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1 Introduction

This tutorial briefly introduces the error back-propagation algorithm and cross-validation with early-
stopping. Then the use of train.c and the Matlab function nnTrain.m are explained. This was written
for students at Colorado State University who wish to use my code for class or research, but is available
to all. It assumes you are familiar with Unix and C. If you have Matlab installed on your Unix system,
you can use the nnTrain.m function to run train.c. The LaTeX source for this document is also
available on-line to give you an example to learn from.

Please let me know if you have success or problems with this code. Also, I'd like to hear any
suggestions you have for improvements. You may send me email at anderson@cs.colostate.edu or
visit my web page at http://www.cs.colostate.edu/ anderson.

2 Data Sets and the Algorithm

One of the simplest and most useful neural network algorithms is the error back-propagation training
algorithm applied to a feedforward network, which is a network with no cycles in its connection structure,
i.e., it is not a recurrent network. Implementing this kind of network is very straightforward. I have done
this in a single C source file named train.c. This tutorial explains how to run train.c independently
or from within Matlab using the function named nnTrain. See the Mathworks, Inc. home page at
http://www.mathworks.com for information on Matlab.

First, we must address the method used in presenting data to the network for training and for testing.
train.c employs cross-validation and early stopping. The available data is divided into the following
three disjoint sets:

Training set This data is used to train the network.

Validation set The error of the network averaged over this data is used to decide when the training
algorithm has found the best approximation to the data without overfitting.

Testing set The best network, given by the validation test, is applied to the test set and the error
averaged over the test set is taken as a prediction of how well the network will generalize to novel
data.

Training is accomplished by calculating the derivative of the network’s error with respect to each
weight in the network when presented a particular input pattern. This derivative indicates which direc-
tion each weight should be adjusted to reduce the error. Each weight is modified by taking a small step
in this direction. With a nonzero momentum factor, a fraction of the previous weight change is added
to the new weight value. This accelerates learning in some cases. The patterns in the training set are
stepped through one by one. A pass through all training patterns is called an epoch. The training data
is repetitively presented for multiple epochs, until a specified number of epochs have been taken.

After each epoch, the error of the network applied to the validation set of patterns is calculated. If
the current network scores the lowest error so far on the validation set, this network’s weights are saved.
At the conclusion of training, the network’s best weights are used to calculate the network’s error on
the testing set.



3 Using train.c

After compiling train.c into an executable named train, typing the command train produces the
following usage statement:

Usage: train spec-file <hammer>

Example of a spec-file:

-ninputs 1 -noutputs 1 (these must appear before file names)

-nhiddensl 5 -nhiddens2 5 (-nhiddens2 n is optional)

-train one.data two.data (list of one or more files to compose train set)
-validate three.data (optional. list of one or more for validate set)
-test four.data (list of one or more files for test set)

-orate 0.001 -hrate 0.1 (for hammer, hrate is at most 15%orate)

-mom .9 -epochs 1000

-summarize (optional. to specify short output, one line per run)

-end

(says end of run specification. Now do it.)

-orate 0.01 (additional runs, all unspecified values same as previous run)

-end

-orate 0.1 -end (any whitespace may separate tokens)

Each part of the specification file (spec-file) will be explained in the order they appear in the example.

1.
2.

© N o o

10.
11.
12.
13.

-ninputs: Number of input components in each pattern.

-noutputs: Number of output components in the patterns.

. -nhiddens1: Number of hidden units to be used in the first, and possibly only, hidden-unit layer

of the network. Start with 1, then try higher numbers. If more than one number appears here,
then multiple runs with different numbers of hidden units will be performed.

-nhiddens2: Number of hidden units to be used in the second hidden-unit layer of the network.
Can be zero, and if this line is not included, the default value is zero. If more than one number
appears here then multiple runs with different numbers of hidden units will be performed.

-train: Names of data files to be concatenated to form training data.
-validate: Names of validation data files.
-test: Names of testing data files.

-orate: Learning rates, possibly more than one, to try for output layer. Start with something like
0.01 or 0.1.

-hrate: Learning rates, possibly more than one, for hidden layer. Try values 1 to 10 times the
output layer rate.

