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ABSTRACT OF THESIS

NON-LINEAR PRINCIPAL COMPONENT ANALYSIS AND CLASSIFICATION OF

EEG DURING MENTAL TASKS

This thesis explores the e�ectiveness of Non-Linear Principal Component Analysis

(NLPCA) as a technique for reducing the dimensionality of human electroencephelogram

(EEG) for enabling it to be classi�ed into two di�erent metal tasks. EEG signals from a

single subject recorded through six channels was studied during the performance of two

mental tasks. An NLPCA network was used to reduce the dimensionality of temporal

windows of eye-blink free EEG data. A standard backpropagation network was used to

classify the reduced dimensionality representation of the original data. The results indi-

cate that the NLPCA method is able to extract distinguishing features from the data that

could be classi�ed as belonging to one of the two tasks with an average percentage accu-

racy of 86:22%. The NLPCA method is found to be a de�nite improvement over its linear

counterpart, the Karhunen-Lo�eve transform, in extracting important features from EEG

signals for their classi�cation. The work presented here is part of a larger project whose

goal is to be able to classify EEG signals belonging to a varied set of mental activities to

investigate the feasibility of using di�erent mental tasks as an alphabet for communication

by a physically handicapped person.
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Department of Computer Science

Colorado State University

Fort Collins, Colorado 80523

Summer 1996
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Chapter 1

INTRODUCTION

This chapter brie
y describes a few methods for dimensionality reduction. The proce-

dure involved in recording EEG data and the structure of the recorded data is dealt with.

Then, a brief explanation of the NLPCA technique as a preprocessing step for reducing

the dimensionality of the EEG data is given followed by a description of the classi�cation

experiments done on the reduced dimensionality representation. The results obtained in

classi�cation are given followed by an overview of the remaining chapters.

1.1 Dimensionality Reduction

The analysis and classi�cation of signals involves extracting signi�cant features from

the signals which lend themselves to easier interpretation. Dimensionality reduction as

a preprocessing step for classi�cation of signals using a neural network could be more

e�ective than trying to classify unprocessed signals because smaller networks can be used

and it leads to easier classi�cation [3]. The Karhunen-Lo�eve (K-L) transform performs

linear dimensionality reduction by determining the �rst n principal components. This can

be viewed as determining a linear mapping from the original data to a n dimensional sub-

space. However, non-linear dimensionality reduction of signals may result in a mapping

to a lower dimensional subspace. Autoassociative neural networks as an e�ective way of

non-linear dimensionality reduction was �rst proposed by Kramer [15] among others [18],

[23], [16] and [21]. An autoassociative network has a mapping network (for reducing data

to a lower dimension), demapping network (for mapping the reduced dimensional data to

the original dimension), and a layer connecting the mapping and the demapping networks

called the bottleneck layer. The reduction onto a lower dimension can be obtained by
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determining the weights in the mapping network. This is done by training the autoas-

sociative network to replicate the input signal. The number of bottleneck nodes in the

network is less than the number of inputs and outputs. Therefore, by training the network,

we force it to learn a lower dimensional representation of the data. Using sigmoidal units

in the mapping and demapping layers, a non-linear mapping onto a lower dimension is

obtained.

An enhancement to the autoassociative network for classifying periodic signals was

proposed in [12]. In this method, circular nodes are used in the bottleneck layer. Circular

nodes provide a direct mapping of a signal onto a circular manifold as opposed to sigmoidal

nodes which provide a mapping onto an open interval. Therefore, circular nodes could

be very e�ective in dimensionality reduction of signals which have non-linear components

that are homeomorphic to a circle.

Another problem in reducing the dimensionality of a signal using a bottleneck archi-

tecture is the likelihood that bottleneck nodes learn the same feature. Previous methods

suggested involved pruning the network. On the other hand, the sequential non-linear

principal component analysis (NLPCA) architecture introduced in [15] uses a number of

small networks each consisting of a single bottleneck node. The networks are connected in

a cascade. The �rst network is trained to replicate the original signal. Therefore, the �rst

network tries to learn the primary feature in the data. The error in replication at the �rst

network is given to the second network as the input data. The second network is trained

to replicate this data and its error in replication is passed as input to the third network,

and so on. This forces the networks higher in the priority to learn the most signi�cant

features. These signi�cant features are �ltered (by determining the error in replication

in higher priority networks) and this data is supplied to lower priority networks. There-

fore, these networks learn less important features because they will need to replicate the

data from which the signi�cant features have been �ltered. Therefore, sequential NLPCA

prioritizes the training of important features among multiple networks.

As a preliminary analysis of the e�ectiveness of the di�erent techniques discussed

above, experiments were conducted using a set of mathematical functions. The set of

functions was chosen such that each function was de�ned in terms of multiple variables
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(which forms the explicit dimensionality of the function) which were driven by a fewer

number of internal parameters (which is the intrinsic dimensionality for the function).

The experiments consisted of measuring the replication error using an autoassociative

network with sigmoidal and circular bottleneck nodes. The number of bottleneck nodes

used was equal to the intrinsic dimensionality of the signal. Circular nodes show better

performance in replicating the circle and the trefoil knot.

1.2 EEG Signal Classi�cation Problem

The analysis of EEG signals is driven by the goal of trying to correlate between an

external stimulus and the characteristic signals found in the EEG patterns. A larger and

more widely applicable method would be to try to determine the mental tasks performed by

a subject, from normal EEG data without an external stimulus. Such a goal when achieved,

would enable a physically challenged person who has no control over his motor responses to

communicate with the outside world based on a set of normal mental activities. Therefore,

classi�cation of mental tasks based on normal EEG signals is an important and di�cult

task to achieve.

This work tries to address the problem of classifying multidimensional EEG signals

based on speci�c tasks by reducing the dimensionality of EEG data and employing this

data to classify the signals into one of two di�erent mental activities. The data used in

this work was recorded by Keirn and Aunon [10]. In their study, a set of tasks comprising

of Baseline (no activity), Mental Arithmetic, Geometric Figure Rotation, Mental Letter

Composing and Visual Counting were chosen. EEG signals were recorded by placing elec-

trodes at O

1

; O

2

; P

3

; P

4

; C

3

; C

4

; standard electrode positions using a Grass ampli�er. Ten

sessions were conducted for each task, each session lasting for a period of ten seconds which

resulted in 2500 samples per task per session. In the current work, Mental Arithmetic and

Mental Letter Composing tasks were chosen for classi�cation based on the assumption

that they involve signi�cantly di�erent mental processes.

One set of raw EEG data consists of six dimensions (corresponding to the six chan-

nels), with 2500 samples for each dimension. Individual samples of EEG data are very
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di�cult to classify because the temporal correlations in the signals are not utilized in such

classi�cation. For this purpose, temporal windows of EEG data are considered. Each win-

dow is chosen to be 62 samples long (approximately corresponding to a quarter second)

and consecutive windows are overlapped by 31 samples [2]. Since each window consists

of 62 samples per channel and there are 6 channels, the dimensionality of the data set is

62 � 6 = 372. Raw EEG data contain easily discernible high potential spikes caused due

to eye blinks. Eye blinks do not carry any signi�cant features of data and can become

the basis of classi�cation. Therefore, sample points falling in the region of eye blinks are

removed from the raw EEG data before being subjected to any processing.

The approach followed here is to apply dimensionality reduction as a preprocessing

step to windowed EEG data using an autoassociative network consisting of a bottleneck

layer having fewer nodes than the input and the output layers. A standard backpropaga-

tion algorithm trained with conjugate gradient method is used for faster convergence. The

network is trained and tested for replication using various combinations of data belonging

to di�erent tasks.

1.3 Classi�cation using Reduced Dimensionality Represen-

tation

Once the bottleneck network is trained, the mapping network is detached from the

trained autoassociative network and used separately for generating a lower dimensional

representation. This representation is used for classi�cation of the tasks using a standard

backpropagation network. The classi�cation network would have a number of inputs equal

to the reduced dimension and the target values -0.9 and +0.9 corresponding to one of the

two tasks into which the signal is being classi�ed. The classi�cation accuracy for the

reduced dimensionality representation is compared with that of the K-L representation of

the original input vectors.

Bottleneck networks consisting of 10, 20, 30 and 40 nodes in the bottleneck layer

were trained using conjugate gradient method. The mapping network was detached after

training and was used in generating 10, 20, 30 and 40 dimensional representations of the
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windowed data vectors. The 30-dimensional representation yielded an average percent-

age of correctly classi�ed vectors of 86:22% over all the trials. This was followed by the

20-dimensional representation with 76:21%, 40-dimensional representation with 65:83%

and 10-dimensional representation with 57:89%. All trial data performed consistently well

using the 30-dimensional representation. The input vectors to the classi�cation network

(which are the reduced dimensional vectors) as such were uniformly distributed in the n

dimensional space (n = 10; 20; 30; 40) and the mutual Euclidean distances between the

vectors was not directly related to how well they were classi�ed (which would indicate

how prominent the distinguishing features are) or which task they belonged to. The clas-

si�cation networks corresponding to all dimensions seem to employ all the hidden unit

weights in the network. When the �rst n best-classi�ed input vectors belonging to both

the tasks are projected along the direction of the �rst two eigenvectors (representing the

two orthogonal directions of maximum change in the input vector distribution) onto a

two dimensional space, the vectors begin to form independent clusters for each task as

the value of n decreases. This indicates that the best classi�ed vectors contain features

which strongly di�erentiate between the two tasks supporting the 86:22% of correctly clas-

si�ed vectors for the 30-dimensional representation. Using a K-L transform representation

(using 10, 20, 30 and 40 dimensions) of the original data vectors results in classi�cation ac-

curacy only slightly better than chance indicating that NLPCA method is giving a de�nite

improvement over the K-L transform method in classi�cation of EEG signals.

In all training experiments, performance is measured based on the mean squared error

for the test set.

1.4 Overview of the Remaining Chapters

The following is the layout of the rest of the chapters. Chapter 2 gives an extensive

description of the background work done in both supervised and unsupervised methods

for dimensionality reduction. The reader can skip most of this chapter other than the

description of autoassociative networks, circular nodes and NLPCA which are the main

approaches employed as part of the present work. Chapter 3 describes the results of



6

preliminary experiments done in reducing the dimensionality of well de�ned mathemati-

cal functions using sigmoidal and circular bottleneck architectures. Chapter 4 describes

methodology of classi�cation experiments done using actual EEG data and the procedure

in which data sets are chosen from di�erent trails to train and test the bottleneck and

classi�cation networks. Chapter 5 discusses the classi�cation results and gives an analysis

of the reduced dimensionality representations of the windowed data vectors. Chapter 6

gives the conclusion to the study and the future work in this area.



Chapter 2

BACKGROUND

2.1 Introduction

The study and classi�cation of multidimensional signals involves extraction of im-

portant features from poorly known processes. This can be simpli�ed by reducing the

dimensionality of the signal. Every n-dimensional signal has an implicit dimension asso-

ciated with it, which is less than or equal to n. Reducing the dimensionality of a signal

makes extraction of features easier. Feature extraction identi�es the important properties

of a signal which might help in classi�cation of the signal. For example, the rate of arrival

of items and the rate of removal of items can be used to describe a queuing system. How-

ever, these two values can be replaced by the rate of accumulation of items in the queue.

Therefore, in this example only one feature is required instead of two. This reduces the

complexity of the system.

In complex systems, the dimensionality of the data is equal to the number of sensors

used to measure it. However, the implicit dimensionality is the number of sources in

the system. In most cases, no information is provided about the number of sources or

their characteristics. Also, the actual application in which data would be used (i.e. the

factors that have to be measured using the data) is indeterminate. In these cases, it is

not possible to reduce the number of variables by using speci�c information about the

data. For such systems, more general methods (which do not need information about the

implicit dimensionality or the applicability of the data) have to be used.

2.1.1 Principal Component Analysis

Principal component analysis (PCA), discussed in [6], reduces the dimensionality of

a signal by determining a linear mapping of the signal to a smaller dimensional space.
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The feature variables in PCA, called factors, represent linear combinations of original

problem variables. The coe�cients of this linear transformation are such that if the feature

transformation is applied to the data followed by its inverse, there will be minimum sum

of squares di�erence between the original and reconstructed data. If Y represents an

n�m matrix (n = number of observations and m = number of variables), PCA involves

determining an optimal factorization of Y into a source matrix T (n � f) and a loading

matrix P (m� f) and a matrix of residuals E (n�m) such that

Y = TP

T

+E: (2.1)

Here the dimensionality of the system is reduced fromm to f by determining the P matrix

and using it to get

T = Y P: (2.2)

Therefore, if the values in the residual matrix E represent permissible errors, then the

data set Y consisting of n observations and m variables has been successfully reduced

to the data set T consisting of n observations and f variables. By considering values of

f < m, the dimensionality has been reduced from m to f .

2.1.2 Neural Networks and PCA

One of the �rst neural network approaches to PCA is the Hebbian learning algorithm

[24]. Hebbian learning is a basic unsupervised learning algorithm for feed-forward net-

works. In Hebbian learning the weight change �w

ij

, is proportional to the product of the

output, y

i

, of the node to which the weight connects and the input, x

j

, to that node, i.e.

