
Neural Network Tutorial:

Use of train.c and nnTrain.m

Chuck Anderson

Department of Computer Science

Colorado State University

Fort Collins, CO 80523

http://www.cs.colostate.edu/~anderson

August 7, 1996

1 Introduction

This tutorial brie
y introduces the error back-propagation algorithm and cross-validation with early-

stopping. Then the use of train.c and the Matlab function nnTrain.m are explained. This was written

for students at Colorado State University who wish to use my code for class or research, but is available

to all. It assumes you are familiar with Unix and C. If you have Matlab installed on your Unix system,

you can use the nnTrain.m function to run train.c. The LaTeX source for this document is also

available on-line to give you an example to learn from.

Please let me know if you have success or problems with this code. Also, I'd like to hear any

suggestions you have for improvements. You may send me email at anderson@cs.colostate.edu or

visit my web page at http://www.cs.colostate.edu/~anderson.

2 Data Sets and the Algorithm

One of the simplest and most useful neural network algorithms is the error back-propagation training

algorithm applied to a feedforward network, which is a network with no cycles in its connection structure,

i.e., it is not a recurrent network. Implementing this kind of network is very straightforward. I have done

this in a single C source �le named train.c. This tutorial explains how to run train.c independently

or from within Matlab using the function named nnTrain. See the Mathworks, Inc. home page at

http://www.mathworks.com for information on Matlab.

First, we must address the method used in presenting data to the network for training and for testing.

train.c employs cross-validation and early stopping. The available data is divided into the following

three disjoint sets:

Training set This data is used to train the network.

Validation set The error of the network averaged over this data is used to decide when the training

algorithm has found the best approximation to the data without over�tting.

Testing set The best network, given by the validation test, is applied to the test set and the error

averaged over the test set is taken as a prediction of how well the network will generalize to novel

data.

Training is accomplished by calculating the derivative of the network's error with respect to each

weight in the network when presented a particular input pattern. This derivative indicates which direc-

tion each weight should be adjusted to reduce the error. Each weight is modi�ed by taking a small step

in this direction. With a nonzero momentum factor, a fraction of the previous weight change is added

to the new weight value. This accelerates learning in some cases. The patterns in the training set are

stepped through one by one. A pass through all training patterns is called an epoch. The training data

is repetitively presented for multiple epochs, until a speci�ed number of epochs have been taken.

After each epoch, the error of the network applied to the validation set of patterns is calculated. If

the current network scores the lowest error so far on the validation set, this network's weights are saved.

At the conclusion of training, the network's best weights are used to calculate the network's error on

the testing set.

2

3 Using train.c

After compiling train.c into an executable named train, typing the command train produces the

following usage statement:

Usage: train spec-file <hammer>

Example of a spec-file:

-ninputs 1 -noutputs 1 (these must appear before file names)

-nhiddens1 5 -nhiddens2 5 (-nhiddens2 n is optional)

-train one.data two.data (list of one or more files to compose train set)

-validate three.data (optional. list of one or more for validate set)

-test four.data (list of one or more files for test set)

-orate 0.001 -hrate 0.1 (for hammer, hrate is at most 15*orate)

-mom .9 -epochs 1000

-summarize (optional. to specify short output, one line per run)

-end (says end of run specification. Now do it.)

-orate 0.01 (additional runs, all unspecified values same as previous run)

-end

-orate 0.1 -end (any whitespace may separate tokens)

Each part of the speci�cation �le (spec-�le) will be explained in the order they appear in the example.

1. -ninputs: Number of input components in each pattern.

2. -noutputs: Number of output components in the patterns.

3. -nhiddens1: Number of hidden units to be used in the �rst, and possibly only, hidden-unit layer

of the network. Start with 1, then try higher numbers. If more than one number appears here,

then multiple runs with di�erent numbers of hidden units will be performed.

4. -nhiddens2: Number of hidden units to be used in the second hidden-unit layer of the network.

Can be zero, and if this line is not included, the default value is zero. If more than one number

appears here then multiple runs with di�erent numbers of hidden units will be performed.

5. -train: Names of data �les to be concatenated to form training data.

6. -validate: Names of validation data �les.

7. -test: Names of testing data �les.