-mom: The momentum rates. Should be 0 or greater and less than 1.
—-epochs: The number of passes to make through the training data set.
-summarize: Produce short format output. Without this token, output is in long format.

-end: Terminates the specification for one call to train.c. Another may start immediately after
this in the spec-file. Each set of specifications must end with -end.



4 Example

For an example, let’s try to approximate a sine wave with a neural network. The network will receive
a single number as input, call it . The network will produce a single output that we will try to make
match sin(13z). I chose 13 for the following reason. My z values range from 0 to 1 and I wanted a value
of z = 1 to roughly correspond to 47, to get two periods of data.) I used Matlab to produce the data.
You could write a short C program to do it. Here is my Matlab code:

x = [1:10] * 0.1;

sineTrain = [x ; 0.5+0.5%sin(13*x)]’;

sineValidate = [x+0.03 ; 0.5+0.5%sin(13*(x+0.03))]1’;
sineTest = [x-0.03 ; 0.5+0.5%sin(13*(x-0.03))]1";

This is what the matrix sineTrain contains. The first column is the x value and the second column is
the corresponding target value.

0.1000 0.9818
0.2000 0.7578
0.3000 0.1561
0.4000 0.0583
0.5000 0.6076
0.6000 0.9993
0.7000 0.6595
0.8000 0.0861
0.9000 0.1190
1.0000 0.7101

Better yet, let’s just plot them in Matlab:

plot(sineTrain(:,1),sineTrain(:,2),’y-’,
sineValidate(:,1),sineValidate(:,2),’g--7,...
sineTest(:,1),sineTest(:,2),%c:?);

legend(’train’,’validate’,’test’);

hold on;

plot(sineTrain(:,1),sineTrain(:,2),’yo’,...
sineValidate(:,1),sineValidate(:,2),%gx’,...
sineTest(:,1),sineTest(:,2),%c+’);

I included the results of these commands in Figure 1. T made this postscript figure from within Matlab
by doing

print sine-matlab.ps

after the plot commands.

Now the data has been generated. We are going to try to fit a network to the training data. At
some point, we will overfit the training data, resulting in higher error on the validation set. Let’s use
one hidden layer with 2, 5, 10, or 20 hidden units and examine the results. Here is the Matlab command
and the output it produces:

nnTrain([sineTrain;sineValidate;sineTest], [10 10 10],1,[2 5 10 20],0,1,1,0.1,0.9,20000,...
’c=1 f=sine.results o=long m=scruggs’)

Training with this command:

! ( cd /s/parsons/c/fac/anderson/pub/trainvt/nn.dir483101; train nn.exp>>& ../sine.results &)

>>

Notice that one of the options is f=sine.results. This tells nnTrain the file to which the results are

to be appended.
Here is the first part of sine.results, showing the results for 2 hidden units:
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Figure 1: Sine data as generated by Matlab
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Best epoch 10453 validate  0.229888 test  0.206307 fracCorr 0.900000 Rsq  0.850088

Weights
11.680829
-5.029750

58.467415
-29.105097

-21.651245
18.311790
2.711500

First you see the parameters you specified. Then the errors are printed every 1,000 epochs (this
depends on the total number of epochs you specify). Notice that the validation error decreases, then
increases. However, the training error continues to decrease. The net begins overfitting about epoch
10,000.

Just how well did this network approximate our sine function? The next output section helps answer
this question. It shows a list of the test data patterns by their indices and the desired output (target),
the actual output, and the error for that pattern.

Finally, the weights are given at the end of this file so they can be read in by other programs for
further analysis of the weights. First the hidden unit weights appear, followed by the output unit weights.