�w

ij

= �y

i

x

j

: (2.3)

Figure 2.1 shows the network architecture for Hebbian learning with the input, output

and the weight values. The output for each node can be given in terms of the I inputs x

i

,

by

y

i

= f(

I

X

j=1

w

ij

x

j

)� 1=2 (2.4)
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L  inputs 

M   outputs

x

y

w

i

j

i j

M  < L

Figure 2.1: Hebbian Network.

where f is the activation function for the network. This algorithm is derived by maximizing

an overall response function F given by

F =

N

X

i=1

y

2

i

(2.5)

by making the change in w

ij

proportional to partial derivative of F with respect to w

ij

,

i.e.

�w

ij

/

�F

�w

ij

(2.6)

From equation (2.4) we get

�F

�w

ij

= 2f

0

y

i

x

j

(2.7)

where f

0

is the derivative of the activation function f . If no activation function is being

used, f will be a linear function and its derivative will be a constant. From equations

(2.4) and (2.7) and introducing the learning rate as the proportionality constant, we

obtain equation (2.3).

This equation can also be represented in the form of a matrix equation, as given in

[17], as

W

k+1

=W

k

+ �

k

[I �W

k

W

T

k

]x

k

x

T

k

W

k

(2.8)

where

W

k

is a L�M matrix of weights at the k

th

iteration,
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L is the number of inputs to the network,

M is the number of outputs,

�

k

is the learning rate at the k

th

iteration,

x

k

is the k

th

input vector.

If w

k

(i) is a vector representing the weights connecting to the output node i, the

output of that node (assuming linear activation function) is [x

T

k

w

k

(i)]. Therefore, the

change in weight is proportional to the product x

k

[x

T

k

w

k

(i)] of the input and output of

each neuron. The additive nonlinear term W

k

W

T

k

x

k

x

T

k

W

k

orthonormalizes the weight

vectors. If a sigmoidal nonlinearity is used, the additive term can be given as

W

k

W

T

k

x

k

g(x

T

k

W

k

) (2.9)

where g is the sigmoidal function.

It has been proved in [19] that a network that is trained using Hebbian learning

will learn the m-dimensional PCA subspace of the input vectors, even though a strict

convergence proof is still lacking. Speci�cally, the weight vectors given in equation (2.8)

converge towards the true unnormalized principal eigenvectors of the correlation matrix

of the input vectors if a sigmoidal nonlinearity is used in the additive constraint as shown

in equation (2.9).

Therefore, a neural network performing Hebbian learning is capable of principal com-

ponent analysis. This is the fundamental basis on which many other extensions to PCA

have been proposed.

PCA gives a linear mapping from the input space to the feature space. However, a

linear mapping from the actual signal to a reduced dimension may not exist. A nonlinear

mapping may be more bene�cial. There are many reasons for this. Principal components

are based solely on covariances or correlations. These are second order statistics and can

describe Gaussian data and stationary linear processing operations only. However, higher

order statistics in data are needed for more accurate feature extraction. These can be

introduced by inserting a nonlinearity in the feature extraction. output that result from

PCA are often linear combinations of these sub-signals. In some cases, the sub-signals

themselves may be desired.
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Also, a nonlinear mapping to a much lower dimension might exist. PCA projects the

data into a linear subspace with minimum information loss, by multiplying the data by the

eigenvectors of the sample covariance matrix. By examining the relative magnitude of the

corresponding eigenvalues, the minimum dimensionality of the space into which the data

may be projected could be chosen based on the value of permissible error. However, if

the data lie on a nonlinear sub-manifold of the feature space, then PCA will over-estimate

the dimensionality. For example, the covariance matrix of data sampled from a helix in

three-dimensions will have three principal components. However, any point on the helix

could be mapped onto an open interval.

2.2 Nonlinear Dimensionality Reduction

Many algorithms have been proposed for nonlinear dimensionality reduction. The

algorithms come under two main categories: autoassociative networks, and nonlinear ex-

tensions to Hebbian learning. The autoassociative networks use supervised learning and

the nonlinear extensions to Hebbian learning use unsupervised learning. A newer tech-

nique for signal classi�cation called Independent Component Analysis (INCA) is proposed

in [8].

2.2.1 Supervised learning methods

Autoassociative networks were �rst introduced in [15]. Autoassociative networks are

nonlinear feed-forward networks trained using standard back propagation algorithm, where

the network is trained to replicate the input signal. The network consists of multiple layers

one of which contains fewer nodes than any other layer in the network. This constraint is

the bottleneck layer, a layer of hidden nodes smaller in dimension than either the input or

output layers. Linear bypasses are allowed in the network between any two layers except

across the bottleneck. Therefore, the only communication between the left and the right

parts of the network is through the output of these bottleneck nodes. This layer constrains

the network to develop a more compact representation of the input at the bottleneck layer.

Conventional techniques for data analysis need a process model which is frequently

assumed to be linear. Statistical methods like PCA could be used in the case where a
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process model does not exist. However, they are based on linear mapping between the m

and f dimensional space. Autoassociative networks could be used to study and interpret

multidimensional data for which model-based techniques for the data do not exist. Also,

standard back propagation with a sigmoidal transfer function could be used to train the

network.

In [15], the noise �ltering aspect of the autoassociative network is considered. Since

the bottleneck is constrained to bring out correlations among the input, the uncorrelated

factor of the input (which also consists of uncorrelated noise) is attenuated. During train-

ing of an autoassociative network, the training set is approximated using f independent

variables. If � is the lower dimensional nonlinear manifold for the network, all outputs

of the network lie on �. The network transforms Y to �. If the network has enough

representational capability, � will appear as a least square �t where the approximations

of Y lie very close in the manifold. It has to be also assured that � is a smooth �t by

cross validation. Given a linear network with k inputs measuring the same quantity, with

an added uncorrelated noise whose variance is zero, the noise factor in the output signal

is reduced by k times. This is the case only if the error variance is equal for all the input

signals. This is similar to the statistical quality control problems. However, for a non-

linear network the noise reduction is di�cult to calculate directly. It is however observed

in [15] that just as in the linear case, a nonlinear mapping in which the variance of the

noise for each input is approximately equal resulted in better noise reduction. The work

done in [15] illustrates this by measuring the same signal using two di�erent sensors with

some noise induced. A nonlinear network is used to create an identity mapping of the two

inputs. A single bottleneck node is shown to be su�cient to replicate the signal. Also,

the total noise variance is shown to be reduced for the output signal.

NLPCA using a autoassociative networks was proposed in [14]. The technique is

similar to PCA except that a nonlinear vector function is used instead of a linear trans-

formation function. Therefore, we seek a mapping

T = G(Y ) (2.10)
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where G is the nonlinear vector function consisting of f nonlinear functions, each cor-

responding to one variable. If we can determine a vector function H consisting of m

nonlinear functions which when applied to T results in a modi�ed data set Y

0

such that

the loss of information given by E = Y - Y

0

is � a prespeci�ed permissible error value,

then we can claim that T is a correct representation of Y and that one can be transformed

to the other using the nonlinear vector functions G and H. By choosing a value of f < m

we can make T lie on a lower dimensional space than m. Therefore, nonlinear principal

component analysis consists of determining two nonlinear vector functions to map the

data set from a high dimensional space to low dimensional space and vice-versa. In [14],

the authors state that the most natural way to come up with such mappings is to use

nonlinear neural networks. Therefore, a network consisting of m inputs and f outputs

could act as the mapping function and a network consisting of f inputs and m outputs

could be used as the demapping function. In order to assign weights to these networks,

we need to know the values of the low dimensional data corresponding to the actual data.

However, this information is not available. On the other hand, we know that the input to

the mapping network and the output of the demapping network are identical. Therefore,

the most e�ective way of assigning weights to the mapping and the demapping networks

is to combine them into one network consisting of m inputs and m outputs and training it

to replicate the input pattern. The autoassociative network as shown in Figure 2.2 is best

suited for this purpose. The use of sigmoidal nodes in the mapping and demapping layers

makes the mapping nonlinear. The network can be trained to replicate the input signal.

The reduced dimensionality of the signal is equal to the number of bottleneck nodes used.

Once the signal is successfully replicated, the network can be dismantled and the mapping

network can be used to reduce the dimensionality of similar signals.

The authors show the application of NLPCA by training the network on a two-

dimensional input signal representing a circle using a single sigmoidal node in the bottle-

neck. The input variables were given by

y

1

= 0:8 sin(�); y

2

= 0:8 cos(�); (� = [0; 2�]) (2.11)
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Figure 2.2: Basic bottleneck architecture.

The data set consisted of 100 data vectors. Since both the input variables are driven by

a single underlying parameter, the network should be able to model the data with one

nonlinear factor. Three methods were applied to this data to determine the best one-factor

representation: PCA, an autoassociative network with no mapping and demapping nodes

(ANN-1HL), NLPCA network using a single sigmoidal bottleneck node and two thru ten

mapping and demapping nodes. It is illustrated that both PCA and ANN-1HL resulted

in output along one of the diagonals on the circle whereas the NLPCA method resulted

in the output that closely followed in the input except for a few vectors corresponding

to the beginning and end of the [0; 2�] interval. In another application for NLPCA, data

from a simulated batch reactor in which four simultaneous �rst order reactions occur, is

considered. A batch consists of one set of reactions where a raw material A gives rise to

products T , U , R and S (corresponding to one reaction each). All four reactions are guided

only by two initial conditions : the initial temperature T

0

and the value of an impurity �.

Each batch of reactions ran for 30 minutes during which the concentration of the desired

product R is measured for 100 times. 25 such batches of reactions were conducted. Since

each batch consisted of a temporal window of 100 measurements of concentration of the
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desired product R, the super�cial dimensionality of the data is 100. However, since each

batch is governed by precisely two initial conditions T

0

and � the implicit dimensionality

of each batch is two. The three methods of PCA, ANN-1HL and NLPCA were applied to

reduce the dimensionality of the data to 1 and 2 variables. The PCA and ANN-1HL are

shown to perform almost identically, whereas the NLPCA is shown to result in error an

order of magnitude less than the PCA and ANN-1HL.

NLPCA using the bottleneck architecture forces the network to learn a compact

representation of the input at the bottleneck layer. Since the network is highly symmetric,

each node in the bottleneck tries to learn principal features in the data independently.

No e�ort is made to learn features in a complimentary way. For example, two nodes

in the bottleneck layer might try to learn the same features in the data. This results

in duplication of e�ort and the e�ective number of bottleneck nodes is reduced by one.

Sequential NLPCA tries to solve this problem by assigning hierarchies to the nodes in

the bottleneck layer. This procedure can be called a nonlinear extension of the recursive

procedure of factor calculation used in linear PCA.

In the recursive procedure for factor calculation, the secondary factor p

2

(Y

1

) of the

original data matrix Y

1

is the primary factor p

1

(Y

2

) of the residual matrix E

1

= Y

2

.

Therefore extending the rule to the �rst i factors:

p

i

(Y

1

) = p

i�1

(Y

2

) = p

i�2

(Y

3

) = ::: = p

1

(Y

i

) (2.12)

Therefore, the factors of the data matrix can be obtained as follows :

� The primary factor is extracted from the data matrix (using eigenvector analysis).

� This is subtracted from the data matrix to obtain the residual matrix.

� The primary factor is extracted for the residual matrix and becomes the secondary

factor for the data matrix.

This procedure is repeated until the �rst n factors for the data matrix are determined.

The sequential NLPCA given in [14] is similar to this procedure. The �rst nonlinear

component of the data is learned using an autoassociative network with only one bottle-

neck layer. The output from the bottleneck has only the principal component of the input.
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Figure 2.3: Sequential Determination of Nonlinear factors.

This is subtracted from the input signal and the residual signal forms the input to the next

autoassociative network which learns the second nonlinear principal component. The pro-

cess is repeated for the desired number of nonlinear components needed. In this method,

the nodes are forced to learn the components in a speci�c order. The network architecture

for sequential NLPCA is shown in Figure 2.3. Sequential NLPCA tries to eliminate the

contention among nodes to learn the primary features. Each node is forced to learn a

speci�c factor. The residual inputs get progressively smaller for higher orders. Therefore,

each residual input can be rescaled to lie within a speci�c interval. Rescaling magni�es

the values of the residuals and eases the learning of higher factors which may expedite
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convergence. There are however, some potential drawbacks in sequential NLPCA. Using

the residual matrix to determine the next eigenvector is acceptable in sequential PCA

because the feature extraction involves only linear transformations. However, extending

the same principal to its non-linear counterpart may result in an ill-de�ned solution. Also,

there is no criterion enforced in sequential NLPCA which forces the learned features to

be mutually orthogonal.

The method proposed in [14] tries to train a bottleneck network with a given number

of bottleneck nodes. Therefore, the minimum dimension to encode the signal has to be

determined by trying various dimensions. However, ideally, the minimum dimensionality of

the encoding should be provided by the data itself. In [3], a method of pruning the network

is proposed in which a greedy algorithm successively eliminates bottleneck units based on

low variances in the output of the units. The training begins with a prespeci�ed number

of bottleneck units which should be more than the implicit dimensionality of the system

(otherwise the network will never train) and small enough so that the dimensionality

could be reduced quickly. A reasonable choice for the initial number of bottleneck units

would be a number slightly smaller than the explicit dimensionality of the signal. Once

this number is chosen, the bottleneck network is trained to replicate the signal. During

training, the node with the least variance in the output is considered for pruning. The

learning rate is increased for this node and its e�ect on the training error is studied. If the

error can be maintained at an acceptable level at the same time decreasing the variance

for a bottleneck node beyond a threshold, then the bottleneck node can be removed out

of the network. This reduces the dimension of the signal by one. This way an attempt

is made to reduce the dimensionality by studying the e�ect of reduction of variance of

outputs of bottleneck layer on the squared error until any further reduction of variance of

output results in unacceptable error.

