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Abstract— Patterns in Electroencephalogram (EEG) signals are ana-
lyzed for a Brain Computer Interface (BCI). An important asp ect of this
analysis is the work on transformations of high dimensionalEEG data
to low dimensional spaces in which we can classify the data according
to mental tasks being performed. In this research we investigate how
a Neural Network (NN) in an auto-encoder configuration can find
such a transformation. We implemented two approximate second-order
methods to optimize the weights of these networks, because the more
common first-order methods are very slow to converge for networks like
these with more than three layers of computational units. The resulting
non-linear projections of time embedded EEG signals show interesting
separations that are related to tasks. The bottleneck networks do indeed
discover nonlinear transformations to low-dimensional spaces that
capture much of the information present in EEG signals. However, the
resulting low-dimensional representations do not improveclassification
rates beyond what is possible using Quadratic Discriminant Analysis
(QDA) on the original time-lagged EEG.

I. I NTRODUCTION

Electroencephalogram is the measurement of the electrical activ-
ity of the brain measured by placing electrodes on the scalp. These
EEG signals give the micro-voltage difference between different
parts of the brain in a non-invasive manner. Interpretation of
these EEG waves is important to find ways to utilize them for
a BCI. People severely disabled by Amyotropic Lateral Sclerosis
(ALS), brain stem stroke, cerebral palsy, and other neuromuscular
disorders would greatly benefit by advances in BCI research and
development [1].

However, Parra et al. [2] indicate that the EEG signals need to be
tailored for BCI application because of its low signal to noise ratio.
Gramfort et al. [3] report that a non-linear dimensionality reduction
technique can provide a better understanding of the EEG signals.
One of the well known non-linear methods for dimensionality
reduction is a bottleneck NN [4]. Devulapalli [5] used such a
network for dimensionality reduction and classification of EEG data
with good success in classification accuracy.

Supported by the above research EEG data do require dimension-
ality reduction before they could be classified. This is particularly
important because of four main reasons: low EEG signal-to-noise
ratio, varying number (6 to 256) of electrodes, possible correlation
as signals propagate through the brain volume, and possible corre-
lation among channels. The hope is that dimensionality reduction
might be able to remove most of the noise and the correlations
between the various channels and be able to detect features that
are most viable for an accurate classification. We hypothesize that
a multi-layer bottleneck neural network would help classify EEG
data through dimensionality reduction, with higher accuracy, than
its classification without dimensionality reduction.

The EEG for this study was observed in subjects performing
two mental tasks. A subject is asked to think about a task, the EEG
signals are measured and these signals are used to classify the tasks.
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EEG data classified with dimensionality reduction will henceforth
be referred to as reduced EEG. We compare the classification
using NN with other techniques like Linear Discriminant Analysis
(LDA) [6], QDA and Support Vector Machine (SVM) [7]. The
classification is carried out on both EEG as well as reduced EEG
data.

We chose NN for dimensionality reduction and classification be-
cause of its popularity as a non linear approach in EEG research [8].
The choice of other methods was based on simplicity of approach
for LDA and proven success for SVM [9]. QDA was primarily
chosen because of the dearth of classifying EEG using it and an
intuition that it might be a good classifier for EEG.

II. A PPROACH

We use a five layer bottleneck NN, trained to approximate the
identity mapf(x) = x. Our network has three hidden layers with
a middle bottleneck layer having fewer hidden units. The transfer
functions of the units of hidden layers are sigmoid functions. The
output layer has a linear transfer function. The NN is trained
using two algorithms: Scaled Conjugate Gradient (SCG) [10]
and Fast Convergence Algorithm based on Levenberg-Marquardt
(FCALM) [11]. Our goal prior to classification is to reduce the
dimensionality of the data at the bottleneck layer. This goal is
reached when the data at the output layer of the NN matches with
the input data. The objective is achieved by minimizing the Mean
Square Error (MSE), represented as:

MSE =

∑
N

i=1
(f(xi) − xi)

2

N
(1)

where i = 1, . . . , N and N is the total number of observations.
The lower dimensional bottleneck layer output data, called reduced
EEG, is classified using a separate three layer NN classification
network, LDA, QDA and SVM approaches. We compare the results
of these approaches.

A. Electroencephalogram(EEG) Data

In this research we use the data collected by Keirn et al. [12],
using the 10-20 system of electrode placement, shown in Figure 1.
This is a standardized system of measuring EEG based on the

Fig. 1. Top view of the 10-20 system of electrode positions for EEG.



position of the electrodes on the scalp. Each letter represents the
location of the brain with the number indicating the hemisphere.
The lettersC, P , and O represent central, parietal and occipital
parts of the brain. The data for this study was measured at six sites:
C3, C4, P3, P4, O1, andO2. The data is stored at a frequency of
250 samples per second. Sets of ten second trials were recorded for
each of two mental tasks: letter writing and mental arithmetic. For
the imagined letter writing task the subject is asked to compose
a letter. In subsequent trials the subject is asked to resume the
letter from where the previous trial had left off. In the mental
arithmetic task each subject is asked to multiply two numbers, with
the numbers being different in the different trials. The subjects were
asked not to vocalize either task.