One way to summarize the results is via the summshort.awk awk script, shown below:

# Each line of the short output has this format:

#20 20 0.100 0.010 0.000 0.1473 581 0.2266 0.2444 0.925
# Copyright (c) 1996 by Charles W. Anderson
NF == 10 && $1 != "1d.so.1:" {

ind = ||h1 " $1 " h2 " $2 " rh " $3 " ro n $4 n m " $5;
if (notin(ind))
indices[numindices++] = ind;
corr_sum[ind] += $10;
corr_sqsum[ind] += $10%$10;
epoch_sum[ind] += $7;
epoch_sqgsum[ind] += $7 * $7;
rms_sum[ind] += $9;
rms_sqsum[ind] += $9 * $9;
num[ind] ++;

}

END {
for (i=0; i<numindices; i++) {
ind = indices[i];
printf("%33s %d fc %.3f %.3f RMS .4f %.4f ep %.1f %.1f\n",
ind,num[ind],
corr_sum[ind] /num[ind],
confint(corr_sum[ind],corr_sqsum[ind] ,num[ind]),
rms_sum[ind] /num[ind],
confint (rms_sum[ind],rms_sqsum[ind] ,num[ind]),
epoch_sum[ind]/num[ind],
confint (epoch_sum[ind],epoch_sqsum[ind] ,num[ind]));
}
}

function notin(ind) {
for (i=0; i<numindices; i++) {
if (indices[i] == ind)



return 0;
}

return 1;}

function stdev(sum, sumsq, n) {
if (n > 2)
return sqrt((n * sumsq - sum * sum) / (n * (n - 1)));
else
return O.

}

function confint(sum, sumsq, n) {
s = stdev(sum,sumsq,n);
return 1.6449 * s / sqrt(n);

}
function fraction_correct(thresh) {
n = 0;
numc = 0.;
while ($1 == "pat") {
n++;

s

if (($4 < thresh && $6 < thresh) ||
($4 > thresh && $6 >= thresh))
numc++;
getline;
}
return numc / n;

}

This script parses the short format of results. I usually combine it with a call to the unix sort command,
using a shell script like this:

#!/bin/csh

gawk -f “/res/nettools/train/summshort.awk $1 | \

gawk ’{printf("%2d %3d %.3f %.3f %3d %6.3f %6.3f %8.1f\n", $2, $4, $6, $8,
%811, $13, $16, $19)}° | \

sort -n +6 -7 | more

However, our results are in long output format. So, first let’s generate a short version from the long
version using the nnlong-to-short.awk script:

$3 == "h1" {
hl = $4; h2 = $6; hr = $10; or = $12; mr = $14; maxep = $16;
}
$1 == "epoch" && $2 == maxep {
trerror = $4;
}
$1 == "Best" {

ep = $3; valerror = $5; testerror = $7; frcor = $9;
printf ("%3d%4d%8.3£%8.3£%6.3f%11.4£),6d/11.4f%11.4£%6.3f\n",
h1,h2,hr,or,mr,trerror,ep,valerror,testerror,frcor) ;

}
Again, T usually call this with a shell script like:

#!/bin/csh
gawk -f “/res/mettools/train/mnnlong-to-short.awk $1 | \

gawk -f “/res/nettools/train/summshort.awk | \

gavk ’{printf("%2d %43d %.3f %.3f %3d %6.3f %6.3f %8.1f\n", $2, $4, $6, $8, $11, $13, $16, $19)}° | \
sort -n +6 -7 | more

If T call this script summlong, then I summarize our results as follows:



> summlong sine.results

20 0 1.000 0.100 1 1.000 0.068 2021.0
10 0 1.000 0.100 1 1.000 0.071 2349.0
5 01.000 0.100 1 1.000 0.086 6159.0
2 01.000 0.100 1 0.900 0.206 10453.0

The seventh column is the test error, the final column is the best epoch. From this we see that the
network with 20 hidden units achieved the lowest test error of 0.068 after the fewest epochs of 2,021.
Now let’s see more details of the 20-hidden unit run. Do this in Matlab with nnResults:

>> nnResults(’sine.results’,1)
nnE =
0.2063
nnEp =
10453
Quit, save, or next? (q, s, enter)

nnE =
0.0862
nnEp =
6159
Quit, save, or next? (q, s, enter)

nnE =
0.0708
nnEp =
2349
Quit, save, or next? (q, s, enter)

nnE =
0.0681
nnEp =
2021
Quit, save, or next? (q, s, enter) q

I pressed enter after each prompt to get to the final run, the one with 20 hidden units. For each run,
two windows are displayed. The window displays for the 20 hidden units run are shown in Figure 2.
Figure 2a contains three graphs. The top graph is three learning curves showing RMS error versus epoch,
one for each data set. The training error decreases quickly to near-zero error. However, the validation
and test data errors decrease below 0.1, but then start to climb. This is the point at which the network
is over-fitting the training data. This means that the network is no longer smoothly approximating the
curve sampled by the training data and is now beginning to precisely match the training data. This often
results in poor interpolation between the training samples resulting in higher error for the validation
and test data. We want to keep the weight values near epoch 2,000. This is exactly what is done.