The authors demonstrate their method on various examples. The pruning of the

bottleneck layer resulted in the mapping of a helix onto a one-dimensional manifold. PCA

on the other hand resulted in no reduction in dimensionality. In other experiments done

in [22] and [11], an 8-bit, 64�64 pixel image was considered for reduction. This image can

be assumed to be a point in 4096 dimensional \pixel space". The data is preprocessed by
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reduction to the �rst 50 principal components of the image. The reduced representations

were processed by using a bottleneck network consisting of 30 units in encoding and

decoding layers, an initial representation layer of 20 units and a bottleneck layer of �ve

units. This �ve-dimensional data was used to train a feed forward network to recognize

the identity of the subjects. 120 images were used in training and 40 for testing. The

paper reports a classi�cation accuracy of 98% on the training set and 95% on the test set.

A study was conducted in [4] on dimensionality reduction of biological neuron models

which belong to the class of dissipative dynamical systems, using bottleneck neural net-

works. The authors state that trajectories of dissipative dynamical systems usually fall

into some low-dimensional manifold of the state space after some transient time. In these

cases, it is convenient to de�ne a lower-dimensional coordinate systems and a compact

form of the vector �eld on this manifold. The paper discusses experiments in which a

four-dimensional Hodgkin-Huxley model was successfully reduced to two dimensions and

a six dimensional bursting neuron model was reduced to three dimensions. The authors

analyze the reduced dimensional signal by graphically investigating the structure of the

reduced models.

2.2.2 Circular nodes in neural networks

The previous studies indicate that given an n-dimensional signal, a neural network

can be used to force a mapping onto an m-dimensional manifold (m � n) corresponding

to m outputs from the bottleneck layer. Essentially, each output corresponds to a one-

dimensional manifold. Conventionally, an open interval is used as the one-dimensional

manifold by having sigmoidal/linear nodes in the bottleneck layer. However, open intervals

do not have the property of periodicity, i.e., they provide a one-one mapping from a point

on a n-dimensional signal to a point within the open interval. If the n-dimensional signal

is periodic, then any two points on the signal which are very close to each other but are o�

by a period are mapped to totally unrelated points on the open interval. This is because

a mapping onto an open interval does not allow points separated by a multiple of the

period to be mapped to the same point. In order to overcome this problem, a circular

manifold was suggested in [12] in order to map a periodic signal onto one dimension.
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More speci�cally, it is more appropriate to map points on a periodic signal onto a circle

so that all points at a distance of one period from each other are mapped onto the same

point on the circle. Also, it is not possible to map a periodic signal onto an open interval

and extract the signal from the open interval values. Consider a periodic signal that is

mapped onto an open interval so that for each point on the signal there exists a point

in the open interval. In order to de-map the interval, we need to determine the point

on the signal corresponding to a point in the open interval. However, as was mentioned

before, all points separated by one phase length on the signal are mapped onto the same

point in the open interval. Therefore, the mapping of a periodic signal onto an open

interval is irreversible. Hence we will not be able to truly replicate a periodic signal with

a bottleneck layer consisting only of nodes with output in the open interval. This problem

was encountered in [14] where two-dimensional data consisting of a set of points on the

circle was being analyzed using NLPCA with a single sigmoidal bottleneck unit. The

vectors corresponding to the beginning and end of the [0; 2�] interval for � did not �nd a

good �t in a single dimension. A circular node is both capable of and required for encoding

angular information in a signal.

The concept of circular nodes was �rst presented in [12]. A circular node which

provides mapping onto a circular interval is implemented as a pair of coupled nodes so

that the output of the two nodes have values that are constrained to lie on a unit circle.

If N

(i)

j

is the jth node in the ith layer of the network, the node coupled to it can be given

by N

(i)

�(j)

. Therefore, the function �(j) gives the node coupled with the jth node in the

same layer. The prestate value of the network at a node is the output of the node at a

given time before the activation function is applied. The state value of the network at a

node is the output of the node at a given time after the activation function is applied.

The prestate value and the state value of the network at node N

(i)

j

are denoted by P

(i)

j

and S

(i)

j

respectively. From the implementation of a circular node, it follows that

(S

(i)

j

)

2

+ (S

(i)

�(j)

)

2

= 1 (2.13)
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A variation to standard back-propagation which imposes the above constraint is used

to train the network. The forward propagation is similar to that of the Standard back-

propagation, with an activation function that enforces the constraint in equation (2.13).

Therefore, the prestate value of the network at node N

(i)

j

is given by the formula

P

(i)

j

= b

(i)

j

+

N

(i�1)

�1

X

k=0

w

(i�1)

kj

S

(i�1)

k

; (2.14)

where b

(i)

j

is the bias at node N

(i)

j

, w

(i�1)

kj

is the weight connecting the nodes N

(i�1)

k

and

N

(i)

j

, S

(i�1)

k

is the state value of the node N

(i�1)

k

.

The state value of a node can be determined from its prestate value based on whether

the node is sigmoidal or circular as follows:

S

(i)

j

=

8

>

<

>

:

P

(i)

j

=

r

(P

(i)

j

)

2

+ (P

(i)

�(j)

)

2

; N

(i)

j

is circular;

�

(i)

j

(P

(i)

j

); N

(i)

j

is sigmoidal;

(2.15)

where N

(i)

�(j)

is the node coupled with N

(i)

j

and �

(i)

j

is the activation function use for the

jth node in the ith layer.

The term

r

(P

(i)

j

)

2

+ (P

(i)

�(j)

)

2

in the above equation can be treated as the radial value

at that node denoted by R

(i)

j

.

The equations for the error propagation can be determined in the conventional way

for standard back-propagation by equating the change in weight to the partial di�erential

of the error with respect to that weight using equation (2.15) as the activation function.

The total squared error for the network is given by

E =

1

2

N

L�1

�1

X

j=0

(S

(L�1)

j

�G

j

)

2

(2.16)

where L is the number of layers in the network. The partial derivatives of the weights

(and biases) with respect to E can then be derived resulting in

�E

�b

(i)

j

=

8

>

>

<

>

>

:

�E

�S

(i)

j

(P

(i)

�(j)

)

2

(R

(i)

j

)

3

+

�E

�S

(i)

�(j)

�P

(i)

j

P

(i)

�(j)

(R

(i)

j

)

3

; if N

(i)

j

is circular;

�E

�S

(i)

j

�

0

(i)

j

(P

(i)

j

); if N

(i)

j

is sigmoidal ;

(2.17)
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and

�E

�w

(i)

jk

=

8

>

>

<

>

>

:

[

�E

�S

(i+1)

k

(P

(i+1)

�(k)

)

2

(R

(i+1)

k

)

3

+

�E

�S

(i+1)

�(k)

�P

(i+1)

k

P

(i+1)

�(k)

(R

(i+1)

k

)

3

]S

(i)

j

; if N

(i+1)

k

is circular;

�E

�S

(i+1)

k

�

0

(i+1)

k

(P

(i+1)

k

)S

(i)

j

; if N

(i+1)

k

is sigmoidal;

(2.18)

where

�E

�S

j

(i)

is the partial derivative of total squared error with respect to the state value

of the network at node N

(i)

j

given by

�E

�S

j

(i� 1)

=

8

>

<

>

:

S

(i�1)

j

�G

j

; if (i = L);

P

N

(i)

�1

k=0

�E

�S

(i)

k

�S

(i)

k

�S

(i�1)

k

; if (i < L) ;

(2.19)

where

�S

(i)

j

�S

(i�1)

k
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8
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>

:

(P
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2

(R
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w
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kj

+

�P
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j

P
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3
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; if N

(i)

j

is circular;

�

0

(i)

j

(P

(i)

j

)w

(i�1)

kj

; if N

(i)

j

is circular;

(2.20)

Using these equations, a network consisting of circular and sigmoidal nodes (each

corresponding to a couple of nodes) can be trained using training and testing sets. In [12],

the authors discuss various applications of circular nodes. Circular nodes can be used in

compressing periodic data by training the network to determine a one-to-one mapping

from a periodic locus � onto a circle. Functions which have both periodic and aperiodic

components could be subject to feature extraction by determining a mapping from the

pattern set � to I

n

� (S

1

)

k

using a neural network consisting of sigmoidal nodes (which

provide a mapping of the amplitude features of the signal to a set of n interval coordinates)

and circular nodes (which provide a mapping of the angular features of the signal to the

set of k circular coordinates).

Circular nodes naturally �t into the NLPCA architecture proposed in [14] which is

used for non-linear reduction in dimensionality. By using circular nodes in the bottleneck

layer of the NLPCA network, the network can be constrained to learn a non-linear mapping

onto a circular manifold. This could lead to very e�ective reduction of dimensionality of

signal which have components that are intrinsically homeomorphic to a circle. In [12],

bottleneck networks consisting of circular nodes in the bottleneck layer are used in reducing

the dimensionality of various loci whose implicit dimensionality is less than the number of

variables by which the loci are de�ned. These experiments are discussed in detail in the

next chapter.
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Another study was done in [1] where a complex mapping network uses the phase

information in signals consisting of complex valued data for their nonlinear classi�cation.

In this study, a network was proposed in which all the weights, biases and outputs from

each layer are complex numbers. A learning algorithm is presented for complex data

using back propagation. However, the output of the nodes are complex numbers and do

not necessarily lie on a circle. Therefore, each output has a two-dimensional manifold in

the complex plane. The study was however con�ned only to signals consisting complex

valued data.

A very similar set of experiments were conducted in [7] where a complex perceptron

with complex weights and autocorrelation associative memories was introduced to repre-

sent phase information. The complex perceptron was obtained by replacing the weighting

coe�cients of the conventional one layer perceptron by complex numbers. The discrimi-

nant power of the complex perceptron is nearly twice that of the normal perceptron because

linear separability associated with the normal perceptron corresponds to quadratic sepa-

rability by the complex perceptron. A learning rule based on delta rule is proposed where

complex numbers are used for learning rate and error. It is proposed that the complex

component in the weights learn the phase information in the signal. Experiments were

done using bit patterns into one of the two classes (yielding 1 and 0). The percent correct

classi�cation was found to be more for complex perceptrons.

The above studies were all related to the application of autoassociative bottleneck

networks using sigmoidal and complex nodes for nonlinear dimensionality reduction.

2.2.3 Unsupervised learning methods

A di�erent approach that has been followed by others is based on a nonlinear extension

to the standard Hebbian learning. Some of the approaches followed are presented here.

Sanger [20] introduced a method of reducing the number of hidden units in a network

to reduce the number of modi�able parameters and, thereby, reduce the training time.

An assumption is made that any function can be approximated as a weighted sum of N

nonlinear basis functions

f(x) =

N

X

i=1

c

i

�

i

(x) (2.21)
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Figure 2.4: The function f represented as a linear combination of nonlinear basis functions

�

j

(x).

The neural network that evaluates this expression is given in Figure 2.4. The network

is assumed to contain a large set of N nonlinear basis functions whose span includes all

the functions that might be approximated. This kind of an architecture is suitable if a

known function needs to be trained. However, if there are a set of functions that need to

be trained or the function that needs to be trained constantly changes, then the use of a

small set of features may reduce the learning e�ort and time. [20] presents an architecture

where optimal features of the data are needed before the function can be approximated.

For networks that compute linear functions of their input, optimal features can be

de�ned as those which maximize the mutual information between input and output. The

linear principal component analysis helps in evolving such an optimal set of features. A

neural network with Hebbian learning can be made to learn the principal components in

the data. However, an equivalent learning procedure is lacking for the nonlinear case.

In [20], the author de�nes an optimal set of features for the nonlinear case as one that

minimizes the mean-squared approximation error over the distribution of the functions.

Therefore, to determine the optimal features, a large set of N nonlinear basis functions

is assumed to exist. The task would be to �nd a smaller set M of basis functions which is

optimal.
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Figure 2.5: The modi�ed two stage network consisting of the prior information matrix R,

eigenvectors e and output weights a.

The author proposes a nonlinear unsupervised learning algorithm as an extension to

Hebbian learning for extraction of optimal nonlinear features and a supervised learning al-

gorithm for function evaluation. The network architecture proposed is shown in Figure 2.5.

A new set of nonlinear basis functions (�

i

(x); i = 1; : : : ; N) is determined in which the

elements are a linear combination of the original basis functions (�

i

(x); i = 1; : : : ;M)

where N �M . The weights used in the linear combination are the eigenvectors obtained

by training the network using Hebbian learning. Therefore, the set of new basis functions

represent the optimal set of features. Once these features are determined, the desired

function to be trained can be chosen and the weights of the output layer can be computed

by a supervised learning algorithm such as the Widrow-Ho� LMS rule. Therefore, training

is separated into two stages: an unsupervised step to learn the features, and a supervised

step to learn the output function.

Such two step training actually increases the training time because the original net-

work had N weights whereas the extended network has NM +M weights to be learned.

