet air temperature around 25 oC. In order to
compare the PDE model to actual experimental results, the temperature along
the coil length was averaged for each time step to produce a data set of coil
outlet air temperature versus time only. Another adjustment needed in order
to compare the models with the measured coil dynamics is to incorporate the
air temperature sensor dynamics into the model predictions. Because the air
temperature sensor time constant ranged from 33 seconds at a low air 
ow rate
to 37 seconds at a high air 
ow rate, a time constant of 35 seconds was chosen
to be used in the air temperature sensor �lter. The model predictions were
thus �ltered through a �rst order transfer function that had a 35 second time
constant.

There are three dynamic models that are compared with experimental data
in �gure 3. The �rst model is the PDE model and its development and use
has been discussed in the previous sections. The P&L mixed beta model and
the P&L �nal beta model are models developed in the Pearson, Leonard, and
McCutchan paper and are known as simpli�cations of the general PDE solution
[10]. The P&L mixed beta model uses both �nal and initial coil property values
(ie. beta values) to predict coil dynamics while the P&L �nal beta model uses
only �nal coil property values to predict coil dynamics. The main advantage of
both of these simpli�ed coil models is that they are easy to use.

For this valve position change, the PDE model predicted the dynamics al-
most perfectly with small di�erences noticed only near the beginning of the
valve change at 30 seconds. The P&L models predict the dynamics within 2 oC
for all time but the P&L mixed beta model predicts a response time of almost
100 seconds longer than the actual response time (here response time is the
time it takes for the temperature to go from +0.5 oC of the initial air outlet
temperature to -0.5 oC of the �nal air outlet temperature).

Along with the accuracy of the PDE model, the PDE model has signi�cant
advantages over other simpli�ed coil models. First, the PDE model is an ex-
act solution that is valid for all ranges of coil inlet conditions while simpli�ed
models are not valid beyond the range of their simpli�ed assumptions. In other
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Figure 3: Dynamic Comparisons of Coil Model Predictions and Real Experi-
mental Data for a Valve Change of 0% to 20% Open

words, the PDE model is not restricted by as many assumptions as simpli�ed
coil models are and it is valid for a wider range of inlet conditions than the sim-
pli�ed models are. Another advantage of the PDE model is that the solution is
presented for time and distance along the coil while the models are only solved
for time. This added spatial solution allows for more complex analysis between
the coil model and the actual coil dynamics. Finally, the PDE model can be
solved for various boundary conditions and initial conditions while the models
are only valid for zero initial conditions and a step change in water 
ow rate
boundary condition.

5 Conclusion

The dynamic heating coil PDE model presented in this report is the �rst step
in the development of a dynamic coil model that can give coil predictions for
simultaneously varying coil inlet conditions expected under action of a MIMO
controller. The model presented here shows improvement over previous simpli-
�ed PDE coil models as well as being applicable to a wider range of coil initial
and boundary conditions. In general, the PDE model presented here is a signif-
icant �rst step for future exact PDE coil models.

References

[1] J. R. Gartner and H. L. Harrison. 1965. Dynamic Characteristics of Water-

9



to-Air Cross
ow Heat Exchangers. ASHRAE Transactions, Vol. 71, Part I, pp.
212-223.

[2] J. R. Gartner and L. E. Daane. 1969. Dynamic Response Relations for a Ser-
pentine Cross
ow Heat Exchanger with Water Velocity Disturbance. ASHRAE
Transactions, Vol. 75, Part 2, pp. 53-68.

[3] F. E. Romie. 1984. Transient Response of the Counter
ow Heat Exchanger.
Transactions of the ASME, Journal of Heat Transfer, Vol. 106, pp. 620-626.

[4] W. Roetzal and Y. Xaun. 1992. Transient Response of Parrallel and Coun-
ter
ow Heat Exchangers. Transactions of the ASME, Journal of Heat Transfer,
Vol. 114, pp. 510-512.

[5] B. A. Reichert, R. M. Nelson, and M. B. Pate. 1988. The Transient Re-
sponse of an Air-to-Water Cross-Flow Heat Exchanger. American Society of
Mechanical Engineers, HTD series, Vol. 96, pp. 291-300.

[6] S. Kabelac. 1989. The Transient Response of Finned Cross
ow Heat Ex-
changers. Int. Journal of Heat and Mass Transfer, Vol. 32, No. 6, pp. 1183-
1189.

[7] D. M. Underwood. 1990. Modeling and Nonlinear Control of a Hot Wa-
ter to Air Heat Exchanger. Master's thesis, University of Illinois at Urbana-
Champaign.

[8] H. Tamm. 1969. Dynamic Response Relations for Multi-Row Cross
ow Heat
Exchangers. ASHRAE Transactions, Vol. 75, Part 1, pp. 69-80.

[9] R. D. McCutchan. 1973. A Simple Dynamic Model of a Finned Sepentine
Heat Exchanger. Master's thesis, Purdue University, W. Lafayette Indiana.

[10] J. T. Pearson, R. G. Leonard, R. D. McCutchan. 1974. Gain and Time
Constant for Finned Serpentine Cross
ow Heat Exchangers. ASHRAE Trans-
actions, pp. 255-267.

[11] R. B. Guenther, J. W. Lee. 1988. Partial Di�erential Equations of Mathe-

matical Physics and Integral Equations. Englewood Cli�s, New Jersey.

10