1) Data Partitioning: The data is observed on one subject. Each
task has ten trials. Each trial consists of 2500 observations per
session with each session lasting for ten seconds. A set of EEG data
consisted of six dimensions (corresponding to the six channels),
with 2500 samples for each dimension. A separate seventh channel,
the eye-blink channel, is used to record eye-blink information. A
high potential spike in the eye-blink channel (>100µ Volts) lasting
up to 10 milliseconds is considered as an eye-blink. The sample
points corresponding to all six channels which fall in the region of
eye-blinks are removed. Our training dataset has 20000 observations
consisting of trials 1 to 4 of each task. The test dataset comprises
of trials 5 for each task and therefore 5000 samples.

2) Time Embedded EEG:The 6-channel EEG data was embed-
ded in time by augmenting each EEG sample with past samples.
This enables a classifier to use fine temporal variations among
channels. The embedding was carried out by combining multiple
samples together, thereby increasing the dimensionality of the
neural network input dataset. For example, a time embedding
dimension of 1 meant that the dataset retained its dimensionality
of 6. A dimension of 2 means that the dimensionality was changed
from 6 to 12, a dimension of 3 implies the new dimensionality of
the dataset is 18, and so on. Both, training as well as test datasets
were lagged by equal amounts.

B. Bottleneck Algorithm Parameters

We varied the number of bottleneck units from 1 to 6, 10 and 20
with 30 units in the hidden layers on either side of the bottleneck
layer. Using this setup we ran our final set of experiments using
both SCG and FCALM training algorithms.

After pilot experimenting we determined that the SCG algorithm
worked well with 500 iterations. The algorithm was terminated
either at the end of the maximum iterations or if the second
derivatives of the location in the weight search space reached
the machine precision, whichever happened sooner. The search
direction was updated using Polak-Ribiere formula or we would
restart in the direction of negative gradient after a fixed number
of steps determined through pilot experiments. The initial search
direction was chosen to be the negative of the gradient with lower
bound on scale to1.0 × 10−15 and the upper bound on scale as
1.0 × 10100.

For FCALM, the maximum number of iterations was again
chosen through pilot experiments and set to 200. The algorithm
was terminated either at the end of the maximum number of
iterations or when the machine precision was reached. The initial
weight multiplication factor was chosen based on values reported
by Wilamowski et al. [11]. If the MSE increased in an epoch, the
learning factor of the algorithm would be decreased by a tenth and
if the error decreased, the learning factor would be multiplied by a
factor of 10 to move faster in that direction of weight change.

1) Training and Testing Classification Algorithms:Classification
of EEG and reduced EEG are compared. The reduced EEG data
was the output of the bottleneck layer obtained after training the
whole neural network. This output was used as input data for
classification. The classification network has a single hidden layer
represented as a network liken-p-1, wheren is the bottleneck layer
output dimensionality representing the classification network input
dimensionality, andp the hidden layer with 50 units. There is only
one output with target values 0 and 1 for multiplication and letter
writing tasks, respectively.

LDA, QDA and SVM algorithms were also used for classification
of EEG and the reduced EEG data. SVM algorithm used, is a part of
the e1071 library of ’R’ statistical package. We used C-classification
with a cost of 10 in our experiments.

III. R ESULTS AND ANALYSIS

We restricted the maximum number of bottleneck units to be 20
in all our experiments because the test MSE in the networks with
more bottleneck units indicated over training. We also tested our
data for different time embedding dimensions. FCALM algorithm
could not handle time embedding dimensions greater than 20 (or
total input dimension greater than20× 6 = 120), because it needs
to compute the Hessian matrix. Therefore, we used time embedding
dimension of 10 and 20 while training the NN with this algorithm.
SCG was used to train the NN with time embedding dimensions of
10, 20, 50 and 100.

We will first report the best classification results of all the
algorithms when the NN was trained using the FCALM algorithm.
A boxplot comparison of these results is shown in Figure 2(a).
The y-axis shows the correctly classified results on a scale of 0
to 1 with 1 being 100% correctly classified. QDA classification
results on unreduced EEG data outperformed all other algorithms.
The classification values shown by the boxplots are combined over
time embedding dimensions of 10 and 20.