If the output function is known in advance, this technique is more ine�cient. However,

when the function f is not known in advance, but the input statistics for the network re-

main constant, the unsupervised portion of the network can be trained without knowledge

of the functions. Once a mapping is determined from N basis functions to the M basis
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functions, the training of any new function (described by the same input statistics) only

involves the determination of M weights.

Therefore, the e�ciency and usefulness of this method is based on training using

a two pass method where the �rst pass captures the features in the input data and is

independent of the function(s) to be trained. The second pass is used to train the network

to evaluate one or more functions using fewer weights than the conventional method.

The paper presents an example of the inverse kinematics problem for a two joint

planar robot arm which moves in the x�y plane. Given the (x; y) coordinate of the tip of

the arm, the angles subtended at the two joints has to be determined. The neural network

therefore consists of two inputs and outputs. The end point positions are coded using 64

2

basis functions evenly spaced in the work space with 64 each in x and y directions.

The generalized Hebbian learning technique was used to reduce the number of basis

functions to 16. Therefore, before evaluating the inverse kinematic function, the 16 pri-

mary features in the input data are extracted. Now the function can be evaluated for a

�xed basis function width for each arm, using the Widrow-Ho� rule. If the basis function

width is changed, the primary features need not be recalculated. Only the supervised

learning has to be repeated. Therefore, the number of weights to be trained for every new

basis width is only the number of primary features, and not the total number of basis

functions in the work space.

When a Hebbian network is trained to learn the component features of the data,

the individual nodes should respond to independent components of the input signal for

learning the optimal features in the data. A modi�ed Hebbian learning algorithm is

presented in [24] where the hidden nodes are discouraged to learn the same features. The

paper presents an extension to the Hebbian learning by introducing an algorithm which

does gradient descent on the sum of squares of the outputs and an orthogonality constraint.

This algorithm can be implemented in a strictly feed-forward multinode network similar

to Hebbian learning.

The algorithm is based on the assumption that if the outputs of the network are

constrained to be orthogonal to each other, then the features learned will most probably
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be complimentary. The standard Hebbian learning rule

�w

ij

= �y

i

x

j

(2.22)

can be derived using a gradient descent on the overall response function F given by

F =

N

X

i=1

y

2

i

(2.23)

i.e.. the sum of squares of the outputs.

In the proposed algorithm, a set of constraints given by

g

ik

= (y

i

y

k

)

s

= 0 (2.24)

is used to constrain the outputs from nodes y

i

and y

k

to be orthogonal. s is a constant

which is chosen to be a small even integer so that the sign of the node activity becomes

insigni�cant.

An algorithm is needed that forces the set of N nodes to respond to distinct compo-

nents of that input. In other words, a training algorithm has to be evolved that forces the

node outputs to be close to orthogonal to each other. Since g

ik

= 0 is the criterion for

orthogonality between two nodes i and k, the criterion for orthogonality between any two

nodes can be determined by a weighted sum of g

ik

where the weights are the Lagrange

multipliers �

ik

[24]. Therefore, a modi�ed response function G given by

G = F +

N

X

i=1

N

X

k=i+1

�

ik

g

ik

(2.25)

gives the measure of orthogonality between all possible pairs of nodes and has to be

minimized. To determine the learning rule, a gradient descent is done on G. Therefore

�w

ij

/

�G

�w

ij

(2.26)

and

�G

�w

ij

= f

0

i

[2y

i

x

i

+ S(y

i

)

S�1

x

j

X

k 6=i

�

ik

(y

k

)

S

] (2.27)

Therefore

�w

ij

= �y

i

x

j

[1 + (S=2)(y

i

)

S�2

X

k 6=i

�

ik

(y

S

k

)] (2.28)
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Using the smallest positive even integer value for S (=2) makes the constraint g

ik

independent of the sign of the node activity and also simpli�es the above equation to

�w

ij

= �y

i

x

j

[1 +

X

k 6=i

�

ik

(y

2

k

)] (2.29)

The Lagrange multipliers have now to be determined. We can assume that all �

ik

's are

equal because we have no reason to expect some pair of outputs to be less mutually

orthogonal than others (because of the symmetry in the network).

The authors state in the paper that a value of �4 for all �

ik

's results in a simple

form symmetric to the second order in y

i

for �g

ik

. Also, the e�ect of change in weights

on each �g

ik

is uniform because of a constant �

ik

. By substituting this value in the above

equation, we get

�w

ij

= �[y

i

x

j

][1� 4

X

l 6=i

y

2

l

] (2.30)

which is the competitive Hebbian learning rule.

Also, a limit on the weights can be imposed in order to make the learning more

e�ective. For example, a constraint like

L

X

j=1

w

2

ij

� Constant (2.31)

where L is the number of input nodes makes sure that all the weights leading to a particular

node do not exceed a particular value simultaneously.

The e�ectiveness of competitive Hebbian learning was demonstrated in the paper

using the height of points on a regular 10 x 10 lattice as input. For each input vector, a

random point is chosen to posses the maximum height, which is considered as the center

of a Gaussian spot and the elevation of other points is determined using their distance

from the center of the Gaussian.

Experiments illustrate that with competitive Hebbian learning, the multiple hidden

nodes learned to share the input space e�ectively. The use of a single Hebbian node

resulted in an output distribution with maximum height at the center of the 10 x 10 grid

and minimum height along the edges indicating that the network has generalized on the

data set of random Gaussian spots. With two hidden nodes, the network learned to divide
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the input space along the two diagonal axes (which are orthogonal) of the input square.

For a network with three hidden nodes, the three nodes have maximum response at three

di�erent points in the input square which are separated by a large distance.

An image compression application is also illustrated where an image is divided into

8 x 8 pixel squares each of which is given as an input vector to the neural network.

The network is trained using the competitive learning rule given in equation (2.30). The

network consists of 0 - 63 nodes. The 8 x 8 image can be reconstructed after the output

values are calculated using the equation

x̂

j

= C

N

X

i=1

w

ij

y

i

(2.32)

A network with 0 nodes does not undergo training. The average pixel value of the 8 x

8 block is returned as output. A network with one node undergoes standard Hebbian

training (because there is no competition among nodes). The paper illustrates that a

network with more than one node results in better reconstruction using the competitive

Hebbian learning.

By far the most generalized treatment of extensions to Hebbian learning is given in

[9]. This paper discusses a nonlinear extension to Hebbian learning. According to the

standard Hebbian learning as given in equation (2.8) the weight changes is proportional

to the product [x

T

k

w

k

(i)]x

k

of input and output of each neuron. The additive nonlinear

term W

k

W

T

k

x

k

x

T

k

W

k

orthonormalizes the weight vectors.

The terms used here have the following meaning:

� W

k

is a L�M matrix of weights at the k

th

iteration,

� w

k

(i) gives the i

th

row of W

k

, i.e. set of weights going into the i

th

output node.

� L is the number of inputs to the network,

� M is the number of hidden nodes,

� x

k

is the k

th

input vector.
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This algorithm was �rst presented in [17] where it is proved that a network which is

trained using this algorithm learns the linear principal components of the data. A non-

linear extension to the algorithm is given by the same authors in [19] where the following

three kinds of extensions are proposed.

W

k+1

=W

k

+ �

k

[x

k

x

T

k

W

k

�W

k

W

T

k

x

k

g(x

T

k

W

k

)] (2.33)

W

k+1

=W

k

+ �

k

[I �W

k

W

T

k

]x

k

g(x

T

k

W

k

) (2.34)

W

k+1

=W

k

+ �

k

[x

k

g(x

T

k

W

k

)�W

k

g(W

T

k

x

k

)g(x

T

k

W

k

)] (2.35)

These variants were obtained only heuristically, simply by replacing either one, two or

three of the products W

T

k

x

k

or x

T

k

W

k

by their corresponding nonlinearities g(W

T

k

x

k

) and

g(x

T

k

W

k

). In [19], a very general network architecture is de�ned by two functions f

1

and f

2

.

f

2

is the function applied to the output of each node in the network. If f

2

is linear for all

nodes, then it is a linear network architecture. f

1

is a function of the error which has to be

minimized. If f

1

(x) = x

2

then squared error has to be minimized. The network topology

(shown in �gure �gure 2.6) is similar to that used for standard Hebbian learning. For such

a network, the estimation of x is a weighted sum of the M basis vectors w(1); : : : ; w(M),

where the weights are given by the outputs from each hidden node. More formally,

x = �+ e =

M

X

i=1

f

2

[x

T

w(i)]w(i) + e (2.36)

where � is the approximation of x.

To begin with, a nonlinear statistical error criterion J(W ) = Eff

1

(e)jWg is assumed.

This gives the conditional probability of the error function with respect to the weights in

the network. A gradient descent is done on this criterion resulting in the algorithm

w

k+1

(m) = w

k

(m) + �

k

fg

1

(e

T

k

)w

k

(m)g

2

[x

T

k

w

k

(m)]x

k

+ f

2

[x

T

k

w

k

(m)]g

1

(e

k

)g (2.37)

where g

1

and g

2

are the derivatives of f

1

and f

2

respectively. It is next demonstrated that

this general algorithm can reduce into the three extensions presented in [19] by making

some simpli�cations. If a linear network is being used, f

2

(t) = t and g

2

(t) = 1. Also, if
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the error criterion in this case is quadratic, ie. f

1

(t) = t

2

and g

1

(t) = 2t. Substituting

these values in the above equation, we get

W

k+1

=W

k

+ �

k

[x

k

e

T

k

W

k

+ e

k

x

T

k

W

k

]: (2.38)

Therefore, for a given weight vector w(m) the update equation is

w

k+1

(m) = w

k

(m) + �

k

[e

T

k

w

k

(m)x

k

+ x

T

k

w

k

(m)e

k

] (2.39)

However, the values of e

k

are much less than x

k

. Therefore, the coe�cient of w(m) in the

�rst part can be ignored. Therefore, the weight update equation can be rewritten as

W

k+1

=W

k

+ �

k

[e

k

x

T

k

W

k

] (2.40)

Substituting e

k

= (I �W

k

W

T

k

)x

k

in this equation gives

W

k+1

=W

k

+ �

k

(I �W

k

W

T

k

)x

k

x

T

k

W

k

(2.41)

which is the standard Hebbian learning equation. Therefore, standard Hebbian learning

is a special case of equation (2.37) where a linear network with quadratic error criterion

is used.

Another simpli�cation to equation (2.37) can be considered by assuming a nonlinear

network (i.e. f

2

(t) is nonlinear) and a quadratic error criterion (i.e. f

1

(t) = t

2

). This

results in a simpli�ed learning rule

W

k+1

=W

k

+ �

k

[x

k

e

T

k

W

k

G

2

(x

T

k

W

k

) + e

k

f

2

(x

T

k

W

k

)] (2.42)

The �rst term in the above equation does not contribute signi�cantly to the weight update

because the value of e

k

is much less than that of x

k

. Therefore, the above equation can

be simpli�ed as

W

k+1

=W

k

+ �

k

e

k

f

2

(x

T

k

W

k

) (2.43)

Substituting for e

k

gives

W

k+1

=W

k

+ �

k

[x

k

�W

k

f

2

(W

T

k

x

k

)]f

2

(x

T

k

W

k

) (2.44)
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This is the same equation (2.35). Therefore, a nonlinear network with quadratic error

criterion reduces to a modi�ed Hebbian learning equation proposed in [19]. Another

statistical optimization criterion is that of feature extraction de�ned as

J(W ) =

M

X

i=1

Ef

1

[x

T

w(i)]jw(i) +

1

2

M

X

i=1

M

X

j=1

�

ij

[w(i)

T

w(j) � a

ij

] (2.45)

The sum of conditional expectations that depend nonlinearly on the output of the neurons

has to be maximized. The constraint w(i)

T

w(j) � a

ij

keeps the weights bounded. This

constraint is weighted by the Lagrange multipliers and included in the optimality criteria.

If matrix a is assumed to be an identity matrix, then the constraint w(i)

T

w(j)� 1 where

i 6= j imposes orthogonality on the weight vectors. By applying gradient ascent on the

above equation results in the algorithm

W

k+1

=W

k

+ �

k

[I �W

k

W

T

k

]x

k

g(x

T

k

W

k

) (2.46)

which is one of the extensions proposed to Hebbian learning.

Hence, the generalized algorithms presented in this paper can be reduced into various

important extensions of Hebbian learning. The training is done by updating the weights

locally depending on the error vector e

k

, the input vector x

k

and the weight vector w

k

(m)

of the neuron to be updated. The network topology for all the algorithms presented here

is the same, as shown in Figure 2.6.

This algorithm is also completely symmetric because the weight updates are uniform

for all the nodes. It is important for the neuron weight vectors to have some order.

Asymmetry can be introduced in the training by using only one neuron to begin with and

introducing other neurons after some convergence is achieved. Also, the weights connect a

particular output node should be constrained to lie within a value to assure convergence.

This aspect was incorporated in [24] and further scrutinized in the sections to follow.

2.2.4 Independent Component Analysis

The ideal classi�cation algorithm should perform what is called the blind separation.