8. -orate: Learning rates, possibly more than one, to try for output layer. Start with something like

0.01 or 0.1.

9. -hrate: Learning rates, possibly more than one, for hidden layer. Try values 1 to 10 times the

output layer rate.

10. -mom: The momentum rates. Should be 0 or greater and less than 1.

11. -epochs: The number of passes to make through the training data set.

12. -summarize: Produce short format output. Without this token, output is in long format.

13. -end: Terminates the speci�cation for one call to train.c. Another may start immediately after

this in the spec-�le. Each set of speci�cations must end with -end.

3

4 Example

For an example, let's try to approximate a sine wave with a neural network. The network will receive

a single number as input, call it x. The network will produce a single output that we will try to make

match sin(13x). I chose 13 for the following reason. My x values range from 0 to 1 and I wanted a value

of x = 1 to roughly correspond to 4�, to get two periods of data.) I used Matlab to produce the data.

You could write a short C program to do it. Here is my Matlab code:

x = [1:10] * 0.1;

sineTrain = [x ; 0.5+0.5*sin(13*x)]';

sineValidate = [x+0.03 ; 0.5+0.5*sin(13*(x+0.03))]';

sineTest = [x-0.03 ; 0.5+0.5*sin(13*(x-0.03))]';

This is what the matrix sineTrain contains. The �rst column is the x value and the second column is

the corresponding target value.

0.1000 0.9818

0.2000 0.7578

0.3000 0.1561

0.4000 0.0583

0.5000 0.6076

0.6000 0.9993

0.7000 0.6595

0.8000 0.0861

0.9000 0.1190

1.0000 0.7101

Better yet, let's just plot them in Matlab:

plot(sineTrain(:,1),sineTrain(:,2),'y-',...

sineValidate(:,1),sineValidate(:,2),'g--',...

sineTest(:,1),sineTest(:,2),'c:');

legend('train','validate','test');

hold on;

plot(sineTrain(:,1),sineTrain(:,2),'yo',...

sineValidate(:,1),sineValidate(:,2),'g*',...

sineTest(:,1),sineTest(:,2),'c+');

I included the results of these commands in Figure 1. I made this postscript �gure from within Matlab

by doing

print sine-matlab.ps

after the plot commands.

Now the data has been generated. We are going to try to �t a network to the training data. At

some point, we will over�t the training data, resulting in higher error on the validation set. Let's use

one hidden layer with 2, 5, 10, or 20 hidden units and examine the results. Here is the Matlab command

and the output it produces:

nnTrain([sineTrain;sineValidate;sineTest],[10 10 10],1,[2 5 10 20],0,1,1,0.1,0.9,20000,...

'c=1 f=sine.results o=long m=scruggs')

Training with this command:

! (cd /s/parsons/c/fac/anderson/pub/trainvt/nn.dir483101; train nn.exp>>& ../sine.results &)

>>

Notice that one of the options is f=sine.results. This tells nnTrain the �le to which the results are

to be appended.

Here is the �rst part of sine.results, showing the results for 2 hidden units:

4

train

validate

test

0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 1: Sine data as generated by Matlab

i 1 h1 2 h2 0 o 1 hr 1.000 or 0.100 mr 0.900 ep 20000 linOut 0 hamm 0 Wed Jul 31 16:03:26 1996

epoch 1000 train 0.268933 validate 0.275306 test 0.256840 fracCorr 0.800 Rsq 0.487254

epoch 2000 train 0.264290 validate 0.271144 test 0.252319 fracCorr 0.800 Rsq 0.503340

epoch 3000 train 0.261402 validate 0.269677 test 0.248564 fracCorr 0.800 Rsq 0.454797

epoch 4000 train 0.244782 validate 0.270356 test 0.233664 fracCorr 0.800 Rsq 0.605068

epoch 5000 train 0.233136 validate 0.249864 test 0.201022 fracCorr 0.900 Rsq 0.595055

epoch 6000 train 0.228222 validate 0.244088 test 0.213365 fracCorr 0.900 Rsq 0.690250

epoch 7000 train 0.237138 validate 0.237559 test 0.210108 fracCorr 0.800 Rsq 0.667753