In order to understand the neural network behavior, we studied
the test data MSE for different bottleneck units and the data lags
after NN was trained using FCALM and SCG algorithms. The
results showed that SCG was able to learn the weights between the
hidden layers much better than the FCALM algorithm. It seems
that although both algorithms learn equally well initially, SCG is
able to fine tune the weight selection much better. Since SCG did
better in terms of MSE reduction than FCALM, we investigated
the data reconstruction at the output of our bottleneck NN, when
trained using SCG, resulting in an MSE of 0.045.

The NN trained using SCG did better than the one trained using
FCALM as shown in Figure 2(b). QDA performed the best again
with the performance becoming better with the increase in the
number of time embedding dimensions. The classification results
for each algorithm are combined over the data lags of 10, 20, 50
and 100. Overall, the unreduced EEG data classification was better
than the reduced dimensional EEG data across the algorithms.

It is important to have a closer look at the impact of time
embedding dimensionality on the classification accuracy. Figure 3
represents reduced EEG data correctly classified when the time
embedding dimensionality is varied. The classification accuracy
is higher with lower time embedding dimensionality as shown in
Figure 3(a). This figure also indicates that the higher the number of
bottleneck units the better the classification accuracy of the reduced
EEG.

It appears that the reduced dataset can be classified with higher
accuracy when the time embedding dimensionality is low. It also
seems that dimensionality reduction and time embedding influence
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Fig. 2. Classification results showing a fraction of test samples classified correctly by different algorithms. Left figureshows Neural network trained
using FCALM algorithm and the one on right shows neural network trained using SCG. R prefix implies the classification of thebottleneck output of the
neural network using the corresponding algorithm. Absence of prefix means unreduced EEG classification.
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Fig. 3. Each figure represents fraction of reduced EEG test samples classified correctly. Plots a-d correspond to time embedding dimensions, 10, 20, 50
and 100, in that order. Neural network is trained using SCG algorithm.

the classification accuracy in opposite ways. Total lack of dimen-
sionality reduction combined with lower time embedded dimensions
actually results in higher accuracy using NN, as supported by Fig-

ure 4. Neural networks’ performance drops as the time embedding
dimensionality increases and so does that of SVM. On the other
hand the classification accuracy of QDA and LDA algorithms in-
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Fig. 4. Classification results of different algorithms showing fractions of
test samples correctly classified for different time embeddingdimensions
on unreduced data. Neural network was trained using SCG algorithm.

creases. LDA still shows the worst results, though. Neural Networks
does better than SVM for time embedding dimensionality below
30 and stays close to a classification accuracy of 90%. For a time
embedded dimensionality of 10, NN shows approximately the same
accuracy as QDA. Therefore, the key is to choose optimum time
embedded dimensions.

It is pertinent to point out that despite poor classification accuracy
of all the algorithms on the reduced EEG, the NN is able to mimic
the input very well. This is displayed very well in Figure 5, which
shows the reconstructed data output compared to the input dataset
for the first channel with 20 bottleneck units. Similar plots for the

Fig. 5. The figure represents the reconstructed test data at the output of
the bottleneck NN versus the input test dataset for an EEG channel.

rest of the channels support the argument that the reconstruction
is fairly well. This makes it likely that the bottleneck layer is able
to distinguish between the various input EEG signals. However,
the success in data reconstruction is not getting translated into
better classification accuracy of the reduced EEG data. On the
contrary, unreduced EEG proved easier to classify efficiently, in
general. It seems that the differentiability of the data is lost through
dimensionality reduction. Among the algorithms, QDA successfully
differentiated between the data features and classified the data much
better than any other method.

IV. CONCLUSIONS

The results indicate that a bottleneck NN did not provide any
advantage in classification. Overall, in all our experiment runs QDA
performed the best followed by SVM. Neural network classifier
performed slightly better than LDA and showed better accuracy in
classifying unreduced EEG data than the reduced. Neural network
was able to achieve its best classification accuracy of 92% of test
samples correctly classified, whereas QDA achieved 100% accuracy
in classifying the test data.

This research was based on the hypothesis that a bottleneck
neural network would classify EEG data better than classification
techniques like NN, QDA, LDA and SVM without the
dimensionality reduction. However, QDA appears to have an
outstanding performance on these data and does not require
dimensionality reduction. Given the challenges associated with
training a NN, QDA is a clear winner. We do not need to reduce the
dimensionality of the EEG dataset. Temporal variations obtained
by time embedding of the data, capture typically all the information
that would lead to an excellent classification (consistently above
90%) using QDA. For a time embedding dimensionality below
20, NN also gives a classification accuracy of over 90% for the
test dataset. For our setup of the neural network and our training
algorithms, a bottleneck network might be a better choice for EEG
data classification only after more parameter tuning. Amongst
the training algorithms, SCG seems to be better in terms of the
reconstruction MSE and the classification results.
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