Blind separation aims at decomposing the signal into statistically independent compo-

nents (i.e. extracting the original signal sources from their mixture) where there is little
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Figure 2.6: The network topology for extended Hebbian learning algorithms.

information about the sources themselves. A complex algorithm called INCA (INdepen-

dent Component Analysis) was proposed in [8] which attempts to do blind separation. In

this algorithm a mixture model is assumed. If E

i

(i = 1 : : : n) represent the signals from

n sensors, and X

i

(i = 1 : : : m) represent the m sources, then we need to determine the

elements of a n x m matrix A such that E(t) = AX(t). For this, a neural network is used

whose architecture is shown in �gure 2.7. The learning rule used to train this network is

S

i

(t) = E

i

(t)�

X

k 6=i

c

ik

S

k

(t); 1 � i � n (2.47)

where, E

i

(t) is the ith input, S

i

(t) is the ith output, c

ik

are the network coe�cients.

Therefore, the output S

i

(t) of the ith node is the weighted sum of the input signal E

i

(t)

and other outputs S

k

(t)(k 6= i). In matrix form, this equation can be written as

S(t) = E(t)� CS(t) (2.48)

Assuming that the recursive network is stable, it computes the function

S(t) = (I + C)

�1

E(t) = (I + C)

�1

AX(t) (2.49)

Therefore, if the network is trained so that the coe�cients given by matrix C converge to

values such that

(I + C)

�1

A = I (2.50)
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Figure 2.7: The network topology for INCA.

then we have S(t) = X(t), and the network can be used to extract the source signals. To

obtain such a convergence (i.e. to determine the matrix C), it is assumed that the network

is close to a solution: n� 1 outputs S

k

(t) are already equal to X

k

(t), the last output can

be given by

S

n

(t) = E

n

(t)�

X

k 6=n

c

nk

S

k

(t) (2.51)

Since E(t) = AX(t) we have

S

n

(t) =

X

k 6=n

(a

nk

� c

nk

a

kk

)X

k

(t) + a

nn

X

n

(t) (2.52)

A term s

n

(t) is then de�ned as

s

2

n

(t) =

X

k 6=n

(a

nk

� c

nk

a

kk

)

2

X

2

k

(t) + a

2

nn

X

2

n

(t) (2.53)

The values of c

ij

can then be determined by a gradient descent on s

2

n

(t) This results in a

network trained to transform the input signal E(t) into its independent components X(t).

2.3 Analysis

The above discussion primarily focuses on three important methods for nonlinear

feature extraction: unsupervised Hebbian learning extensions, supervised autoassociative



34

bottleneck architectures and independent component analysis. Some aspects of learning

which are common to both these categories are: symmetry of the architecture, comple-

mentary learning of nonlinear components, convergence of weights.

Symmetrical architectures are easier to implement in hardware because they do not

need external hardwiring and can be generalized to any size. Symmetry also allows simul-

taneous and uniform update of weight vectors. However, symmetrical networks do not

perform well especially for linear PCA. There should be some hierarchy among the weight

vectors. This is true for both supervised (autoassociative) learning and Unsupervised

(Hebbian) learning. This aspect is closely related to that of complementary learning of

nonlinear components. In supervised learning, asymmetric learning can be realized using

the sequential NLPCA architecture. In Hebbian learning, competitive learning among

hidden nodes can be enforced (as described in [24] and [9]) to make the learning asym-

metric. In any case, some constraint (as given in equation (2.31)) should be placed on the

sum of weights connecting to any node, to ensure convergence.

The following text analyzes the various algorithms discussed above for their network

symmetry and complementary learning features.

The autoassociative network has a highly symmetric architecture, because the learn-

ing rule is identical for all nodes in the network. As a result, more than a single node in

the bottleneck may compete together to learn a single component of the input data e�ec-

tively reducing the number of bottleneck nodes. Sequential NLPCA avoids the problem

by ordering the nodes according to the principal components that they need to learn. An-

other method would be to introduce only a single bottleneck node and let it train a while

until it learns the primary principal component. Other nodes can be slowly introduced

in the bottleneck as the training proceeds. This way, the order of learning of principal

components may be controlled.

The competitive Hebbian learning presented in [24] uses a nonlinear network where the

output of the nodes is calculated using a squashing function. It assumes that if the outputs

are constrained to be orthogonal, the set of nodes respond to di�erent components of the

input. The change in weight for the modi�ed Hebbian rule consists of a multiplicative
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factor [1� 4

P

l 6=i

y

2

l

] which has a low value if outputs from all nodes other than the node

into which w

ij

connects are high. During training, if the output of other nodes is high,

then the weight change in the given node is less than what it would be using standard

Hebbian learning. Therefore, if di�erent nodes have di�erent responses, the learning for

di�erent nodes will be signi�cantly di�erent. Hence, the network behaves asymmetrically.

The weight limit makes sure that the network weights do not become exceedingly high.

This algorithm could give a de�nite improvement over Hebbian learning because of

the nonlinearity involved in the network and the orthogonality constraint imposed during

training. Convergence could also be faster if the nodes learn di�erent components of

the input. However, the network might become unstable very easily. Equation (2.30)

suggests that a node which has the largest output has the largest weight increment for all

weights which connect to the input of this node. Similarly, a node which has the lowest

output has the lowest weight change for all weights which connect to the input of the

node. As a result, the output for such a node does not change signi�cantly. Therefore,

the weights connecting to the node which has a large output might increase exceedingly.

Hence, applying a weight limit on the overall strength of the input to each node is very

crucial. There is no direct method to calculate an optimal weight limit for this purpose.

Therefore, the practicality of this algorithm greatly rests on the weight limit chosen. The

weight limit has to be chosen empirically. If the input signal is very complex, then the

empirical determination of weight limit may be very di�cult.

The algorithm proposed in [20] could be used to increase the e�ciency in training a

network to a set of functions by precalculating the optimal features in the input. This is

done by using unsupervised Hebbian learning to determine the eigenvectors for the input

data. A set of basis functions which span all the functions that need to be approximated,

has to be determined. However, for complex signal in which the function to be approxi-

mated is complex and unknown, it is not possible to de�ne a set of basis functions that

span all the functions to be approximated. Therefore, this algorithm is useful in approxi-

mating small functions e�ciently. However, it might not be able to approximate or extract

optimal features from complex functions.
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In [9], a generalized and broad treatment of network architectures for nonlinear prin-

cipal component analysis is given. A symmetric network is assumed with constrains given

by the two functions f

1

(error criterion function) and f

2

(the output function). The learn-

ing algorithms are obtained using two approaches: by doing gradient descent on error

criterion; by doing gradient ascent on statistical criterion for feature extraction.

The illustration given in the paper where the generalized algorithms are reduced to

standard nonlinear extensions proposed in [19] shows that they are consistent. By varying

the functions f

1

and f

2

, the e�ect of nonlinearity and error criterion on the performance of

various kinds of networks can be studied. The algorithms that can be constructed from the

�rst statistical optimization criterion result in interesting nonlinear extensions to Hebbian

learning while the feature extraction statistical criterion encompasses the concept of com-

petitive learning by introducing the constraint that the weight vectors be orthonormal.

The feature extraction algorithm is very similar to the competitive Hebbian algorithm

presented in [24]. In [24] the orthogonality constraint is enforced among the nodes by

considering a weighted sum of g

ik

which is the product of two output vectors raised to a

positive power.

The nonlinear functions used in the algorithms proposed here introduce higher order

statistics into the learning equation producing more accurate uncorrelated outputs than

the PCA learning algorithms which utilize only second order statistics.

The INCA algorithm tries to solve the blind separation problem by using an adaptive

rule for determining the network coe�cients by using high-order statistical moments (with

non-linear functions). This involves complex matrix operations for every iteration. Also,

the number of learning steps necessary before convergence, is unknown in the adaptive

algorithm. The problem of network stability is not addressed in the algorithm.

The above section discussed the studies done in the area of NLPCA using 1. bottle-

neck architectures and complex sigmoidal nodes to store phase information, 2. nonlinear

extensions to unsupervised Hebbian learning, 3. INCA. These algorithms, though more

complex than the PCA, are a de�nite improvement over it as shown in [3], [4], [8] and

[14]. The next chapter focuses on the bottleneck architectures and their e�ectiveness in
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reducing the dimensionality of well de�ned signals. Chapter 3 presents the experiments

conducted using bottleneck architectures for feature extraction from complex EEG signals.



Chapter 3

PRELIMINARY EXPERIMENTS

This chapter discusses experiments done using the bottleneck architecture and sequen-

tial bottleneck networks in reducing the dimensionality of both periodic and non-periodic

mathematical functions.

The goal is to optimally compress a data set � � <

N

, which is the locus of a well

speci�ed function. The data set for each function has a dimensionality N which is the

number of observed variables, and an implicit dimensionality which is equal to the number

of independent variables used to generate the data. Therefore, an autoassociative network

in which the number of bottleneck nodes equals the number of independent variables in

the function should be able to learn to replicate the function.

An autoassociative network as dealt with in [15] is a symmetric network consisting

of 5 layers (including input and output layers). Using standard backpropagation, it is

di�cult to train any but the most simple functions with a large network size. The use

of a large training set also makes learning di�cult. Therefore, an extension to standard

backpropagation called conjugate gradient method, which was �rst presented in [5], is

used to train the autoassociative network.

3.1 Conjugate Gradient Method

In standard back propagation, the steepest descent direction m

p

associated with the

training example p is given by

m

ijk

= �

i+1;k

� z

ij

(3.1)

where m

ijk

is steepest descent direction for the unit j in layer i, to unit k in layer i+ 1,

�

i+1;k

is the back-propagated error value and z

ij

is the output of the unit j in layer i.
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The weight change is then calculated using the formula

�w = �m

p

+ ��w (3.2)

where � is the learning rate or step size, � is the momentum.

In standard backpropagation, an estimate of the true gradient is determined and

applied separately for each training pattern. The true gradient is the direction of steepest

descent with respect to all the patterns considered simultaneously. Batching is a technique

in which the direction of steepest descent is calculated as the sum of the gradients for

individual training examples, ie.

M

P

=

P

X

p=1

m

p

: (3.3)

Another improvement that has been suggested to backpropagation is line search.

Given the weights of the network at a speci�c epoch, the learning rate to be used is

determined by considering each learning rate and determining the squared error that

would result in the next epoch if that learning rate is used. Given the error function

 (w) =

1

2N

N

X

n=1

X

j2C

(d

j

(n)� y

i

(n))

2

(3.4)

where N is the number of train patterns, C is the set of neurons in the output layer, d

j

(n)

is the actual output of jth neuron using nth train pattern, y

j

(n) is the desired output of

jth neuron using nth train pattern. The learning rate can be determined as

�(n) = min

�

f (w(n) + �p(n))g (3.5)

where p(n) denotes the gradient at nth epoch. The learning rate which results in the

least error is used for the current epoch. Therefore, an adaptive learning rate is used in

training.

Batching and line search provide consistent improvement over backpropagation. How-

ever, steepest descent is a poor optimization method. In [13], the authors propose to com-

bine batching of patterns and line search with gradient descent in conjugate directions.
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The conjugate gradient method can be viewed as batch BP with dynamic adjustment of

the learning rate and momentum.

If p(n) denotes the gradient at nth epoch, the weight vectors are updated according

to the equation

w(n+ 1) = w(n) + �(n)p(n); (3.6)

where �(n) is the learning rate for the nth epoch determined using line search. The

direction vector p(n) is computed using the previous direction vector p(n � 1) and the

direction of steepest descent M

P

determined from equation 3.3 as follows:

p(n) =

(

�M

P

(n) + �(n� 1)p(n� 1); if n > 0;

�M

P

(n); if n = 0;

(3.7)

where �(n) is the adaptive momentum for the nth epoch. This is calculated by using the

Fletcher-Reeves formula given in [5] as:

�(n� 1) =

M

T

P

(n)M

P

(n)

M

T

P

(n� 1)M

P

(n� 1)

: (3.8)

Therefore, the conjugate gradient method uses batch BP with adaptive learning rate

and momentum. In [13], the authors compare the conjugate gradient method with con-

ventional BP using an XOR network as example. The conjugate gradient method is shown

to result in faster convergence.

3.2 Performance tests

In order to compare the e�ectiveness of sigmoidal versus circular bottleneck nodes, a

set of functions was chosen whose implicit dimensionality is less than the dimensionality

of the data. Some functions are periodic, some are aperiodic and some functions consist

of a mixture of periodic and aperiodic variables. The following subsections describe the

performance of the di�erent network architectures on examples of each kind of function.

3.2.1 Circle

This is a periodic function of two variables a and b which are generated using a single

parameter � as
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Figure 3.1: Error in replicating data on a circle using one circular/sigmoidal bottleneck

node.

a = sin(�); b = cos(�) (� = [0; 2�])

Therefore, the implicit dimensionality of this function is one. A network consisting of one

bottleneck node should be able to replicate this function, ie., given input values of a and b

its output should be approximately the same values. Therefore, the network should learn

the underlying parameter �.

Figure 3.1 shows typical learning curves (in terms of replication error across epochs)

using a 2�6�1�6�2 network with one sigmoidal bottleneck node and a 2�6�1�6�2

network with one circular bottleneck node. Both networks had 6 sigmoid nodes in the

mapping and demapping layer and were trained for 400 epochs.