epoch 8000 train 0.235266 validate 0.241505 test 0.175006 fracCorr 0.900 Rsq 0.624432

epoch 9000 train 0.329206 validate 0.256115 test 0.193513 fracCorr 0.800 Rsq 0.688182

epoch 10000 train 0.226783 validate 0.236409 test 0.233568 fracCorr 0.800 Rsq 0.835990

epoch 11000 train 0.230554 validate 0.300122 test 0.237735 fracCorr 0.800 Rsq 0.897800

epoch 12000 train 0.226999 validate 0.324536 test 0.235912 fracCorr 0.800 Rsq 0.916458

epoch 13000 train 0.225132 validate 0.332334 test 0.235029 fracCorr 0.800 Rsq 0.924635

epoch 14000 train 0.224050 validate 0.335962 test 0.234517 fracCorr 0.800 Rsq 0.929193

epoch 15000 train 0.223299 validate 0.338128 test 0.234149 fracCorr 0.800 Rsq 0.932493

epoch 16000 train 0.222726 validate 0.339570 test 0.233857 fracCorr 0.800 Rsq 0.935121

epoch 17000 train 0.222267 validate 0.340591 test 0.233613 fracCorr 0.800 Rsq 0.937311

epoch 18000 train 0.221886 validate 0.341343 test 0.233403 fracCorr 0.800 Rsq 0.939183

epoch 19000 train 0.221562 validate 0.341911 test 0.233218 fracCorr 0.800 Rsq 0.940810

epoch 20000 train 0.221281 validate 0.342350 test 0.233052 fracCorr 0.800 Rsq 0.942244

epoch 20001 train 0.221281 validate 0.342350 test 0.233052 fracCorr 0.800 Rsq 0.942244

pat 1 targets 0.894752 outputs 0.916477 errors -0.021725

pat 2 targets 0.901286 outputs 0.849012 errors 0.052274

pat 3 targets 0.319935 outputs 0.458843 errors -0.138908

pat 4 targets 0.002380 outputs 0.011837 errors -0.009457

pat 5 targets 0.413840 outputs 0.000525 errors 0.413314

pat 6 targets 0.951524 outputs 0.934578 errors 0.016946

pat 7 targets 0.827725 outputs 0.649450 errors 0.178275

pat 8 targets 0.223808 outputs 0.444056 errors -0.220248

pat 9 targets 0.024513 outputs 0.377322 errors -0.352809

pat 10 targets 0.521808 outputs 0.357026 errors 0.164782

5

Best epoch 10453 validate 0.229888 test 0.206307 fracCorr 0.900000 Rsq 0.850088

Weights

11.680829

-5.029750

58.467415

-29.105097

-21.651245

18.311790

2.711500

First you see the parameters you speci�ed. Then the errors are printed every 1,000 epochs (this

depends on the total number of epochs you specify). Notice that the validation error decreases, then

increases. However, the training error continues to decrease. The net begins over�tting about epoch

10,000.

Just how well did this network approximate our sine function? The next output section helps answer

this question. It shows a list of the test data patterns by their indices and the desired output (target),

the actual output, and the error for that pattern.

Finally, the weights are given at the end of this �le so they can be read in by other programs for

further analysis of the weights. First the hidden unit weights appear, followed by the output unit weights.

One way to summarize the results is via the summshort.awk awk script, shown below:

Each line of the short output has this format:

20 20 0.100 0.010 0.000 0.1473 581 0.2266 0.2444 0.925

Copyright (c) 1996 by Charles W. Anderson

NF == 10 && $1 != "ld.so.1:" {

ind = "h1 " $1 " h2 " $2 " rh " $3 " ro " $4 " m " $5;

if (notin(ind))

indices[numindices++] = ind;

corr_sum[ind] += $10;

corr_sqsum[ind] += $10*$10;

epoch_sum[ind] += $7;

epoch_sqsum[ind] += $7 * $7;

rms_sum[ind] += $9;

rms_sqsum[ind] += $9 * $9;

num[ind]++;