These best weights are used for the next two graphs. The middle graph shows the test data target
values and the values predicted by the network using the best weights. There is a pretty close match.
Further training would produce less of a match. The bottom graph is a plot of the network’s output
value versus the target value for the test data. The diagonal represents an exact match between target
and output.

Figure 2b is a simple but effective way to visualize the network’s weights. The hidden layer weights
can be arranged in a matrix, with columns corresponding to hidden units and rows to inputs. Our
network has 20 hidden units, so the hidden layer matrix has 20 columns. We have one variable input
and one constant input with a value of 1, so the hidden layer weights form a 2 x 20 matrix. The values
are drawn as boxes with positive weights shown as unfilled boxes and negative as filled boxes and their
widths represents the weights’ magnitude. The output layer has one unit so its weights form a 21 x
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Figure 2: Two Matlab displays for 20 hidden-unit network.



1 matrix, receiving 20 inputs from the hidden units plus a constant input with value 1. Figure 2b
displays these two matricies with the hidden layer matrix on top and the output layer matrix below and
transposed. Imagine information flowing from the inputs at the upper left of the diagram down through
the hidden layer matrix, into the output layer matrix and out to the right.

5 Now what?

You will want to play with the number of hidden units and the learning rates to try to get the lowest
testing error possible. Here is how to set up a long experiment for which the number of hidden layers
and units and learning rates are varied. This took about 5 hours on a Sun UltraSparcStation.

nnTrain([sineTrain;sineValidate;sineTest],[10 10 10],1,[2 5 10 20],[0 2 10 20],1,[0.1 1 10],...
[0.01 0.1 1 5],[0 0.9],10000,’c=1 f=sine.results o=short m=scruggs’)

Training with this command:

! ( cd /s/parsons/c/fac/anderson/pub/trainvt/nn.dir483101; train nn.exp>>& ../sine.results &)

>>

Now I will use the summshort command to rank the results from best to worst. Here are the first 20
lines of the result:

summshort sine.results

10 10 10.000 1.000 1 1.000 0.049 4892.0
2 20 10.000 0.100 1 1.000 0.051 10000.0
5 20 0.100 0.100 1 0.900 0.055 6454.0
5 10 0.100 1.000 1 1.000 0.057 3400.0
10 10 0.100 1.000 1 1.000 0.059 5777.0
5 20 10.000 1.000 1 1.000 0.060 5509.0
20 0 1.000 1.000 1 0.900 0.060 2308.0
20 0 10.000 0.010 1 1.000 0.060 3720.0
20 20 0.100 0.100 1 1.000 0.060 4442.0
5 20 10.000 0.100 1 1.000 0.061 9778.0

20 10 0.100 1.000 1 1.000 0.061  2283.0
5 20 0.100 1.000 1 1.000 0.062 6363.0
20 0 1.000 1.000 1 1.000 0.062 6448.0
10 20 1.000 5.000 1 1.000 0.063 5429.0
10 0 1.000 1.000 1 1.000 0.065 9199.0
5 20 1.000 5.000 1 1.000 0.066 5793.0

10 20 10.000 5.000 1 1.000 0.066  3477.0
20 0 0.100 0.100 1 0.900 0.066 6095.0
10 0 0.100 0.100 1 0.900 0.067 10000.0
5 00.100 0.100 1 1.000 0.068 7368.0

The best results were for a network with two hidden layers and 10 units in each layer. Since there isn’t a
lot of different in the test RMS error (seventh column) among the top finishers, to draw any conclusions
regarding the best network architecture you must repeat this many times. If sine.results contained
multiple runs with the same network size and learning parameters differing only in initial weight values,
the summshort will average over the multiple runs.