As shown in Figure 3.1, the test error using sigmoidal bottleneck settles at a higher

value than that using the circular node. This reinforces the fact that it is easier to map

periodic data onto a circular manifold. A mapping of a periodic signal onto an open

interval is irreversible. Therefore, a sigmoidal bottleneck network does not consider the

periodicity in the network. This is illustrated in Figures 3.2 and 3.3 which show the

expected output versus actual output of a network which is made to learn �, given sin(�)

and cos(�) as inputs. When using sigmoidal nodes, the network has di�culty in mapping

the points on the circle which are close to 0 or 2�, as shown in Figure 3.3 because of
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Figure 3.2: Using circular nodes to learn � corresponding to a point on the circle.
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Figure 3.3: Using sigmoidal nodes to learn � corresponding to a point on the circle.

the discontinuity in data. However, a good mapping is obtained when the network uses

circular nodes.

3.2.2 Trefoil knot

This is a periodic function of three variables x, y and z which are determined using

a single parameter � as

x = cos(2�)(2 + cos(3�)) (3.9)

y = sin(2�)(2 + cos(3�)) (3.10)

z = sin(3�) (3.11)
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Figure 3.4: The 3-dimensional trefoil knot.

The implicit dimensionality of this function shown in Figure 3.4 is one.

An autoassociative network with one bottleneck node should be able to replicate the

trefoil knot. As in the previous function, a single circular bottleneck node should be able

to replicate a trefoil knot better than the sigmoidal node because the curve is intrinsically

homeomorphic to a circle, i.e, a reversible mapping exists from the knot to a unit circle.

The network has to determine this mapping in order to replicate the knot.

Figure 3.5 shows the test inputs and outputs to a 3 � 15 � 1 � 15 � 3 network with

one circular node in the bottleneck layer. Figure 3.6 shows the test inputs versus outputs

for the three dimensions of the trefoil knot.

Figure 3.7 shows the test input versus output for each of the three dimensions of the

trefoil knot using a trained 3� 15� 1� 15� 3 network consisting of one sigmoidal node in

the bottleneck layer. It can be observed that the single sigmoidal node in the bottleneck

layer is forcing the network to learn only one of the dimensions in the data. This could be

also seen from �gure 3.8 where the error in replication settles to a high value and remains

constant.

3.2.3 Square and reciprocal functions

An aperiodic function of two measured variables x and y which are determined using

a single parameter a as x = a

2

and y = 1=a

2

; has an implicit dimensionality of one. An



44

trefoil knot input

-0.5

0

0.5
-0.5

0

0.5
-1

-0.5

0

0.5

1

x

y

z

trefoil knot output

Figure 3.5: Input and output of a network having one circular bottleneck node trained on

the trefoil knot.
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Figure 3.6: Using one circular bottleneck node to replicate a trefoil knot.
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Figure 3.7: Using one sigmoidal bottleneck node to replicate a trefoil knot.

Test Error

Set 0

Y x 10-3

X

70.00

80.00

90.00

100.00

110.00

120.00

130.00

140.00

150.00

160.00

170.00

180.00

190.00

200.00

210.00

220.00

230.00

240.00

250.00

260.00

0.00 200.00 400.00 600.00 800.00

Figure 3.8: Test error across epochs in training a 3 � 15 � 1 � 15 � 3 network with one

sigmoidal node in the bottleneck layer.
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Figure 3.9: Using one sigmoidal bottleneck node to replicate a square and reciprocal

function.
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Figure 3.10: Output of the sigmoidal bottleneck node when learning the square and re-

ciprocal function.

autoassociative network with a single bottleneck node is used to replicate the function.

Figure 3.9 shows the input and output to the network in both the dimensions, using

sigmoidal nodes. Eight sigmoidal nodes were used in the mapping and demapping layers.

Sigmoidal nodes perform well because the function is aperiodic. Therefore a mapping onto

an open interval is easily obtained. Figure 3.10 shows the output of the bottleneck node.

The output is a linear function of x, the implicit variable involved in the function.
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Figure 3.11: A weighted sum of sine waves used as the noise free source signal.

3.2.4 Replicated signals

In [15], it is stated that the autoassociative network should be capable of producing

a model of measurements that �ts the systematic correlation in the data, yet excludes

random variations due to noise. This can be demonstrated by using an n-dimensional

signal where each dimension corresponds to a sensor reading of the same source signal.

Therefore, the value of the signal in each dimension is identical expect for a noise term

which is uncorrelated. The network should be able to reduce the dimensionality of such

a system to one, and �lter the noise in the signals. For this purpose, a signal as shown

in Figure 3.11, which is a weighted sum of a few sine waves with di�erent phase and fre-

quencies, is assumed to be the source signal. N identical copies of the signal with di�erent

white noise added is used as input to a autoassociative network with one bottleneck node

since the implicit dimensionality for the set of signals is one. Figure 3.12 shows one such

input signal. Figure 3.13 shows the output of the single bottleneck node given 6 signals

identical to the one shown in Figure 3.11 with di�erent white noises added. The output

of the bottleneck node �lters out the uncorrelated noise in the signal. However, as Fig-

ure 3.13 shows, any correlations in the signals (including noise correlations) are retained

in the signal.

This chapter discussed the results of reducing the dimensionality of well de�ned math-

ematical functions, both periodic and aperiodic. Functions that are homeomorphic to a
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Figure 3.12: Some white noise added to the same signal.
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Figure 3.13: Output of the sigmoidal bottleneck node.
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circle could be directly mapped onto a unit circle with a single circular node in the bottle-

neck layer. Chapter 3 gives a description of the EEG signals, their representation in the

form of input vectors and the methods used in reducing the dimensionality of the input

vectors.



Chapter 4

METHODOLOGY OF EXPERIMENTS

This chapter describes the collection of EEG data from the subject which consists

of recording the multiple channels of the signal, removing eye-blinks from the data and

restructuring the data into temporal windows. The NLPCA and classi�cation network

topologies and training strategies are given. Finally, the distribution of EEG data be-

longing to Mental Arithmetic and Mental Letter Writing into testing and training sets for

both the NLPCA and the classi�cation networks is presented.

4.1 EEG Data Collection

The EEG data used in all the experiments was recorded by Keirn and Aunon [10].

In their study, a set of tasks comprising of Baseline (representing no mental activity),

Mental Arithmetic, Geometric Figure Rotation, Mental Letter Composing and Visual

Counting were chosen for analysis. The EEG data was recorded from subjects seated

in a sound-proof dimly lit room with 6 electrodes placed at standard electrode positions

O

1

; O

2

; P

3

; P

4

; C

3

; C

4

. A Grass ampli�er was used as a bandpass �lter which extracted

only the 0.1-100 Hz bandwidth in the signals. The current work speci�cally focuses on

classi�cation between mental arithmetic and letter writing tasks based on the assumption

that they involve signi�cantly di�erent mental processes.

� Mental Arithmetic A non-trivial multiplication problem is presented to the sub-

ject who is asked to solve it mentally without vocalizing or overt movements. The

numbers involved in the multiplication are di�erent for each trial and are designed

so that immediate answers are not apparent.
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� Letter Composing The subject is asked to compose a letter to a friend or relative

without vocalizing. For the successive trials, the subject is asked to pick up from

where he left before.

Ten sessions were conducted for each task each session lasting for a period of ten

seconds which resulted in 2500 samples per task per session. Therefore, one set of raw

EEG data consisted of six dimensions (corresponding to the six channels), with 2500

samples for each dimension. A separate seventh channel (called the eye-blink channel)

was used to record eye-blink information. A high potential spike in the eye blink channel

(greater than 100 �Volts) lasting up to 10 milliseconds was considered as an eye-blink.

Eye blinks do not carry any signi�cant features of data and can become the basis of

classi�cation. Therefore, sample points corresponding to all six channels which fall in the

region of eye blinks were removed from the raw EEG data before being subjected to any

processing.

Figure 4.1 shows the raw data values for letter and math task data with the samples

falling in eye-blink region removed.

EEG data recorded using multiple channels could have correlations among the dif-

ferent channels. These correlations might be temporally separated. If individual samples

of six channel EEG data are considered as separate input vectors for classi�cation, the

temporal correlations among the channels will be completely disregarded. This was veri-

�ed to be true from attempts in the current study to classify individual samples of EEG

data resulted in classi�cation close to chance. For this purpose, temporal windows of EEG

data are employed in all experiments. Each window is chosen to be 62 samples long (ap-

proximately corresponding to a quarter second) and consecutive windows are overlapped

by 31 samples [2]. Since each window consists of 62 samples per channel and there are

6 channels, the dimensionality of the data set is 62 � 6 = 372. Therefore we have input

vectors of dimensionality 372 belonging to 10 trials for math and letter tasks.

4.2 Dimensionality Reduction and Classi�cation

In [3], it was suggested that dimensionality reduction as a preprocessing step for

classifying signals using neural networks could lead to better classi�cation results because



52

Letter Task

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Amplitude(microvolts)

Sample
-16.00

-14.00

-12.00

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

0.00 100.00 200.00 300.00 400.00 500.00

Math Task

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Amplitude(microvolts)

Sample

-20.00

-18.00

-16.00

-14.00

-12.00

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

0.00 100.00 200.00 300.00 400.00 500.00

Figure 4.1: Raw six channel eye-blink free data belonging to trial 1 for subject 3 (�rst 500

samples).
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it may extract signi�cant features in the data that will be helpful in its classi�cation.

In Chapter 2, autoassociative networks were discussed as an e�ective technique for non-

linear dimensionality reduction. The technique followed here is to use an autoassociative

network to extract signi�cant features from the data vectors (corresponding to the signal)

by providing a non-linear mapping of the input vectors onto a lower dimension, as a

preprocessing step to the classi�cation of the signal. Since this work addresses classi�cation

of the EEG signals into one of math and letter composition tasks, there are two steps

associated with this:

� using a bottleneck network to determine a reduced dimensionality representation for

the input vectors,

� using a classi�cation network to classify the reduced dimensionality representation

into one of math and letter composition tasks.

Therefore, a bottleneck network has to be initially trained in order to provide a

function to reduce the dimensionality of the input vectors to a speci�c value. This function

has to be used to generate a lower dimensional representation of all the input vectors

which will be employed in training and testing the classi�cation network to classify the

input vectors into math and letter tasks. The available data should be used in training

and testing both the bottleneck and the classi�cation networks. Therefore, input vectors

belonging to the ten trials should be separated into a training set and a test set so that

the training set is used in training both networks and the test set is used in testing both

networks. The number of inputs to the classi�cation network should equal the number

of nodes in the bottleneck layer of the bottleneck network (which will be the reduced

dimensionality of the signal).

The K-L transform discussed in Chapter 2 is the linear counterpart of the NLPCA

method. In order to compare the e�ectiveness of K-L transform in extracting signi�cant

task dependent features from the signal with that of NLPCA method, the reduced dimen-

sionality K-L representation of the EEG data is subject to classi�cation. Therefore, there

are two steps associated with this:
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� projecting the input vectors to �rst n principal eigenvectors to obtain a reduced n

dimensional K-L representation for the input vectors.

� using a classi�cation network to classify the K-L representation into one of math

and letter composition tasks.

The number of inputs to the classi�cation network should equal the dimensionality of the

K-L representation of the EEG data.

4.3 Implementation

The bottleneck network denoted by 372�k�n�k�372 consisting of 372 nodes in the

input and output layers, a prespeci�ed number of nodes k in the mapping and demapping

layers and n nodes in the bottleneck layer (where n is the dimensionality to which the

data vectors will be reduced to) is trained to replicate the 372 dimensional input vectors

belonging to the training set. The table below shows the values of n and k used in the

experiments.

n k

10 20

20 30

30 40

40 60

The weights of the network are stored at each epoch which results in the least error

in replication of the test set until that epoch. The trained weights (and biases) of the

mapping and the bottleneck layers form the mapping function denoted by 372 � k � n,

which takes a 372 dimensional data vector as input and produces an n dimensional vector

as output as shown in �gure 4.2. This mapping function will be used in converting all the

input vectors into the corresponding reduced dimensionality representations.

The training and test sets for the classi�er network have an input vector dimensional-

ity of n and are obtained by applying the mapping function to the corresponding training

and test sets for the bottleneck networks, respectively. Using the same training sets for

both networks will prevent any two training vectors to the bottleneck network from having

reduced dimensional representations one of which belongs to the test set and the other to
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Figure 4.2: Mapping function in the trained bottleneck network.

the training set of the classi�er network and ensures generalization in learning. The clas-

si�er network has only one output whose target is �0:9 for an input vector corresponding

to the letter task and 0:9 for an input vector corresponding to the math task. Therefore,

the classi�cation network can be denoted by n � p � 1 where p is the number of hidden

units in the classi�cation network. The values of p used in the experiments are 30, 60

and 80. Both the bottleneck and the classi�cation networks are trained using standard

back-propagation using conjugate gradient method for faster convergence.

Since there are 10 trials of data corresponding to both math and letter tasks for a

speci�c subject, the testing and training sets for classi�cation experiments can be obtained

in 10 di�erent ways (referred to as RUNS) by choosing data vectors from one trial as the

testing set and data vectors from the rest of the trials as training set. Figure 4.4 shows

how data vectors belonging to ten trials are distributed into training and testing sets and

used in training and testing the bottleneck and classi�cation networks for the i

th

run.