}

END {

for (i=0; i<numindices; i++) {

ind = indices[i];

printf("%33s %d fc %.3f %.3f RMS %.4f %.4f ep %.1f %.1f\n",

ind,num[ind],

corr_sum[ind]/num[ind],

confint(corr_sum[ind],corr_sqsum[ind],num[ind]),

rms_sum[ind]/num[ind],

confint(rms_sum[ind],rms_sqsum[ind],num[ind]),

epoch_sum[ind]/num[ind],

confint(epoch_sum[ind],epoch_sqsum[ind],num[ind]));

}

}

function notin(ind) {

for (i=0; i<numindices; i++) {

if (indices[i] == ind)

6

return 0;

}

return 1;}

function stdev(sum, sumsq, n) {

if (n > 2)

return sqrt((n * sumsq - sum * sum) / (n * (n - 1)));

else

return 0.

}

function confint(sum, sumsq, n) {

s = stdev(sum,sumsq,n);

return 1.6449 * s / sqrt(n);

}

function fraction_correct(thresh) {

n = 0;

numc = 0.;

while ($1 == "pat") {

n++;

if (($4 < thresh && $6 < thresh) ||

($4 > thresh && $6 >= thresh))

numc++;

getline;

}

return numc / n;

}

This script parses the short format of results. I usually combine it with a call to the unix sort command,

using a shell script like this:

#!/bin/csh

gawk -f ~/res/nettools/train/summshort.awk $1 | \

gawk '{printf("%2d %3d %.3f %.3f %3d %6.3f %6.3f %8.1f\n", $2, $4, $6, $8,

%$11, $13, $16, $19)}' | \

sort -n +6 -7 | more

However, our results are in long output format. So, �rst let's generate a short version from the long

version using the nnlong-to-short.awk script:

$3 == "h1" {

h1 = $4; h2 = $6; hr = $10; or = $12; mr = $14; maxep = $16;

}

$1 == "epoch" && $2 == maxep {

trerror = $4;

}

$1 == "Best" {

ep = $3; valerror = $5; testerror = $7; frcor = $9;

printf("%3d%4d%8.3f%8.3f%6.3f%11.4f%6d%11.4f%11.4f%6.3f\n",

h1,h2,hr,or,mr,trerror,ep,valerror,testerror,frcor);

}

Again, I usually call this with a shell script like:

#!/bin/csh

gawk -f ~/res/nettools/train/nnlong-to-short.awk $1 | \

gawk -f ~/res/nettools/train/summshort.awk | \

gawk '{printf("%2d %3d %.3f %.3f %3d %6.3f %6.3f %8.1f\n", $2, $4, $6, $8, $11, $13, $16, $19)}' | \

sort -n +6 -7 | more

If I call this script summlong, then I summarize our results as follows:

7

> summlong sine.results

20 0 1.000 0.100 1 1.000 0.068 2021.0

10 0 1.000 0.100 1 1.000 0.071 2349.0

5 0 1.000 0.100 1 1.000 0.086 6159.0

2 0 1.000 0.100 1 0.900 0.206 10453.0

The seventh column is the test error, the �nal column is the best epoch. From this we see that the

network with 20 hidden units achieved the lowest test error of 0.068 after the fewest epochs of 2,021.

Now let's see more details of the 20-hidden unit run. Do this in Matlab with nnResults:

>> nnResults('sine.results',1)

nnE =

0.2063

nnEp =

10453

Quit, save, or next? (q, s, enter)

nnE =

0.0862

nnEp =

6159

Quit, save, or next? (q, s, enter)

nnE =

0.0708

nnEp =

2349

Quit, save, or next? (q, s, enter)

nnE =

0.0681

nnEp =

2021

Quit, save, or next? (q, s, enter) q

I pressed enter after each prompt to get to the �nal run, the one with 20 hidden units. For each run,

two windows are displayed. The window displays for the 20 hidden units run are shown in Figure 2.

Figure 2a contains three graphs. The top graph is three learning curves showing RMS error versus epoch,

one for each data set. The training error decreases quickly to near-zero error. However, the validation

and test data errors decrease below 0.1, but then start to climb. This is the point at which the network

is over-�tting the training data. This means that the network is no longer smoothly approximating the

curve sampled by the training data and is now beginning to precisely match the training data. This often

results in poor interpolation between the training samples resulting in higher error for the validation

and test data. We want to keep the weight values near epoch 2,000. This is exactly what is done.