DSET

i

is the set of input vectors (of dimensionality 372) corresponding to math and

baseline tasks for the i

th

trial. The ordering of input vectors within DSET

i

is immaterial

but a �xed convention is followed for simplicity so that input vectors belonging to the
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Data vectors for Letter task precede those of Math task.
DSET(i)  :  Data vectors belonging to math and letter tasks corresponding to ith  trial.

TEST(i)  :  ith  test set consisting of data vectors belonging to DSET(i)

TRAIN(i)  :  ith  train set consisting of data vectors belonging to DSET(k)  (k = 1..10, k != i)

CTRAIN(ni)    :  Output of the nodes in the bottleneck layer in a trained bottleneck network consisting of "n"
bottleneck nodes when TRAIN(i)  is given as input to the network

CTEST(ni)    :  Output of the nodes in the bottleneck layer in a trained bottleneck network consisting of "n"
bottleneck nodes when TEST(i)  is given as input to the network

Figure 4.3: Distribution of data vectors into training and test sets.

letter task precede those of math task. TEST

i

is the set of input vectors belonging to

trial i and is used as the test set for the i

th

run. TRAIN

i

is the set of input vectors from

all trials but the i

th

one and forms the training set for the i

th

run.

The training set TRAIN

i

is used to train a bottleneck network 372� k�n� k� 372

to replicate the input. Once the bottleneck network is trained, the mapping network

is detached from the trained autoassociative network and used separately as a mapping

function for generating n dimensional representations from input vectors. CTRAIN

ni

is

the result obtained by applying the mapping function to TRAIN

i

and forms the training

set for the classi�cation network and CTEST

ni

is the result obtained by applying the

mapping function to TEST

i

and forms the test set for the classi�cation network. The

classi�cation network has n nodes in the input layer and one node in the output layer.

Since the conjugate gradient method (described in Chapter 3) is used in training both

networks, the learning rate and momentum are not speci�ed for training. The maximum

number of epochs to train the network was decided based on the number of epochs needed

for the networks to converge in a few experimental runs.

The K-L representation of data was also used in classi�cation. Here, the K-L trans-

form is applied to the 372 sample windows of input data belonging to all trials of both

the tasks to reduce its dimensionality to n (where n = 10, 20, 30 and 40). This is done by

projecting the data onto the �rst n principal eigenvectors. The eigenvalues and eigenvec-

tors of the covariant matrix of 372 dimensional patterns are determined using the Jacobi
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Target (-0.9 : Letter task; +0.9 : Math task)

TRAIN(i)

TRAIN(i)

Network

Trained Mapping 

Network

Trained Mapping 

Training and Testing the Classification network (consisting of 30,60,80 hidden units)

Determining test and training set for Classification Network :

Bottleneck Network having n (=10, 20, 30, 40) bottleneck nodes and p (=30, 60, 80) hidden units

..
Target (= TRAIN(i))

Bottleneck network Training Session :

TEST(i)

CTRAIN(ni)

CTEST(ni)

CTEST(ni)

CTRAIN(ni),

Figure 4.4: Training and testing methodology for Bottleneck and Classi�cation networks.
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method in which a sequence of similarity transformations are applied to the input data to

reduce the o�-diagonal elements to zero. The product of all the transformation matrices

is the matrix of eigenvectors (one in each column). The K-L representation of data is then

given as input to train an n � 60 � 1 classi�er network having 60 sigmoidal bottleneck

nodes using standard back-propagation. The target for the network is �0:9 for letter task

data vectors and 0:9 for math task data vectors. The test and training sets for the clas-

si�er network are chosen in the same way as for the classi�cation network in the NLPCA

method. The K-L representation of data belonging to trial one was used as test set and

the K-L representation of data belonging to trials two thru ten was used as the training

set. The NLPCA and K-L transform method are compared for n = 10, 20, 30, 40 in terms

of percentage correctly classi�ed test vectors.

In this chapter, the collection of EEG data from subjects and the conversion to

sampled windowed data vectors was discussed. This was followed by a description of

how the data was separated into training and test sets and how the bottleneck and the

classi�cation networks were trained and tested. The next chapter discusses the results

of training and testing both these network and an analysis of the distribution of input

vectors and their classi�cation accuracies.



Chapter 5

RESULTS AND ANALYSIS

This chapter presents the dimensionality reduction and classi�cation results obtained

by training the NLPCA and classi�cation networks, respectively. This is followed by an

analysis of the networks weights and the reduced dimensionality representations of EEG

data vectors using di�erent methods such as clustering the vectors, projecting the vectors

along the �rst two eigenvectors etc. Finally, the classi�cation results obtained using a

reduced dimensionality K-L representation of the EEG data are compared with those of

its non-linear counterpart, the NLPCA method.

5.1 Dimensionality Reduction

The �rst phase of the experiments consists of training a 372�k�n�k�372 bottleneck

network to replicate input vectors belonging to math and letter tasks. An NLPCA network

consisting of random weights was trained to replicate the test set. Figure 5.1 shows the

mean squared error in replicating the test set at each epoch in training. The error at

any epoch is the average over the training sessions corresponding to all the trials. The

NLPCA network was trained with conjugate gradient method and it was observed that

the replication error settles at a constant value for all numbers of bottlenecks nodes at

about 150 epochs. Therefore, a maximum of 200 epochs was used in all training sessions

for the bottleneck network.

The outputs of the bottleneck nodes of the trained bottleneck network correspond

to the n dimensional representation of the signal. It was determined that the reduced

dimensional representations for the input vectors were uniformly distributed in the n

dimensional space. This was done by determining the average mutual Euclidean distance

within the set of vectors in the reduced dimensional representation and comparing it
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Figure 5.1: Mean Squared error across epochs in training the 372 � k � n � k � 372

bottleneck network (averaged across all trials).

with that of a set of same number of vectors which have a uniform distribution in the n

dimensional space. Table 5.1 shows the values of average mutual distances for n = 10, 20,

30, 40 corresponding to the reduced dimensional representation and a set of n dimensional

vectors forming a uniform distribution.

# bottlenecks math letter random

10 2.7151 2.7679 2.5281

20 3.4985 3.5176 3.6126

30 4.9539 4.9159 4.8649

40 6.6917 6.7382 6.8021

Table 5.1: Average mutual distance between a speci�c number of n dimensional vectors

belonging to letter task, math task and a uniform distribution, respectively.

5.2 Classi�cation

This consisted of classifying the reduced n-dimensional representation of original in-

put data into math and letter tasks using a classi�cation network as described in Chapter

4. The targets used for math and letter data vectors are 0:9 and �0:9 respectively. Fig-

ures 5.2, 5.3, 5.4 and 5.5 show the classi�cation errors (averaged over test data set) across
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training epochs using all ten combinations of trial data (as described in Chapter 5) for

10,20,30 and 40 dimensional representations of the original data. From each �gure, it is

evident that classi�cation error across epochs follows the same trend for di�erent combi-

nations of trial data for the 10 sessions belonging to both the tasks. For 10 dimensional

representation, the classi�cation network does not seem to be doing any learning which is

evident from the 
at structure of the learning curve. This is shown in Table 5.2 where the

percentage of correctly classi�ed vectors for n = 10 is only slightly better than chance.

For the other representations, the classi�cation error in general seems to reduce constantly

until approximately 700 epochs and then increase. Among n = 10, 20, 30 and 40, the worst

classi�cation error is for n=10 and the best classi�cation error is for n=30. This implies

that the �rst ten signi�cant features (that were extracted by training the bottleneck net-

work) are not being su�ciently useful in classifying the vectors as belonging to one of math

and letter tasks. However, the 30 dimensional representation of data vectors (belonging

to the letter and math tasks) is able to store enough signi�cant features that will enable

the data to be distinguished as belonging to one of the two tasks. The 40 dimensional

representation is classi�ed better than the 10 dimensional representation but worse than

the 30 dimensional representation. This means that the additional features contained in

the 40 dimensional representation are making it di�cult to di�erentiate the data vectors

as belonging to one of the two tasks. The NLPCA method extracts important features in

the data without any knowledge of the type of task that the data belongs to. Therefore,

it is possible that the additional features contained in the 40 dimensional representation

are common to both the tasks and are making it more di�cult to be classi�ed.

Table 5.2 gives the number of vectors and percent vectors correctly classi�ed corre-

sponding to 10, 20, 30 and 40 dimensional representations respectively for the trained

classi�cation network. A data vector is assumed to be correctly classi�ed if the single

output of the classi�cation network is > 0 for a target value of 0:9 and < 0 for a target

value of �0:9.

Figures 5.6, 5.7, 5.8 and 5.9 show the number of incorrectly classi�ed vectors across

training epochs for the 10, 20, 30 and 40 dimensional representations of data vectors. The

training and test sets for trials 1 through 10 have di�erent sizes because they are obtained
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Trial # Data Correctly Classi�ed Percent Correct

Vectors n n

10 20 30 40 10 20 30 40

1 136 81 119 127 97 59.5 87.5 93.3 71.3

2 118 56 87 98 76 47.4 73.7 83.0 64.4

3 154 108 133 143 114 70.1 86.3 92.8 74.0

4 136 95 98 111 82 69.8 72.0 81.6 60.3

5 106 46 75 95 52 43.4 70.7 89.6 49.0

6 130 67 93 109 90 51.5 71.5 83.8 69.2

7 154 86 121 130 116 55.8 78.5 84.4 75.3

8 142 84 111 126 81 59.1 78.1 88.7 57.0

9 134 81 91 107 83 60.8 67.9 79.8 61.9

10 148 83 107 125 103 56.0 72.3 84.4 69.6

Total 1358 623 1035 1171 894 57.9 76.2 86.2 65.8

Table 5.2: Number and Percent correctly classi�ed vectors of 10, 20, 30 and 40 dimensions.

from 10 di�erent sessions (as described in Chapter 5) which have unequal number of

samples based on the number of samples which do not fall under an eye blink. It can be

noticed that the number of test vectors incorrectly classi�ed directly corresponds with the

average error in classi�cation of the test vectors.

Figures 5.4, 5.11 and 5.12 show the distribution of output values for the classi�cation

network for 20, 30 and 40 dimensional data corresponding to target values of �0:9 and

0:9 for letter and math data respectively. The symbol \�" corresponds to the output

of the trained classi�cation network which was given an input vector belonging to letter

data and \+" corresponds to the output of the trained classi�cation network which was

given an input vector belonging to math data. The outputs correspond to input vectors

belonging to all the trials. Since trials one through ten (for both the tasks) are tested

on separately trained networks (chapter 5 to be referred for detailed explanation of how

data from di�erent trails is used in training and testing separate networks) the outputs

shown in the �gures 5.4, 5.11 and 5.12 belong to di�erent classi�cation networks based on

the trail to which the individual data vectors belong. The segregation of output values

around the targets is more pronounced in 30 dimensional representation versus 20 and 40

dimensional representation which is re
ected in the values of percentage of total vectors

correctly classi�ed given in table 5.2.
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Figure 5.2: Average test error across training session for the classi�cation network for 10

dimensional representation.

0.4

0.6

0.8

1

1.2

1.4

1.6

0 100 200 300 400 500 600 700 800 900 1000

Test error across epochs: 20 Dim

"trial1"
"trial2"
"trial3"
"trial4"
"trial5"
"trial6"
"trial7"
"trial8"
"trial9"

"trial10"

Figure 5.3: Average test error across training session for the classi�cation network for 20

dimensional representation.
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Figure 5.4: Average test error across training session for the classi�cation network for 30

dimensional representation.
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Figure 5.5: Average test error across training session for the classi�cation network for 40

dimensional representation.
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Figure 5.6: Number of test vectors correctly classi�ed across training session for 10 di-

mensional representation.
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Figure 5.7: Number of test vectors correctly classi�ed across training session for 20 di-

mensional representation.
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Figure 5.8: Number of test vectors correctly classi�ed across training session for 30 di-

mensional representation.

35

40

45

50

55

60

65

70

75

80

85

90

0 100 200 300 400 500 600 700 800 900 1000

Num vectors incorrectly classified: 20 Dim

"trial1"
"trial2"
"trial3"
"trial4"
"trial5"
"trial6"
"trial7"
"trial9"

"trial10"
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mensional representation.
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Figure 5.10: Distribution of Output of a trained Classi�cation network for 20 dimensional

representation of math and letter task data, all trials.
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Figure 5.11: Distribution of Output of a trained Classi�cation network for 30 dimensional

representation of math and letter task data, all trials.
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Figure 5.12: Distribution of Output of a trained Classi�cation network for 40 dimensional

representation of math and letter task data, all trials.

Figure 5.13 shows the average and range of percentage of correctly classi�ed vectors

across trials 1 through 10 using 10, 20, 30 and 40 dimensional vectors. It can be noticed

that the range is smallest for 30 dimensional representation and largest for 10 dimensional

representation implying that the classi�cation percentages are more consistent for the 30

dimensional representation over all the trials.

5.3 Analysis

The previous section has shown that the percentage of math and letter task vectors

correctly classi�ed using the 30 dimensional representation averaged across all the trials

is 86:22%. This section discusses a few methods applied to analyze the 30 dimensional

representation in an e�ort to interpret the results of classi�cation. The objective is to

study the properties of well classi�ed input vectors (belonging to the 30 dimensional

representation of the raw EEG data) for signi�cant features which distinguish between

the two tasks.
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Figure 5.13: Percentage of correctly classi�ed input vectors for di�erent reduced dimen-

sionality representations obtained by NLPCA method.

5.3.1 Ideal Vector analysis

Given the trained weights of the classi�cation network 30� 60� 1, a set of n \ideal"

input vectors can be obtained for each target by choosing small random values as inputs to

the network and training on the inputs. This can be done using standard back-propagation

by by adjusting the inputs to the network (rather than the weights) by propagating the

di�erence of the output and target value for the network back to the inputs. The set of n

best classi�ed vectors and a set of n worst classi�ed vectors belonging to the actual input

data is considered for each task and the average mutual Euclidean distance between the

ideal and the best sets and the ideal and the worst sets is compared.

Since a separate trained classi�cation network is associated with each trial, the set of

ideal, best and worst classi�ed vectors have to be considered on an individual trial basis.

Table 5.3 shows the values of average mutual distances between the set of ideal vec-

tors and best classi�ed vectors and the set of ideal vectors and worst classi�ed vectors for

each trial. Averaged across all the trials, the set of best classi�ed vectors are not signi�-

cantly closer than the set of worst classi�ed vectors to the set of ideal vectors. Therefore,
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Trial # Best Classi�ed Worst Classi�ed

1 4.045 3.788

2 3.872 4.364

3 3.972 3.667

4 3.960 4.079

5 3.701 4.105

6 3.515 4.234

7 3.102 4.259

8 3.749 3.470

9 4.077 4.361

10 3.565 3.844

Average 3.756 4.017

Table 5.3: Average mutual distances between the ideal and the best and worst classi�ed

input vectors for both the tasks combined.

Euclidean distances between vectors might not be a measure of how well the vectors are

classi�ed. This implies that input vectors which contain prominent features of a particular

task may be distributed throughout the k-dimensional space (k = 30, because the current

analysis deals with 30 dimensional representation of the data).

5.3.2 Input Clustering

Since all input vectors belonging to a task are not necessarily grouped together,

clusters of input vectors were considered to determine if the membership of an input vector

to a particular cluster is related to how well the input vector is classi�ed as belonging to

a particular task.

Therefore, input vectors belonging to math and letter tasks for each trial were di-

vided into n clusters based on their mutual distances and the center of each cluster was

determined. The average classi�cation error for input vectors was determined for each

individual cluster. This value was compared to classi�cation error for the corresponding

center for the cluster.

It was determined that there was not any signi�cant di�erence in average error of

classi�cation for di�erent clusters. Where some di�erence did exist, no relation was found

between the average error in classi�cation for input vectors belonging to a cluster and

the error in classi�cation for the cluster center. From this, it can be concluded that

the classi�cation of the input vectors was not directly related to the mutual Euclidean

distances with other vectors.
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Task Cluster Number Avg. Error Cluster Center Error

Letter 1 0.120 0.130

2 0.111 0.216

3 0.189 0.214

4 0.115 0.104

Math 1 0.222 0.149

2 0.370 0.196

3 0.336 0.189

4 0.231 0.159

Table 5.4: Average Classi�cation Error and classi�cation error for the cluster center (trial

1 data vectors) .

5.3.3 Weights of the trained classi�cation network

The weights in a trained classi�cation network can yield useful information about

the learning pattern of each node in the network and any easily discernible relationships

between components of the input vectors. For example, if the weights into all the hidden

nodes from a speci�c input node are positive, then that input is contributing positively to

the output of the network. If there is more than one node in the hidden layer for which

all the weights into and out of the node are positive (or negative), then a single node may

be able to replace all such nodes.

Figure 5.14 shows the weights of a classi�cation network trained on trial data two

through ten. A hollow box represents positive weights and a �lled box represents negative

weights. The magnitude of the weight is represented by the size of the box. Each row cor-

responds to all the weights from an input unit or all the weights into an output unit. Each

column corresponds to all the weights into and out of a speci�c hidden unit. According to

the previous argument, if multiple columns of weights have the same sign, then the hidden

units corresponding to those columns can be replaced by a single hidden unit. From �gure

5.14, it can be observed that no two columns come under this category. Therefore, it can

be concluded that all the weights are being used in training the classi�cation network.

This is true even for 20 and 10 dimensional representations whose weights are shown in

�gures 5.15 and 5.16 respectively.
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Figure 5.14: The weights of 30-60-1 classi�cation network trained on trials two through

ten.

5.3.4 Clustering using Eigenvector Analysis

In the previous section, clustering of inputs according to their mutual Euclidean

distances did not yield groups of vectors which have signi�cantly di�erent classi�cation

accuracies. This led to the conclusion that classi�cation error does not directly depend on

the mutual Euclidean distances between input vectors. Another way of clustering input

vectors is by regarding a limited number of mutually orthogonal directions of maximal

change in the input vector distribution and to perform clustering in the space formed

by using these directions as the primary axes. This can be done by determining the

eigenvalues for the covariance of the set of input vectors. These eigenvectors represent

the directions of maximum change in input vector distribution. For analyzing the clusters

only the �rst two principal eigenvectors were considered since the input vectors can then
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Figure 5.15: The weights of 20-60-1 classi�cation network trained on trials two through

ten.
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Figure 5.16: The weights of 10-60-1 classi�cation network trained on trials two through

ten.

be projected onto a two-dimensional space. The values of the x and y components are the

dot products of the input vector with the �rst two eigenvectors.

Figure 5.17 shows the projection of all the input vectors belonging to trial 1 onto two

dimensions. Both the math and letter data vectors seem to be distributed uniformly in

space and there is no evident clustering of input vectors according to the task.

However, a de�nite clustering pattern was observed if only the �rst few BEST clas-

si�ed vectors are considered for each task. Figures 5.18 and 5.19 show the eigenvector

projection of the 10 best classi�ed input vectors belonging to both the tasks for all the

10 trials. The input vectors belonging to math and letter tasks appear to lie in di�erent

regions of the 2-dimensional space. This behavior is pronounced for trials 1, 2, 4, 6 and
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Figure 5.17: Eigenvector projection of input vectors belonging to both tasks for trial one.

7. This shows that the 30 dimensional representation contains some information about

the signi�cant features of the tasks which is enabling the projection of input vectors to

be clustered according to the tasks. The classi�cation network should be learning the

distinction between the input vectors based on these features resulting in an average of

86:22% correctly classi�ed vectors over all the 10 trials.
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Figure 5.18: Eigenvector projection of 10 best classi�ed input vectors belonging to both

tasks .
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Figure 5.19: Eigenvector projection of 10 best classi�ed input vectors belonging to both

tasks .

5.4 K-L representation

A matrix consisting of 1358 input vectors corresponding to quarter second windows

of eye-blink free data belonging to letter and math tasks was subject to K-L transform

to obtain a reduced dimensionality n (n = 10; 20; 30; 40) K-L representation of the data.

The classi�cation network n � 60 � 1 was trained using K-L representation of trial one

data as testing set and K-L representation of trials two through ten as training set. It

was observed that there was a bias for the K-L representation vectors to be classi�ed as

letter task (66:87% correctly classi�ed vectors) as opposed to math task (39:85% correctly

classi�ed vectors). The average correctly classi�ed vectors was only slightly better than

chance (55:14%).
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Figure 5.20: Percentage of correctly classi�ed input vectors for di�erent reduced dimen-

sionality representations obtained by K-L transform method.

Table 5.5 shows the percentage correctly classi�ed vectors using NLPCA and K-L

Transform representations of input data vectors for reduced dimensions of 10, 20, 30 and

40. It could be notices from Figures 5.13 and 5.20 that the performance of NLPCA

is more sensitive to dimensionality of input vectors than is the performance of the K-L

representation. The NLPCA method shows a de�nite improvement in classi�cation over

the linear K-L transform method for dimensionality of 30. The K-L representation has a

low percentage of correctly classi�ed vectors for all values of n used here and also does

not show much variation across di�erent trials.

# bottlenecks NLPCA K-L Transform

10 57.8 51.7

20 76.2 53.5

30 86.2 54.4

40 65.8 55.8

Table 5.5: Percentage of correctly classi�ed vectors using NLPCA and K-L Transform

representations of input data vectors.



Chapter 6

CONCLUSION

The purpose of this project was to investigate the e�ectiveness of dimensionality

reduction using autoassociative networks as a preprocessing step for classi�cation of EEG

signals into one of two mental tasks. This is part of a larger project whose objective is

to determine the feasibility of using mental tasks as an alphabet for controlling a device

such as a wheelchair by a physically handicapped person.

General methods applied in classifying EEG signals involve K-L Transform and fre-

quency analysis. The K-L Transform determines a linear mapping of raw EEG data onto

a reduced dimensional space. In this work, the NLPCA method was applied to determine

a non-linear mapping onto a reduced dimensional space which lead to lower dimensional

data consisting of signi�cant features which make it easier to classify the EEG signal into

two di�erent tasks. The tasks chosen were \letter composition" and \arithmetic problem

solving" because they were considered to involve signi�cantly di�erent mental processes.

An autoassociative network was �rst trained to generate a reduced dimensional represen-

tation of the original EEG data, each data vector consisting of a temporal window of raw

6-channel data. The reduced dimensional representation was then used in classifying the

original data into one of the two tasks using a standard back propagation network. Both

the autoassociative and the classi�cation networks used the conjugate gradient method for

faster convergence. Multiple trials of data were considered and in all training experiments,

the training and testing sets were formed using data belonging to di�erent trials so that

classi�cation is based on features that exist across all the trials. The reduced dimension-

ality representation of the original data was subject to clustering and eigenvector analysis

to study the behavior of the best classi�ed input vectors belonging to both the tasks.
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The 30-dimensional representation of the EEG data vectors yielded an average per-

centage of correctly classi�ed vectors of 86:22% over all the trials. This was followed

by the 20-dimensional representation with 76:21%, 40-dimensional representation with

65:83% and 10-dimensional representation with 57:89%. All trial data performed consis-

tently well using the 30-dimensional representation. The input vectors to the classi�cation

network (which are also the reduced dimensional representations of the EEG data vectors),

as such were uniformly distributed in the n dimensional space (n = 10; 20; 30; 40) and the

mutual Euclidean distances between the vectors was not directly related to how well they

were classi�ed (Indicative of how prominent the distinguishing features are, in the input

vectors) or which task they belonged to. The classi�cation networks corresponding to all

dimensions seem to employ all the hidden unit weights in the network. When the �rst

n best classi�ed input vectors belonging to both the tasks are projected along the direc-

tion of the �rst two eigenvectors (representing the two orthogonal directions of maximum

change in the input vector distribution) onto a two dimensional space, the vectors begin to

form independent clusters for each task as the value of n decreases. Chapter 5 illustrates

the clustering of vectors for value of n = 10. This indicates that the best classi�ed vectors

contain features which strongly di�erentiate between the two tasks supporting the 86:22%

of correctly classi�ed vectors for the 30-dimensional representation. The K-L representa-

tion of original data vectors however, gives an average percent correctly classi�ed vectors

of 55:14%.

The NLPCA method performed well in generating a reduced dimensional representa-

tion of raw EEG data which resulted in a high percentage of correctly classi�ed vectors for

math and the letter composition tasks. The performance of the autoassociative network in

extracting the discriminatory features was found to be very sensitive to the reduced dimen-

sionality used. For a 10-dimensional representation, the classi�cation network performed

only slightly better than chance. The conjugate gradient method helped the NLPCA net-

work converge in a reasonably small number of epoch. The NLPCA method proved to

be a de�nite improvement over the K-L transform method of preprocessing signals before

classi�cation which yielded a percent correctly classi�ed vectors of only slightly better

than chance. The use of windows of EEG data enabled the temporal correlations between
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the di�erent channels to be considered during the reduction of dimensionality of the EEG

data. Previous attempts to apply dimensionality reduction to individual samples of 6-

dimensional raw data (corresponding to 6 channels) using an NLPCA network made it

impossible for the network to converge.

One of the drawbacks of the NLPCA method as opposed to other preprocessing tech-

niques is the large training time needed because of the large number of weights. The

work presented here focuses only on two tasks and a single subject. A more rigorous test

for classi�cation should involve training and testing across multiple subjects and using

multiple tasks. There are other novel enhancements to the NLPCA network like circular

nodes which determine mapping of the signal onto a circular interval which show de�nite

improvement in mapping functions that are homeomorphic to a circle. Future work could

focus on employing circular nodes in bottleneck layer of the NLPCA networks to obtain a

reduced dimensionality representation of the EEG signal. This could lead to much better

classi�cation results if the EEG signals have some components that are homeomorphic

to a circle. Sequential NLPCA which enforces the order in which the bottleneck units

are trained could be extremely helpful in avoiding the competition between the bottle-

neck nodes to learn the same features. Another technique that could be applied during

dimensionality reduction is pruning in which the bottleneck nodes could be removed if

the weights do not contribute to the training of the network. This could be a solution to

the large training time for the NLPCA network and also lead to the determination of the

\optimal" dimensionality of the windowed EEG data. Future work can also be focused on

improved techniques for data collection by increasing the number of channels to 19 given

by the 10/20 system enabling signals to be recorded from more areas of the brain than the

standard electrode positions used in this work. Future research is needed to employ and

develop new techniques in investigating the problem of classifying multiple tasks across

di�erent subjects.
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