These best weights are used for the next two graphs. The middle graph shows the test data target

values and the values predicted by the network using the best weights. There is a pretty close match.

Further training would produce less of a match. The bottom graph is a plot of the network's output

value versus the target value for the test data. The diagonal represents an exact match between target

and output.

Figure 2b is a simple but e�ective way to visualize the network's weights. The hidden layer weights

can be arranged in a matrix, with columns corresponding to hidden units and rows to inputs. Our

network has 20 hidden units, so the hidden layer matrix has 20 columns. We have one variable input

and one constant input with a value of 1, so the hidden layer weights form a 2 x 20 matrix. The values

are drawn as boxes with positive weights shown as un�lled boxes and negative as �lled boxes and their

widths represents the weights' magnitude. The output layer has one unit so its weights form a 21 x

8

0 0.5 1 1.5 2 2.5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

Epochs

Train = solid Validate = −. Test = −−

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1
Target = −− Output = Solid 100 Percent Correct

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Target

O
u

tp
u

t

Pattern Scatter Plot

a. Window 1

5 10 15 20

1

2

Hidden Units

In
p

u
ts

5 10 15 20

1

Hidden Units

O
u

tp
u

t
U

n
it
s

b. Window 2

Figure 2: Two Matlab displays for 20 hidden-unit network.

9

1 matrix, receiving 20 inputs from the hidden units plus a constant input with value 1. Figure 2b

displays these two matricies with the hidden layer matrix on top and the output layer matrix below and

transposed. Imagine information
owing from the inputs at the upper left of the diagram down through

the hidden layer matrix, into the output layer matrix and out to the right.

5 Now what?

You will want to play with the number of hidden units and the learning rates to try to get the lowest

testing error possible. Here is how to set up a long experiment for which the number of hidden layers

and units and learning rates are varied. This took about 5 hours on a Sun UltraSparcStation.

nnTrain([sineTrain;sineValidate;sineTest],[10 10 10],1,[2 5 10 20],[0 2 10 20],1,[0.1 1 10],...

[0.01 0.1 1 5],[0 0.9],10000,'c=1 f=sine.results o=short m=scruggs')

Training with this command:

! (cd /s/parsons/c/fac/anderson/pub/trainvt/nn.dir483101; train nn.exp>>& ../sine.results &)

>>

Now I will use the summshort command to rank the results from best to worst. Here are the �rst 20

lines of the result:

summshort sine.results

10 10 10.000 1.000 1 1.000 0.049 4892.0

2 20 10.000 0.100 1 1.000 0.051 10000.0

5 20 0.100 0.100 1 0.900 0.055 6454.0

5 10 0.100 1.000 1 1.000 0.057 3400.0

10 10 0.100 1.000 1 1.000 0.059 5777.0

5 20 10.000 1.000 1 1.000 0.060 5509.0

20 0 1.000 1.000 1 0.900 0.060 2308.0

20 0 10.000 0.010 1 1.000 0.060 3720.0

20 20 0.100 0.100 1 1.000 0.060 4442.0

5 20 10.000 0.100 1 1.000 0.061 9778.0

20 10 0.100 1.000 1 1.000 0.061 2283.0

5 20 0.100 1.000 1 1.000 0.062 6363.0

20 0 1.000 1.000 1 1.000 0.062 6448.0

10 20 1.000 5.000 1 1.000 0.063 5429.0

10 0 1.000 1.000 1 1.000 0.065 9199.0

5 20 1.000 5.000 1 1.000 0.066 5793.0

10 20 10.000 5.000 1 1.000 0.066 3477.0

20 0 0.100 0.100 1 0.900 0.066 6095.0

10 0 0.100 0.100 1 0.900 0.067 10000.0

5 0 0.100 0.100 1 1.000 0.068 7368.0

The best results were for a network with two hidden layers and 10 units in each layer. Since there isn't a

lot of di�erent in the test RMS error (seventh column) among the top �nishers, to draw any conclusions

regarding the best network architecture you must repeat this many times. If sine.results contained

multiple runs with the same network size and learning parameters di�ering only in initial weight values,

the summshort will average over the multiple runs.

